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In all models, but especially in those used to predict uncertain processes (e.g., climate change and nonnative species
establishment), it is important to identify and remove any sources of bias that may confound results. This is critical in
models designed to help support decisionmaking. The geometry used to represent virtual landscapes in spatially
explicit models is a potential source of bias. The majority of spatial models use regular square geometry, although
regular hexagonal landscapes have also been used. However, there are other ways in which space can be represented
in spatially explicit models. For the first time, we explicitly compare the range of alternative geometries available to
the modeller, and present a mechanism by which uncertainty in the representation of landscapes can be incorporated.
We test how geometry can affect cell-to-cell movement across homogeneous virtual landscapes and compare regular
geometries with a suite of irregular mosaics. We show that regular geometries have the potential to systematically bias
the direction and distance of movement, whereas even individual instances of landscapes with irregular geometry do
not. We also examine how geometry can affect the gross representation of real-world landscapes, and again show that
individual instances of regular geometries will always create qualitative and quantitative errors. These can be reduced
by the use of multiple randomized instances, though this still creates scale-dependent biases. In contrast, virtual
landscapes formed using irregular geometries can represent complex real-world landscapes without error. We found
that the potential for bias caused by regular geometries can be effectively eliminated by subdividing virtual
landscapes using irregular geometry. The use of irregular geometry appears to offer spatial modellers other potential
advantages, which are as yet underdeveloped. We recommend their use in all spatially explicit models, but especially
for predictive models that are used in decisionmaking.
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Introduction

The focus of this study is spatially explicit predictive
models designed to support decisionmaking (e.g., population
establishment and spread, climate change, and flood risk),
which should have reliable, probabilistic, and mappable
results. In cases in which there are few relevant validation
data (e.g., nonnative species and climate change), the model
cannot be calibrated statistically, and it is therefore impor-
tant that biases and uncertainties are dealt with explicitly so
that confidence can be placed in the results. Uncertainty may
surround all components of a model (e.g., input data and
processes), but bias by definition usually results from the way
that processes are implemented in the model. In this study,
we explored how spatial structure can be a source of bias, and
present an approach that allows uncertain landscape data to
be incorporated into model output with minimal bias.

There are many different landscape models in the
literature (see [1] for a recent and comprehensive list), all of
which allow a process (population) model to interrogate
explicit locations or regions of space, and choosing the most
appropriate landscape model for the study in hand is
important [1]. We focus on the use of cells in a mosaic-based
model [2] to represent processes in space, which requires the
subdivision of space into a tessellation of discrete, internally
homogeneous patches within which a process occurs.
Although this is an elegant, abstract concept, the use of cells
to represent uncertain spatial processes is often desirable in
real-world applications. First, some information is better

represented by an areal unit than by a point location (e.g.,
water), whereas other information is considered to concep-
tually occupy an area of real space defined by its boundary
(e.g., an animal social group). Second, the limited under-
standing of many of these systems requires us to model at the
scale for which most is known (e.g., the behaviour of
individuals within a social group of animals is often not
well-understood, whereas the size, productivity, or spatial
description of the whole population may be simpler to study
and is well-described). Third, the raw data used to describe
the landscape (e.g., satellite and aerial photography) are
subject to errors and uncertainties. By modelling processes at
scales significantly larger than that of the underlying data,
these problems become statistically tractable (e.g., Land
Cover 2000 [3]). Although in many such models, the attribute
values of cells are directly calculable from habitat or
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geographical data (e.g., vegetation type), here we use
conceptually abstract and attribute-free cells in order to
consider only geometry (specifically, shape) and neighbour-
hood (number and arrangement of adjacent, interacting
patches) in a homogeneous landscape.

In this study, we have used population modelling concepts
to demonstrate the potential for bias in cell-to-cell movement
of information (e.g., individuals) resulting from the geometry
of a mosaic virtual landscape. Population models predom-
inately use raster virtual landscapes, and the description of
home ranges or social groups with single squares (e.g., [4–6])
or a square arrangement (e.g., [7]) is not unusual. Cell-to-cell
movement is implemented using either von Neumann (e.g.,
[8]) or Moore (e.g., 6,9–11]) neighbourhoods (four or eight
neighbours, respectively), often with some directional com-
ponent [12–14]. Some studies note that the geometry of the
virtual landscape has the potential to affect simulation results
[15,16], and the interaction strengths of orthogonal and
diagonal neighbours in rasters are sometimes weighted using
an appropriate algorithm [16,17]. Landscape permeability is
sometimes defined using raster cells (e.g., [18]), although some
authors have suggested using multiscaled rasters to represent
patchy landscapes (e.g., [19]). Other studies use hexagonal
geometry for both spatial analysis [20,21] and modelling
[15,22–25] because the strengths of all neighbourhood
interactions are equal. Irregular (variable shape and size)
geometry has been used extensively in population modelling,
but usually to parameterize or display discrete, spatially
disparate habitat patches with explicit connectivity based on
the distance between patches [26–28] or vector-based move-
ment rules [29–31], and studies such as that by Ovaskainen
[32] exemplify this approach. A few models use tessellated
irregular shapes across a whole landscape, and implement
cell-to-cell movement as part of the simulation [33,34],
whereas Dunn and Majer [35] suggest that Voronoi (Dirichlet)
cells are a convenient way to represent multiply scaled data,
but they do not go into detail about dispersal mechanisms.
However, no attempt has been made to specifically test how

geometries other than rasters may affect movement in a
mosaic landscape, and an explicit consideration of geometry
does not appear to be an integral part of most population
modelling studies.
The representation of real-world landscapes is complex,

with the description of features represented as discrete
objects subject to both qualitative and quantitative varia-
bility, uncertainty, or both [36]. Uncertainty within virtual
landscapes is already considered in some disciplines (e.g.,
[37,38]). We suggest that all spatially explicit population
models should consider how uncertainty in landscape
representation may affect model output, just as sensitivity
analyses on process model parameters have become standard
practice. Clearly this is entirely dependent on the nature of
the study undertaken (data, scale, structure, and discipline),
so we cannot begin to describe how individual studies in
diverse disciplines should address this issue. However, it
seems inevitable that population modellers will adopt a
probabilistic approach to spatial studies (which can be easily
implemented through the use of alternative landscapes in
successive runs of the model), and we provide a mechanism by
which minimally biased landscapes can be created.
We created landscape mosaics with raster, hexagonal, and

irregular geometries with which to model and compare the
cell-to-cell exchange of information. We are not aware of any
other study that directly compares the potential for system-
atic bias in the movement of information across the spectrum
of possible geometries of mosaic virtual landscapes. We
highlight how the geometry of cells in a raster virtual
landscape affects both qualitative and quantitative aspects
of spatial representation of irregular shapes, but leave the
attributional representation of features (e.g., heterogeneous
habitat [39,40]) and subsequent impacts on movement or
process [41,42] to another study. We believe that these
concepts are generally applicable across a broad range of
spatially explicit modelling disciplines.

Results

We created eight virtual landscapes for comparison. Three
virtual landscapes used a regular geometry: two rasters with
von Neumann (Figure 1A) and Moore (Figure 1B) neighbour-
hoods and one of equilateral hexagons (Figure 1C). Virtual
landscapes with irregular geometry were created in five
different ways. One was a simple tessellation around random
points (hereafter, the Dirichlet landscape; Figure 1D). Three
virtual landscapes were approximations to the Dirichlet
landscape, but based on a raster grid, with irregular cells
composed of a mean of four, nine, or 16 squares (Figure 1E,
1F, and 1G, respectively) and called the coarse-grain Dirichlet
(CGD) landscapes. The final irregular virtual landscape, called
the aggregate map, was derived by aggregating habitat
patches from real-world coverage data [3] and thus reflected
the complex structure of a real landscape (Figure 1H). Ten
instances of each irregular virtual landscape were created
because all were formed with random processes. Only one
instance of each regular virtual landscape was used. All
landscapes were based in a real-world context (Figure 2).

Characterizing Statistics
Cells in the raster and hexagonal virtual landscapes had a

fixed number of neighbours (Table 1). Cells in the Dirichlet
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Author Summary

Many different areas of science try to simulate and predict (model)
how processes act across virtual landscapes. Sometimes these
models are abstract, but often they are based on real-world
landscapes and are used to make real-world planning or manage-
ment decisions. We considered two separate issues: how movement
occurs across landscapes and how uncertainty in spatial data can be
represented in the model. Most studies represent the landscape
using regular geometries (e.g., squares and hexagons), but we
generated landscapes of irregular shapes. We tested and compared
how the shapes that make up a landscape affected cell-to-cell
movement across it. All of the virtual landscapes formed with
regular geometries had the potential to bias the direction and
distance of movement. Those formed with irregular geometry did
not. We have also shown that describing whole real-world
landscapes with regular geometries will lead to errors and bias,
whereas virtual landscapes formed with irregular geometries are
free from both. We recommend the use of multiple versions of
virtual landscapes formed using irregular geometries for all spatially
explicit models as a way of minimizing this source of bias and error;
this is especially relevant in predictive models (e.g., climate change)
that are difficult to test and are designed to help make decisions.
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landscape had a mean of exactly six neighbours, though there
was variation about this value within individual landscape
instances. The CGD virtual landscapes all resembled pixe-
lated versions of the Dirichlet landscape. However, both the
visual and mathematical approximation improved as the
resolution of the underlying raster was increased, as
demonstrated by both the mean and standard deviation of
the number of neighbours (Table 1). Cells in the aggregate
map had approximately six neighbours, and were a range of
shapes because the sequential building rules meant that
growing cells were often geometrically constrained by
neighbours. Of the geometries tested in this study, the mean
number of neighbours of a cell was six, or its approximation,
with the exception of the rasters. There was variation in the
distribution of cell sizes within the irregular virtual land-
scapes (Table 1).
We measured and compared all possible unique cell-to-cell

step lengths (measured between centre-of-mass centroids) in
five landscapes: the three regular landscapes, and single
instances of the Dirichlet and the CGD4 landscapes (Figure 3).
In the von Neumann and hexagonal landscapes, only one step
length was ever possible, with lengths 1 km and 1.074 km,
respectively. In the Moore landscape, two steps were equally
probable, with lengths 1 km and 1.41 km producing a mean
step of 1.21 km per landscape. Step lengths in the Dirichlet
landscape were gamma distributed (Figure 3) with a mean of
1.095 km, which is close to that found in the hexagonal
landscape; the step lengths of each cell in the CDG4
landscape were similarly distributed with a mean of 1.18
km, though the distribution was less smooth as a result of the
finite distribution of cell shapes and hence step lengths
(Figure 3).

Moving across Model Landscapes
Accessibility. We used three methods to investigate move-

ment (of individuals or information) across our virtual
landscapes; these were accessibility, random movement, and
directed random movement. Accessibility (sensu [43]) meas-
ured the shortest possible sequence of cell-to-cell steps
between two points in the virtual landscape. We implemented
this as the maximum geographical distance accessible from a
common origin in a fixed number of steps (Figure 2). There
were striking differences between the accessibility of the
regular virtual landscapes and those with an irregular
structure (Figure 2). The mean minimum steps required to
access a fixed distance (effectively the inverse of Figure 2)
varied considerably between the regular models (to travel 100
km took a mean of 125.9, 90.7, and 102.6 steps for the von
Neumann, Moore, and hexagonal virtual landscapes, respec-
tively) and were large compared to the mean minimum steps
required in the irregular landscapes (approximately 73 steps
in all five irregular landscapes).
There was considerable directional bias shown in the

accessibility of the three regular virtual landscapes. The
maximum distance accessible in a fixed number of steps in
the von Neumann, Moore, and hexagonal landscapes pro-
duced a distinctive shape dependent on their neighbourhood
rules: a diamond, a square, and a hexagon, respectively. In
contrast, accessibility in the irregular virtual landscapes was
always circular. The angular variation in maximum distance
accessible is demonstrated numerically by the standard
deviation of the minimum number of steps required to travel

Figure 1. Example Instances of Eight Virtual Landcapes

Example virtual landscape geometries (7 km 3 7 km section). (A) von
Neumann and (B) Moore neighbourhoods in a raster grid; (C) hexagonal;
(D) Dirichlet tessellation; CGD tessellation with a mean of (E) four, (F)
nine, and (G) 16 raster cells per km2; (H) land cover aggregate map. The
neighbourhood (grey) of a focal cell (black) is highlighted in each virtual
landscape.
doi:10.1371/journal.pcbi.0030200.g001
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a fixed distance in any direction (Figure 4). The degree to
which this represents a problem is dependent on the
resolution and extent of the virtual landscape (i.e., size
measured in cells). The standard deviation of the minimum
number of steps needed to travel a distance d increased
linearly with an increase in d in all three regular geometries
(Figure 4). However, standard deviation in the irregular
geometries only grew with log(d), and thus effectively
asymptotes in most real-world applications. Virtual land-
scapes built with irregular geometry appear unequivocally

superior to those built with regular geometry, because they
have no directional biases in accessibility.
There is an apparent connection between the circle

described by the irregular landscapes and the maximum
distance possible in the Moore landscape (i.e., the northeast
corner of accessible cells in Figure 2). We measured the
maximum step length possible from each cell in the Dirichlet
landscape. These had a mean of 1.47 km, which is similar to (if
slightly larger than) the longest possible step in the Moore
landscape, which is diagonal (1.41 km). By definition, the

Figure 2. Maximum Distance Accessible in 100 Steps

Maximum distance accessible in 100 cell-to-cell steps from the origin (star) in five virtual landscapes. The geometry of the regular grids is immediately
apparent from the accessible regions of the von Neumann (yellow), Moore (red), and hexagonal (green) landscape models. Accessibility in all the
irregular geometries was similar, and lay between that of the Dirichlet (circular blue line) and CGD4 (dashed circular blue line) virtual landscapes.
London (shaded grey) is not accessible with some geometries, but is completely within reach of others.
doi:10.1371/journal.pcbi.0030200.g002

Table 1. Description of Area and Neighbourhood for Parcels in the Interior of All the Virtual Landscapes

Virtual Landscape Number of Neighbours Ne Area Ae

Min Max Mean Standard Deviation Range Standard Deviation

von Neumann 4.00 4.00 4.00 0.00 1.00–1.00 0.00

Moore 8.00 8.00 8.00 0.00 1.00–1.00 0.00

Hexagon 6.00 6.00 6.00 0.00 1.00–1.00 0.00

Dirichlet 3.00 12.50 6.00 1.30 0.02–4.74 0.53

CGD4 3.00 13.30 6.70 1.60 0.25–4.48 0.58

CGD9 3.00 12.90 6.42 1.42 0.11–4.46 0.47

CGD16 3.00 12.80 6.28 1.38 0.06–4.81 0.52

Aggregate map 0.00 45.90 5.59 2.46 0.00–10.08 0.61

doi:10.1371/journal.pcbi.0030200.t001
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accessibility metric connects two distant cells by the smallest
number of steps possible and is therefore proportional to the
mean maximum step length. This is the basis of the
coincidence between the circle describing accessibility in
the Dirichlet landscape and the diagonal movement de-
scribed in the Moore landscape.

Forced and unforced random movement. We investigated
the spatial distribution of a single population after com-
pletely random movement of its constituent individuals
between neighbouring cells (i.e., uniform probability of
movement to any neighbour). Three variants were tested in
which movement was forced for all individuals at every step
in short walks (Figure 5, column A) and in long walks (Figure
5, column C), and where only a proportion of individuals
moved in each time step (Figure 5, column B). We made a
simple statistical comparison with the population distribu-
tion after a vector random walk at an equivalent scale
(number of individuals, time, and probability of movement)
as a benchmark (Figure 5, row 5).

The regular virtual landscapes resulted in obviously
structured population distributions after a small number of
steps. The von Neumann grid was the worst, with every
alternate cell being unoccupied because all individuals were
forced to move in every time step (Figure 5, A1). This pattern
was independent of the length of the movement. The Moore
and hexagonal landscapes also showed strong influences from
their underlying geometry (Figure 5A2 and 5A3). Even when
only a proportion of the population moved in each time step,
a strong pattern reflecting the regular geometry of the virtual
landscape was still evident (Figure 5B1-5B3); whereas the

Moore and hexagonal landscapes compared favourably with
the benchmark along the north–south cross-section (Pearson
correlation coefficient, N¼ 9, r¼ 0.997 for both comparisons)
at other angles, and for any cross-section of the von Neumann
landscape, population distribution differed significantly from
the benchmark (Pearson correlation coefficient, r between
0.5–0.6 for all comparisons). Increasing the length of the
random walk produced more visual circularity in the
population distribution in the Moore and hexagonal land-
scapes (Figure 5C2 and 5C3). The irregular virtual landscapes
all showed circular population spread, regardless of the scale
of the random walk (Dirichlet landscape shown in Figure 5A4
and 5C4; for clarity and because of the extreme similarity,
other irregular virtual landscapes are shown in Figure S1).
The number of individuals at distance d from the centre was
the same as the benchmark (Pearson correlation coefficient, r
. 0.98 for all paired comparisons), and no geometric
structure was evident under any of the irregular virtual
landscapes. Longer random walks showed less geometrical
bias, and the distribution of the population was statistically
indistinguishable between all virtual landscapes (Figure 5,
column C), and the same as the relevant benchmark (Pearson
correlation coefficient, r . 0.9 for all paired comparisons). In
summary, all geometries, with the exception of von Neumann,
showed no directional bias for long random walks. However,
regular virtual landscapes showed characteristic biases for
shorter walks, whereas the irregular virtual landscapes
performed uniformly well across all scales.
Forced and unforced directed movement. We investigated

the spatial distribution of a single population after directed
movement of its constituent individuals, which replicates a
dispersal event more similar to animal invasion and disease
models in which movement is sensitive to its history of
progress. Movement was directed away from the cell
containing the origin by preferentially choosing neighbours

Figure 3. Distribution of Step Lengths

The distribution of step lengths possible in five virtual landscapes. The
von Neumann (orange, at 1.0) and hexagonal (green, at 1.074 km)
landscapes only allow a single step length, whereas the Moore geometry
allows two steps (red, at 1.0 and 1.41). A single instance of a Dirichlet
landscape (blue, mean 1.095 km, gamma distributed with shape¼ 1.98,
rate ¼ 1.8 3 104) allows a distribution of step lengths that vary from
parcel to parcel but have a mean similar to the hexagonal geometry.
Other irregular landscapes have step length distributed similarly (CGD4
shown, blue dashed line, mean 1.15 km).
doi:10.1371/journal.pcbi.0030200.g003

Figure 4. Angular Variation in Accessibility

The minimum number of steps required to travel a range of distances
was measured every 108 across a 908 angle in four virtual landscapes. The
standard deviation increased linearly with increased distance (d) in the
regular grids; von Neumann (dashed line) has trend 0.14d (R2¼ 0.9995),
Moore (dash dot) 0.09d (R2¼ 0.9994), and hexagons (dash dot dot) 0.05d
(R2¼ 0.9952). Standard deviation in the Dirichlet virtual landscape (solid
line) increased with trend 0.46 ln(d) (R2¼ 0.968).
doi:10.1371/journal.pcbi.0030200.g004
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no more accessible from the origin, with both forced (all
individuals moving at every time step) and unforced walks.
Three approaches were used: forced movement with no
backward component, unforced (50% chance of movement)
with no backward component, and forced with 10% back-
ward movement.

In a raster or hexagonal virtual landscape, forced move-
ment with no option to move backward resulted in
population distributions with clear, regular geometric pat-
terns (Figure 6). Individuals aggregated into subpopulations
located midway between the vertices accessible by maximum
possible displacement (Figure 6A1-6A3); thus the raster
geometries had four subpopulations, whereas the hexagonal
geometry had six. Individuals in the von Neumann grid
(Figure 6A1) all reached maximum displacement because no
cells had neighbours at the same distance from the origin,

making radial movement impossible. Even after unforced
movement with no backward component, regular landscape
geometry significantly affected population distribution (Fig-
ure 6B1-6B3), although the von Neumann grid was less
extreme under this rule. Forced movement with a backward
component still exhibited clustering in the regular landscapes
(Figure 6C1-6C3). Unpublished data suggest that the strength
of the clustering of the population in regular landscapes is
proportional to the length of the random walk, and thus we
anticipate greater biases will occur with long walks across
large, regular landscape extents.
All directed movement across any irregular landscape

resulted in an annular (ring-shaped) population distribution
(Figure 6A4 shows the Dirichlet landscape; other irregular
landscapes are shown in Figure S1) with no visible geo-

Figure 5. Population Distributions after Random Movement in Different

Virtual Landscapes

A matrix showing population distributions after a number of random
movement scenarios. Rows (from top to bottom): (1) von Neumann; (2)
Moore; (3) hexagon; (4) Dirichlet; and (5) vector landscapes. Columns
(from left to right): (A) random movement with t¼ 5 (time steps) and p¼
1 (probability of movement in a time step); (B) random movement, t ¼
10, p¼ 0.5; and (C) random movement, t¼ 100, p¼ 1. Colours represent
population density in each cell on a common scale, ranging from yellow
(low density) through orange, red, and purple to blue (high density). In
row 5, the vector points are only represented in one colour.
doi:10.1371/journal.pcbi.0030200.g005

Figure 6. Population Distributions after Directed Random Movement in

Different Virtual Landscapes

A matrix showing population distributions after a number of directed
random movement scenarios. Rows (from top to bottom): (1) von
Neumann; (2) Moore; (3) hexagon; (4) Dirichlet; and (5) vector landscapes.
Columns (from left to right): (A) directed random movement, t¼ 50, p¼
1, b ¼ 0.0 (probability of backward movement); (B) directed random
movement, t¼ 100, p¼ 0.5, b¼ 0.0; and (C) directed random movement,
t¼ 50, p¼ 0.5, b¼ 0.1. Colours represent population density in each cell
on a common scale, ranging from yellow (low density) through orange,
red, and purple to blue (high density). In row (5), the vector points are
only represented in one colour.
doi:10.1371/journal.pcbi.0030200.g006
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metrical influence and similar to that seen in the benchmark
vector walk (Figure 6A5). Although not demonstrated in the
figures, the geometric form of the population distribution
across irregular geometries was not a function of the length
of the walk. In summary, the regular geometries showed
strong directional biases with short walks, and the biases got
worse as the number of steps increased. Conversely, the
irregular geometries showed repeatable and scale-independ-
ent behaviour that largely approximated idealized vector
random movement for all but very long walks.

We note that the net displacement of all populations in
discrete virtual landscapes was smaller than found in the
continuous benchmark landscape. In a directed vector
random walk across a continuous landscape, all steps had a
positive outward component, and the effect became more
marked with increased distance from the origin. However, in

the discretized landscapes, net displacement was reduced
because individuals were able to move circumferentially or
into cells whose centre of mass was geographically closer to
the origin.
Movement proportional to the shared boundary. It might

be argued that previous movement rules, with uniform
probability of neighbour choice, are overly simple. To test
this, we reran three of the previous walks in a single Dirichlet
landscape, with the probability of movement into neighbour-
ing cells proportional to the length of the shared boundary.
Movement into neighbours that shared long boundaries were
favoured over those that shared short boundaries. The von
Neumann and hexagonal landscapes consist of equilateral
shapes, so neighbourhood choice rules based on proportional
boundary length resulted in uniform choice, as tested
previously. We did not test the Moore landscape because it
reduces to the von Neumann landscape under this rule. The
three walks tested were a forced random walk, a forced
directed walk with no backward component, and a forced
directed walk with some backward component.
Changing a uniform choice of neighbours to a choice

proportional to the length of the shared boundary did not
qualitatively change the distribution of the population for
any of the movements tested (Figure 7). The length of the
shared boundary is just one geometric function that could be
used to weight movement into neighbouring cells (others
include proportional area of the neighbours, distance to the
centroids, etc.). In an irregular landscape in which these
attributes are distributed randomly, we suggest that none of
these will produce significant differences from the uniform
choice, and hence will not introduce bias in the movement of
the population across the mosaic landscape.

Representing Real-World Landscapes Using Iterated
Rasters
We measured the land area from a number of raster

depictions of a fine-scale vector description of a real-world
object (United Kingdom (UK) coastline). Rasters were created
at a range of scales with a variable origin (shifted successively
by 10% of the resolution west and south). A further ten
rasters, at a resolution of 10 km, were created with a fixed
origin but with the orientation of the grid rotated succes-
sively by 98.
The qualitative form of a raster representation of the UK

differed with a change in origin or orientation of the grid
(Figure 8). Small objects such as islands appeared or
disappeared, became connected or disconnected from the
mainland or each other, or changed their shape radically.
This would have clear effects on any model involving
terrestrial movement. Although we have only shown this at
one scale, these undesirable effects are fractal, and would be
present as a possible bias at all scales, and would worsen at
larger resolutions [44]. The mean area reported by the raster
representations of the UK decreased with increasing scale
(Figure 9), though as a fractal property, would show bias at all
scales. The best mean estimate (99.9% of the vector original)
was derived from the finest scale raster (1 km), but mean
estimate of national area fell to as low as 98.5% at a 100 km
resolution. In addition, the variance around these mean
figures was considerable and also increased with scale. The
worst performing rasters (two out of ten instances at a 100 km
resolution) showed an area of only 89.6%, an alarming loss of

Figure 7. Random Movement in a Single Dirichlet Landscape

Population distributions in a Dirichlet landscape are shown after: (top)
random movement with t ¼ 100 (time steps), p ¼ 1 (probability of
movement in a time step); (centre) semi-directed movement with t¼ 50,
p¼ 1, b¼ 0.1 (probability of choosing a neighbour closer to the origin);
and (bottom) directed movement with t ¼ 50, p ¼ 1, b ¼ 0. In the left
column, individuals move into a neighbouring parcel with probability
1/(number of neighbours). In the right column, individuals move into a
neighbouring parcel with probability proportional to the length of the
shared boundary. There is no significant difference in the population
distributions despite the difference in neighbour choice.
doi:10.1371/journal.pcbi.0030200.g007
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10.4% of the British land surface. The estimates of national
area produced by iteration across multiple rotations of a
raster grid at 10 km resolution had a mean of 100%;
individual instances ranged from 99.3% to 100.6% of the
vector original, suggesting that at this scale, the orientation of
the raster had only a small quantitative effect on area.

All forms of raster representation have biases, variant with
scale. In contrast, an irregular geometry (specifically a vector
representation) can be subdivided into as many randomized
vector cells as necessary. Any estimate of gross area, length, or
geographic property is perfect (zero bias). When multiple
instances of virtual landscapes are required, we recommend

the use of irregular geometry to avoid introducing bias to
representation of its extent.

Discussion

The reduction of bias in model output should always be a
priority (e.g., [45,46]). Biases can be hidden but still present in
many components of a model, and their presence or
interaction may produce artefacts. Sources of bias should
be looked for, and where present, measured in order to
decide whether they are significant in the context of the
results. If they are significant, the bias should be minimized
or, preferably, removed altogether. Movement in spatial
models is such a fundamental process that bias in this process
is likely to be critical. Some models are entirely theoretical
and are used to gain insight into academic problems, in which
some forms of bias may be acceptable. However, our focus is
primarily on predictive models designed to support deci-
sionmaking, where high confidence is required in the results
and validation is difficult. In these models, it is essential that
sources of potential bias be removed, but we believe that it is
desirable in all types of models if the interpretation of results
may be confounded.
We show that the geometry used to implement cell-to-cell

movement has the potential to bias a diverse array of
movement rules for information flow across landscapes. We
tested completely random movement at one extreme,
completely directed movement at the other extreme (acces-
sibility), and a number of directed random movement rules
with both forward and backward components. Other choices
in this continuum were possible; however, we did not wish to
test the complete library of walks ever created, but merely to
demonstrate the potential for bias across the spectrum of
movement types. To this end, all of the movement rules were
short and simple, and the virtual landscapes homogeneous, in

Figure 8. Qualitative Differences in Raster Representation of a Real Extent

Three alternative raster representations of the UK at 10 km resolution, formed against the BNG. In (A), the origin is at BNG (0,0) and the raster is aligned
with the BNG. In (B), the origin has been shifted to BNG (�5000,�5000) but the orientation is unchanged. In (C), the origin is at BNG (0,0), but the raster
has been rotated by 458. The arrows refer to the orientation of the raster grid. Observe the variation in shape and size of the Orkney and Shetland isles
(the two groups of islands north of the mainland).
doi:10.1371/journal.pcbi.0030200.g008

Figure 9. Variation in the Area Measurement of a Real Extent

The area of the UK was measured from raster datasets at resolution 1, 10,
50, and 100 km, as a percentage of a vector polygon area (245,660 km2),
and the mean calculated. The y-error bars denote coefficient of variation.
The mean is always an underestimate, and worsens at lower resolutions.
doi:10.1371/journal.pcbi.0030200.g009
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order to test the geometric properties of the virtual
landscape and not those of the movement. We are aware
that some of these methods may appear unrealistic or
extreme to some disciplines. Less extreme movement rules
may produce less biased results, but we would argue that
some bias still exists. Inevitably the details of how cell-to-cell
movement is expressed will vary between disciplines and
studies, and will also be affected by scale, so we make no
attempt to advise on the use or abandonment of any method
of movement. However, we do wish to highlight the
fundamental interaction between landscape geometry and
movement, and present the use of irregular landscapes as a
potential solution to some of the biases that may be
encountered.

Movement across Landscapes
Simple random walks in virtual landscapes with regular

geometries can produce enormous qualitative biases in the
direction and extent of movement and hence bias the
distribution of populations in space. For all our investiga-
tions (accessibility, random movement, and directed random
movement), the regular geometries performed poorly at some
or all scales for measures of both distance and direction. The
nature and strength of the bias was, in part, a function of the
length of the movement and the resolution of the landscape,
with the potential for different biases to worsen after both
short-distance and long-distance movement. In an ideal
homogeneous virtual landscape, the distance travelled by an
individual (from its origin) after random movement should be
independent of the direction travelled at each step. Regular
grids all restrict the direction of movement to the same few
angles at every step, so the final positions of individuals
cannot be independent of the grid structure. Even if the
scope of the movement neighbourhood is extended to
include more distant cells (e.g., to include the 16 cells
adjacent to the eight immediate neighbours in the Moore

neighbourhood), so that single steps may include jumps over
the immediate neighbours, a regular geometry restricts the
available directions to some degree. In comparison, the
direction of neighbouring cells in a single, irregular virtual
landscape is not set by the geometry, and when enough
multiple irregular virtual landscapes are considered together,
available directions assume a uniform circular distribution.
We demonstrated that, in the same way that regular

landscapes restrict the available directions for movement,
they severely restrict cell-to-cell step lengths, and in part, this
may explain a component of the bias in movement. The
hexagonal landscape is the optimum arrangement of circles
packed in space using a single iteration. Dirichlet landscapes
emulate circular cells over many iterations (Figure 10), and
the mean step length closely approximates that of the
hexagonal landscape, even in a single iteration. Although
the step lengths in the CGD landscapes followed the same
general distribution as the vector Dirichlet landscape,
individual step lengths were more or less frequent than
expected. We suggest that although the results of random
walks appeared similar in all the irregular landscapes, a
smooth distribution of step lengths is less likely to be a source
of bias, and therefore, at fine scales in particular, we
recommend the vector Dirichlet landscape over the CGD
irregular landscapes.
We propose that the average number of neighbours per cell

is a useful metric for quantifying the potential for landscape
geometry to introduce bias in movement. A mean close to six
neighbours appears to be the ideal; all the irregular land-
scapes have this property. Although the hexagonal landscape
has six neighbours per cell, the variance is zero, and therefore
directional movement must be restricted; we therefore
extend the metric to include a nonzero variance. The square
geometries fail in both respects.
Because we have identified the potential for bias in

movement in regular geometries, we believe that studies

Figure 10. Space and Direction from a Fixed Point in Multiple Irregular Landscapes

(A) A single Dirichlet landscape showing three fixed points (þ). One (top left) occupies a cell inland, while another (top right) occupies a coastal cell that
is restricted by the edge of the extent. The third (centre) is shown with the available directions for movement in that landscape instance.
(B) A second random instance of a Dirichlet tessellation in the same extent. The three fixed points are highlighted, with their respective cells and
directions of movement.
(C) The sum of the observations of space and direction around the three points after only five Dirichlet landscapes. Light grey lines indicate the
boundaries of cells in all five landscapes. The kernel associated with inland and coastal points is shown in shades of grey, with the lightest shade
showing an area only associated with the point in one landscape instance and black being the area common to all five. Although clearly not circular,
given enough iterations, all points approach a circular kernel of influence unless restricted by the extent. Available directions for movement across all
five landscapes are shown from the third point, demonstrating that movement in any direction is equally possible.
doi:10.1371/journal.pcbi.0030200.g010
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need to show (not assume) that movement in their own spatial
models produces no bias. Bias due to geometry may not be
apparent in models with complex rules for cell to adjacent
cell movement, e.g., dependence on heterogeneous landscape
quality (e.g., habitat preference [6] and permeability [47]).
Where sources of geometrical bias have been identified,
individual studies have attempted to compensate with a
variety of approaches [16,17]. Not only is this compensation
dependent on the spatial and temporal scale of the model for
which it is designed, it adds more potential for bias to the
model (albeit pulling in the opposite direction) and may
adversely interact with other components of the model.
There is no way to be certain that biases masked at one scale
will not produce artefacts when a predictive model is
extrapolated in time or space. In contrast, there is no
potential for bias in both the direction and distance of
movement of individuals across virtual landscapes with
irregular geometry.

Representation of Whole Landscapes
Some of the deficiencies of cell-to-cell movement across

regular landscape geometries identified here might be over-
come by iteration of rasters, specifically by randomizing
origin and orientation. However, this process can change the
quality of the representation of the whole landscape, and it is
this that we concentrate on here. The dependence on scale in
the adequate representation of complex shapes with rasters
has been well-discussed elsewhere [44,48–52]. Our represen-
tation of the UK coastline, and the measurement of its area,
although not novel, allowed us to focus specifically on the
qualitative and quantitative effects of using multiple regular
geometries to represent a complete extent. We used the UK
landmass as an example of a real-world object that has an
irregular extent whose boundaries could not be defensibly
redefined as a regular shape for a national-scale model. The
representation of real-world features with regular geometries
must always be an approximation [50] whose adequacy can
only be measured by model output. We have shown that at
any finite scale, a feature represented by a single virtual
landscape with regular geometry will always show qualitative
and quantitative errors. Some of these errors can be extreme,
and the modeller choosing a single instance of a regular
geometry with which to represent the landscape has no way of
knowing how adequate it is without testing several represen-
tations. Biases in the mean output could be reduced through
iteration of regular geometries (with random origin and
orientation) and a careful choice of scale, but the interpre-
tation of results would only be acceptable where the bias was
quantified. In contrast, any landscape subject to a spatial
modelling study can be split up into irregularly shaped cells
with no detrimental qualitative or quantitative effect on the
representation of the whole. If accuracy in feature represen-
tation is important, the superior alternative to the raster is
the irregular and vector-based mosaic.

Scale
The problems of feature representation by regular geo-

metries are compounded by the connection between scale
and structure; the form and significance of any feature alters
as soon as the scale is changed. This is especially problematic
where interacting processes occur at different scales in the
same landscape. Because scale has such a strong effect on the

properties of model output, it is a pity that studies suggesting
quantitative methods for determining the most appropriate
scale have not been pursued (but see [53] for a generic
approach, [54,55] for more specific applications). In the
absence of quantitative rules, modellers have to rely on
common sense or experience to choose scale, and therefore
should clearly demonstrate that their choice is appropriate by
showing that the bias produced by the model at that scale is
acceptable.
The choice of resolution in many raster-based models to

date is often either derived from technical data (e.g., satellite
imagery) (e.g., [39,56]) or chosen to be the nearest integer
measurement of an apparently relevant process (usually
biological; e.g., [4,6,57]). We have shown that the potential
for bias is always present in regular virtual landscapes even at
high resolutions, and the impact of that bias is a function of
scale. If only one raster landscape is used in a model, its origin
and orientation appear arbitrary yet are usually unchallenged
(this is apparent from the lack of ability to rotate rasters away
from a north–south orientation in some GIS packages). If the
resolution of the raster is high enough, the representation of
features will be little changed by origin and orientation, but
model processes may be affected. However, if the data or the
process suggests modelling at a low resolution, using a raster
must sorely compromise the representation of the landscape.
Using irregular mosaic landscapes solves two problems.

First, the interaction of bias with scale is removed from the
process model (c.f., directional bias in movement in this
study). Second, the quality of the spatial representation of
available data no longer depends solely on resolution;
landscapes formed from vector-based, irregular cells can
remain faithful to the available data at any scale and in any
single instance. The modeller is thus free to set a scale
appropriate to other model processes.

Landscapes as Models
Lindenmayer, Fischer, and Hobbs [1] emphasize that the

ability to choose one of a number of landscape models is
important in fauna research. We suggest that, in the mosaic-
based landscape paradigm, the automatic use of multiple
landscape models should be widespread. Real landscapes
comprise irregular and complex shapes [58] that can only be
well-described using irregular cells. There will always be
quantitative uncertainty in the location and boundary shape
of cells and qualitative errors in their internal description
even if irregular virtual landscapes are created deterministi-
cally from underlying habitat patch data rather than
randomly (e.g., Dirichlet polygons). The only way to explore
and incorporate the uncertainty associated with landscape
representation is to model with multiple, alternative virtual
landscapes and present results as probabilistic maps (e.g.,
[59]). This applies equally to regular and irregular mosaic
landscapes.
The computational demands of running irregular models

such as the ones in this study are not necessarily more than
those of a raster model. Because the movement rules are so
simple, all that is required to implement movement is a list of
cell IDs and associated neighbours. All the investigations in
this study were run in Python, only using the GIS for creating
and displaying landscapes. We admit that preparation of an
irregular landscape set requires some extra work; however, if
it is accepted that multiple virtual landscapes are necessary
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(e.g., different random centroids for Dirichlet tessellations,
and different origins and orientations for rasters), the effort
in preparing irregular and regular landscapes becomes
almost indistinguishable. The irregular landscapes also
appear to yield greater returns, since they are scale-
independent and bias-free, and can represent features within
the landscape as well as the available data allow. It is worth
pointing out that the ideal vector implementation of an
irregular mosaic landscape can be approximated very easily
by a raster aggregate; the use of models such as the CGD
(Figure 1E–1G) brings the benefits of unbiased movement,
although the best representation of edges and features is only
achieved by using a very high resolution raster.

We have shown that all single instances of irregular mosaics
have similar structure (number of neighbours) and statistical
properties (e.g., step length distribution), which results in
scale-free and similarly unbiased movement of information
(populations). However, the structure and statistical proper-
ties of regular mosaics differ from each other and from that
of the irregular mosaics, resulting in biased movement that
cannot be easily compared. We suggest that two spatial
models using irregular virtual landscapes of any scale may be
more easily compared than those using regular geometry,
which must have both the same scale and the same structure,
and therefore the same bias.

Further Benefits
We believe that the use of irregular geometry to form

virtual landscapes may bring many additional benefits. We
illustrate these with examples from population modelling, in
which information has an integer form (e.g., individuals), but
the principles should be applicable in many disciplines,
including those concerned with the movement of infinitely
divisible information (e.g., water). The area and shape of cells
in an irregular geometry can vary across the extent of the
virtual landscape so that regions requiring a detailed spatial
description (complex habitat patches, linear features such as
rivers, etc.) can be represented either with a greater density of
irregular cells or exclusively with a single cell. This property
of irregular landscapes has also been identified by Dunn and
Majer [35] and is analogous to the raster approach of
Tischendorf [19]. In turn, this permits an improvement in
the description of cell attributes and reduces their uncer-
tainty. This is especially important where cell attributes have
the ability to affect the spatial output of the model (e.g.,
landscape connectivity, patch permeability, and population
persistence [60]). We have validated how the aggregation of
real-world features into irregular cells can provide a
sufficiently irregular virtual landscape to avoid bias (i.e.,
aggregate map, Figure 1H).

Another useful benefit of irregular geometry is illustrated
by considering a fixed point in space. A single irregular cell
containing this point is obviously not circular, but cells taken
from sufficient iterations of the virtual landscape will
approximate a circular kernel around the point (Figure 10).
This concept is useful both in describing individual behaviour
(i.e., zones of perception) or group dynamics (i.e., social
interaction and density dependence). Most dispersal kernels
in continuous space implicitly define movement to nearest
neighbours as the most frequent, with vector movement
resulting in individuals moving preferentially to sites that are
close [61]. By using irregular cells, such kernels can be tuned

with biological and geographical realism (e.g., interaction
groups are bounded by major roads or coastline, perception
zones do not include impenetrable habitat, and movement
cannot cross rivers; see Figure 10). Finally, we observe that the
geometry and size of real-world processes and objects (such as
home ranges, social group territories, habitat patches, and
habitat quality) are irregular and variable ([58]; specific
examples include the spatial arrangement of subpopulations
of rabbits [62], badgers [63], and coyotes [64]). There is a
significant body of literature in identifying habitat patches in
real-world landscapes (e.g., [65–67]). Their subsequent repre-
sentation with single cells of regular geometries is inappro-
priate. In addition, if there are few data on how cells are
formed in the real landscape, the most defensible way of
expressing them in a model is through multiple, randomly
generated (irregular) mosaic landscapes.

Conclusion
This study was prompted by a desire to construct a

universal framework within which uncertainties in landscape
description could be included explicitly in model function
and results, and in which movement could be modelled as
simply as possible in an unbiased, generic, and flexible
manner.
A single virtual landscape formed with regular geometry

has a huge potential for bias. In contrast, this study has shown
that even a single virtual landscape formed with irregular
geometry has no potential to bias the direction or distance of
movement of information (e.g., individuals), and although the
defensible use of a random property (in this case, geometry)
requires multiple instances, the variation between irregular
landscapes is small.
Any representation using a regular geometry is at best a

good approximation. Even when multiple instances of regular
geometries with random origins and rotations are measured,
the mean output still has the potential for bias, and the
variation between instances is large. The representation of an
extent by an irregular geometry shows no error.
We recommend the use of irregular geometry and multiple

random instances in creating any virtual landscape, which
eliminates bias in the movement of information and the
representation of real-world extents. Both are specifically
recommended for models that are designed to help make
decisions, so that the probabilistic output encompasses the
uncertainty in both population processes and spatial repre-
sentation. As this is the first study recommending the use of
irregular geometries, and we have not covered issues of
internal representation (e.g., small features and heteroge-
neous landscape quality), it is difficult to state unequivocally
that they are completely superior to regular geometries, but
the results presented here suggest that they should be the first
choice for modelling virtual landscapes.

Methods

Creating and characterizing model landscapes. Our virtual land-
scapes were created to have a mean cell area of 1 km2 across the study
area, which was a 25,361 km2 area of southeast England. The two
rasters used an arbitrarily chosen origin of (0,0) on the British
National Grid (BNG); the placement of the hexagonal landscape was
entirely arbitrary. The Dirichlet landscape was formed by a vector
tessellation using the ArcInfo Thiessen on 25,361 random points
drawn from a uniform distribution within the study area. The coarse-
grain landscapes were created from three raster landscapes (origin at
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0,0 BNG), with 500-m, 333-m, and 250-m resolutions. Within each
raster, all squares were associated with, and then aggregated to, the
nearest of 25,361 randomly chosen squares (see Figure 11 and
pseudocode at the end of this section). The aggregate map was
created from Land Cover 2000 [3], a fine-scale vector habitat
coverage. A random habitat patch was selected and neighbours
absorbed in turn until a total area of 1 km2 6 5% was achieved. The
neighbour with the next-closest centroid was always chosen with the
aim of maximizing circularity; other joining rules are possible, e.g.,
habitat similarity, but the geometric optimization was chosen for its
simplicity.

The neighbourhood of any focal cell in the hexagonal and irregular
landscapes was defined as all cells in the landscape with a boundary
(or point on the boundary) shared with the focal cell. The interior of
a virtual landscape was defined as all cells that were more than 1 km
from its boundary. The number of neighbours (Ne) and area (Ae) of
interior cells were measured across all virtual landscapes and all
instances on irregular landscapes. The minimum, mean, maximum,
and standard deviation of Ne and Ae were calculated for each virtual
landscape.

Moving across model landscapes. Probes were developed to
quantify the effects of landscape geometry on cell-to-cell movements,
and are based on the following generalized approach. In a discrete
landscape, individuals move from one cell e into any neighbouring
cell with probability 1/Ne, where Ne is the number of neighbours of e.
We compared the performance of the probes against the simplest
vector random walk. This unbiased benchmark moved an individual a
fixed distance (1 km) from its starting position (x,y) at a randomly
chosen angle in (0,2p). Movement probes always consisted of 10,000
independent individuals. Irregular virtual landscapes used 1,000
individuals across ten randomized instances, with figures and
statistics presented as the sum of the instances (see Figure 10).

For the accessibility probe, we calculated the minimum number of

steps required for an individual in any cell in the landscape to access
the origin (cell containing BNG 448500, 104500; southwest corner) in
all virtual landscapes. We mapped the limit of the region accessible
from the origin with 100 steps and measured the mean of the
minimum number of steps required to reach a range of distances
from the origin at 108 angles. The randommovement probe started in
a cell containing the origin (BNG 524500, 179500; centre of virtual
landscape). Vector random walks started at the origin. We used four
sets of parameters (probability of movement, p, number of time steps,
t) to simulate a variety of forced and unforced, short and long walks:
(p¼1, t¼5), (p¼1, t¼100), (p¼0.5, t¼10), and (p¼0.5, t¼200). Direct
comparison of population displacements can only be made between
probes where the product of p and t is equal, thus unforced walks last
twice as long as equivalent forced walks. The population distribution
also was calculated for directed random walks, in which neighbouring
cells were divided into ‘‘backward’’ (toward the origin) and ‘‘forward’’
(around or away from the origin) neighbours. Fully directed (no
backward movement) and semidirected (10% possibility of movement
backward) random walks were simulated for (p¼1, t¼50) and (p¼0.5,
t¼ 100). Directed movement was implemented in the vector random
walk by disallowing any choice of angle that would result in a new
location closer to the origin. Notice that in a totally random walk
across a landscape with mean of six neighbours, backward movement
would be achieved on average in two out of six cell-to-cell movements
(with two radial movements and two forward movements also
possible), or with 33% chance. Therefore, a 10% chance of backward
movement in the directed random walk reduces backward movement
by one-third and not by one-half (if movement was only forward or
backward).

For statistical tests of similarity, population density (individuals
per square kilometre) was measured in the cell containing locations
0,1,2,3,... km from the origin, at angles 08, 608, and 908 from north. The
number of individuals within a circle with area 1 km2 centred at these

Figure 11. Creation of a Coarse-Grain Dirichlet Landscape from a Raster

To create a Dirichlet landscape, starting points are chosen randomly (top left). The vector Dirichlet landscape (top right) is shown for comparison.
Random starting points are translated into a raster grid (bottom left). All other raster squares are then assigned to the nearest coloured square
(measured between centroids) and boundaries dissolved to produce the CGD landscape (bottom right).
doi:10.1371/journal.pcbi.0030200.g011
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locations after the equivalent vector movement was used as a
benchmark. Pearson’s product moment correlation coefficient was
calculated for the paired datasets for each cross-section. For short
random walks, locations from 0,..,8 km were used; for long walks, we
used 0,..,36 km.

Representing real-world landscapes using iterated rasters. Using a
vector polygon of the British coastline (of area 245,660 km2), we
created ten raster representations of the UK using a resolution of 1,
10, 50, and 100 km. At each scale, the origin of the raster (lower left
corner) was initially set at BNG 0,0 with nine further representations
created by moving the origin 10% of the resolution, both west and
south.

Creation method for a coarse-grain Dirichlet landscape. Pseudo-
code for creating a CGD landscape with mean cell size of 1 km2 is
shown below. See Figure 11 for an illustration of the process.

Let D be an X by Y grid with cells dx,y:
x,y are the coordinates of the centroid of the raster cell
dx,y.belongs_to¼ null
dx,y.id ¼ (X � 1)xþ (Y� 1)y
dx,y.dist ¼ infinity
CG4: Initial raster (D) resolution 500 3 500 m (i.e., 4
cells ¼ 1 km2)

CG9: D resolution 333.3 3 333.3 m
CG16: D resolution 250 3 250 m
# Choose the centre cells for the aggregation process
For i ¼ 1..25361:
x¼ random_integer in range(1,X) inc. end points
y¼ random_integer in range(1,Y) inc. end points
dx,y.belongs_to¼ dx,y.id
dx,y.dist¼ 0
chosen_list.append(dx,y)

# Find which centre cell is closest to every other cell in D
For all cells c in chosen_list:
For all cells d in D but not in chosen_list:
dist ¼ sqrt((cx - dx)2 þ (cy - dy)2)

if dist , dx,y.dist:
dx,y.belongs_to¼ c.id

if dist¼¼ dx,y.dist:
if random_in_[0,1] , 0.5:

dx,y.belongs_to¼ c.id
# Dissolve the grid D according to the .belongs_to attrib
ute

Supporting Information

Figure S1. Population Distributions after Random Movement in
Irregular Virtual Landscapes

A matrix showing population distributions after a number of random
movement scenarios in irregular landscapes. Rows (from top to
bottom): 1) CGD4; 2) CGD9; 3) CGD16; 4) Dirichlet; and 5) aggregate
map. Columns (from left to right): (A) random movement with t ¼ 5
(time steps) and p ¼ 1 (probability of movement in a time step); (B)
random movement, t ¼ 100, p ¼ 1; and (C) directed random
movement, t ¼ 50, p¼ 1.

Found at doi:10.1371/journal.pcbi.0030200.sg001 (8.9 MB PDF).
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