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Abstract

Motivation: A large number of protein sequences are becoming available through the application

of novel high-throughput sequencing technologies. Experimental functional characterization of

these proteins is time-consuming and expensive, and is often only done rigorously for few selected

model organisms. Computational function prediction approaches have been suggested to fill this

gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over

40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-

scale, multi-class, multi-label problem.

Results: We have developed a novel method to predict protein function from sequence. We use

deep learning to learn features from protein sequences as well as a cross-species protein–protein

interaction network. Our approach specifically outputs information in the structure of the GO and

utilizes the dependencies between GO classes as background information to construct a deep

learning model. We evaluate our method using the standards established by the Computational

Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over base-

line methods such as BLAST, in particular for predicting cellular locations.

Availability and implementation: Web server: http://deepgo.bio2vec.net, Source code: https://

github.com/bio-ontology-research-group/deepgo

Contact: robert.hoehndorf@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in sequencing technology have led to a large and rapidly

increasing amount of genetic and protein sequences, and the amount

is expected to increase further through sequencing of additional

organisms as well as metagenomics. Although knowledge of protein

sequences is useful for many applications, such as phylogenetics and

evolutionary biology, understanding the behavior of biological sys-

tems additionally requires knowledge of the proteins’ functions.

Identifying protein functions is challenging and commonly requires

in vitro or in vivo experiments (Costanzo et al., 2016), and it is

obvious that experimental functional annotation of proteins will not

scale with the amount of novel protein sequences becoming

available.

One approach to address the challenge of identifying proteins’

functions is the computational prediction of protein functions

(Radivojac et al., 2013). Function prediction can use several sources

of information, including protein–protein interactions (Hou, 2017;

Jiang and McQuay, 2012; Kirac and Ozsoyoglu, 2008; Nguyen

et al., 2011; Sharan et al., 2007), genetic interactions (Costanzo

et al., 2016), evolutionary relations (Gaudet et al., 2011), protein

structures and structure prediction methods (Konc et al., 2013), lit-

erature (Verspoor, 2014) or combinations of these (Sokolov and
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Ben-Hur, 2010). These methods have been developed for many

years, and their predictive performance is improving steadily

(Radivojac et al., 2013).

There are several key challenges for protein function prediction

methods. One of these is the complex relation between protein

sequence, structure and function (Alberts et al., 2002); despite sig-

nificant progress in the past years in protein structure prediction

(Moult et al., 2014), it still requires large efforts to predict protein

structure with sufficient quality to be useful in function prediction.

Another challenge is the large and complex output space for any

classification method. Protein functions are classified using the Gene

Ontology (GO) (Ashburner et al., 2000) which contains over 40 000

functions and cellular locations. Additionally, the GO contains

strong, formally defined relations between functions that need to be

taken into account during function prediction to ensure that these

predictions are consistent (Radivojac et al., 2013; Sokolov and Ben-

Hur, 2010). The formal dependencies between classes in GO also

lead to the situation where proteins are assigned to multiple function

classes in GO, for different levels of abstraction. Furthermore, sev-

eral proteins do not only have a single function but may be peio-

tropic and have multiple different functions, making function

prediction inherently a multi-label, multi-class problem. A final

challenge is that proteins do not function in isolation. In particular

higher-level physiological functions that go beyond simple molecular

interactions, such as apoptosis or regulation of heart rate, will

require other proteins and cannot usually be predicted by consider-

ing a single protein in isolation. Due to these challenges, it is also

not obvious what kind of features should be used to predict the func-

tions of a protein, and whether they can be generated efficiently for

a large number of proteins.

Here, we present a novel method for predicting protein functions

from protein sequence and known interactions. We combine two

forms of representation learning based on multiple layers of neural

networks to learn features that are useful for predicting protein

functions, one method that learns features from protein sequence

and another that learns representations of proteins based on their

location in an interaction network. We then utilize these features in

a novel deep neuro-symbolic model that is built to resemble the

structure and dependencies between classes that exist within the

GO, refine predictions and features on each level of GO, and ulti-

mately optimize the performance of function prediction based on

the performance over the whole ontology hierarchy.

We demonstrate that our model improves performance of func-

tion prediction over a BLAST baseline, and performs particularly

well in predicting cellular locations of proteins. The main advantage

of our approach is that it does not rely on manually crafted features

but is entirely data-driven.

2 Materials and methods

2.1 Datasets
For our experiments, we use the Gene Ontology (GO) (Ashburner

et al., 2000), downloaded on 05 January 2016 from http://geneontol

ogy.org/page/download-ontology in OBO format. The version of

GO has 44 683 classes of which 1968 are obsolete. GO has three

major branches, one for biological processes (BP), molecular func-

tions (MF) and cellular components (CC), each containing 28 647,

10 161 and 3907 classes, respectively.

We use SwissProt’s (Boutet et al., 2016) reviewed and manually

annotated protein sequences with GO annotations downloaded on

05 January 2016 from http://www.uniprot.org/uniprot/. The dataset

contains 553 232 proteins, and 525 931 proteins have function

annotations. Furthermore, we select proteins with annotations with

experimental evidence code (EXP, IDA, IPI, IMP, IGI, IEP, TAS and

IC) and filter the proteins by maximum length of 1002 ignoring pro-

teins with ambiguous amino acid codes (B, O, J, U, X, Z) in their

sequence. Our final dataset contains 60 710 proteins annotated with

27 760 classes (19 181 in BP, 6221 in MF and 2358 in CC). The

dataset covers more than 90% of all proteins with experimental

annotations in SwissProt. Supplementary Figure S1 shows the

sequence length distribution.

2.2 Training
We trained three models, one for each sub-ontology in GO. First,

we propagate annotations using the GO ontology structure and ran-

domly split proteins into a training set (80%) and testing set (20%).

Due to computational limitations and the small number of annota-

tions for very specific GO classes, we ranked GO classes by their

number of annotations and selected the top 932 terms for BP, 589

terms for MF and 436 terms for the CC ontology. These cutoff val-

ues correspond to selecting only classes with the minimum number

of annotations 250, 50 and 50, for BP, MF and CC, respectively.

We create three binary label vectors for each protein sequence,

one for each of the GO hierarchies. If a protein sequence is anno-

tated with a GO class from our lists of selected classes, then we

assign 1 to the term’s position in the binary label vector and use it as

positive sample for this term. Otherwise, we assign 0 and use it as

negative sample. For training and testing, we use proteins which

have been annotated with at least one GO term from the set of the

GO terms for the model.

2.3 Data representation
The input of our model is the amino acid (AA) sequence of a protein.

Each protein is a character sequence composed of 20 unique AA

codes. We generate trigrams of AA from the protein sequence. The

trigrams can be represented as one-hot encoding vectors of length

8000; however, the sparse nature of one-hot encodings only pro-

vides a limited generalization performance. To address this limita-

tion, we use the notion of dense embeddings (Bengio et al., 2003;

Hinton, 1986). An embedding is a lookup table used for mapping

each code in a vocabulary to a dense vector. Initially, we initialized

the vectors randomly and then learn the actual vector-based repre-

sentations as an additional layer in our network architecture during

training. This approach allows us to learn meaningful vectors, i.e.

vectors that resemble correlations within the data that can be uti-

lized as features to predict protein functions. We have also per-

formed experiments (on a smaller dataset) with one-hot encodings

of AA trigrams, and found that dense representation performs better

than one-hot encoding.

We built a vocabulary of unique AA trigrams where each trigram

is represented by its 1-based index. Using this vocabulary, we

encoded a sequence of length 1002 as a vector of 1000 indices. If the

length of the sequence is less than 1002, we pad the vector with

zeros. We ignore all the proteins with sequence length more than

1002. The first layer in the deep learning model is intended to learn

embeddings where each index is mapped to a dense vector by refer-

ring to a lookup table, using an embedding size of 128 and therefore

representing a protein sequence of length of 1002 as a matrix of

1000�128.
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2.4 Convolutional neural network
Convolutional Neural Networks (CNNs) are biologically inspired NN

which try to mimic the receptive field of biological neuron. In CNNs,

convolution operations are applied over the input layer to compute the

output (LeCun and Bengio, 1998). They exploit local correlation by

enforcing local connections between neurons of adjacent layers, where

each region of the input is connected to a neuron in the output. Having

multiple convolution filters helps in learning multiple features and

providing insights into multiple facets of the data. In our work, we used

1-dimensional (1D) convolution over protein sequence data. The 1D

convolution exploits sequential correlation. If we have an input

g xð Þ 2 1; l½ � ! R and a kernel function f xð Þ 2 1;k½ � ! R, the convolu-

tion h(y) between f(x) and g(x) with stride d is defined as:

h yð Þ ¼
Xk

x¼1

f xð Þ � g y � d � xþ cð Þ (1)

where c ¼ k� d þ 1 is an offset constant. The output hj(y) is obtained

by a sum over i of the convolutions between gi(x) and fij(x). The output

vector h represents the feature map learned through convolution.

The resulting feature map will contain redundant information

and is of significant size. Therefore, to reduce the feature space,

redundant information is discarded through temporal max-pooling

(Collobert et al., 2011). This operation selects the maximum value

over a window of some length w. The features after convolution and

the temporal pooling layer are intended to be higher level represen-

tation of protein sequences which can then be used as input to fully

connected layers for classification.

For our experiments, we used one 1D Convolution layer with 32

filters of size 128 which are applied on the embedding matrix of

each sequence, and a 1D max-pooling layer with pool length of 64

and stride of 32. Each filter is intended to learn a specific type of fea-

ture, and multiple filters may enable learning of different aspects of

the underlying data. The output of the 1D max-pooling layer is a

vector with length of 832.

2.5 Protein–protein interaction (PPI) network features
In addition to protein sequences, we use protein–protein interaction

(PPI) networks for multiple species from the STRING database

(Szklarczyk et al., 2015), filtered by confidence score of 300 and con-

nected with orthology relations from the EggNOG database (Huerta-

Cepas et al., 2016) by creating a symmetric ortholog-of edge for each

orthology group. To further separate proteins by the orthology group to

which they belong, we introduce a new orthology relation for each

orthology group in eggNOG. In total, the network consists of

8478935 proteins, 190 649 edge types and 11 586 695610 edges.

Using this heterogeneous network, we generated knowledge graph

embeddings of size 256 for each protein (Alshahrani et al., 2017).

Since our model is based on UniProt protein identifiers, we

mapped nodes in the network to UniProt identifiers using the identi-

fier mapping provided by STRING. We mapped 6 960 395 proteins

in UniProt to our network and the resulting knowledge graph

embeddings. For the proteins with missing network representations,

we assigned a vector of zeros. We combined the knowledge graph

embeddings for the nodes with the output of the max-pooling layer

of length 832 as a combined feature vector.

2.6 Hierarchical classification layout
Using a fully connected layers for each class in GO, we created a hier-

archical classification neural network model that encodes for transitiv-

ity of subclass relations. We use only the subclass relations and create

a small neural network for each class in our subset of selected terms.

The concatenated sequence and PPI network features are passed to a

fully connected layer with 1024 neurons and its output is passed to the

hierarchically structured neural networks for classification. Each net-

work consists of one fully connected layer with a sigmoid activation

function, and takes as an input the output of first fully connected layer.

This layer is responsible for classifying the proteins for its term. To

ensure consistent hierarchical classification, for each class which has

children in GO, we created a merge layer which selects the maximum

value of the classification layers of the term and its children. Finally,

the output of the model is the concatenation of classification layers of

leaf nodes and the maximum layers of internal nodes. Figure 1 shows

the architecture of our neural network model.

2.7 Model implementation and optimization
In training, we minimize the multi-output binary cross entropy loss

function using the Rmsprop optimizer (Tieleman and Hinton, 2012)

with a mini batch of size 128 and learning rate of 0.01. Initially, the

weights of our model are initialized according to a uniform distribution

(Glorot and Bengio, 2010). We fit our model with 80% of our training

set and use the remaining 20% of the training set as a validation set. At

the end of each training epoch, we monitor the convergence of the

model on the validation set and keep the weights of the best performing

model. To prevent over-fitting of the model, we use dropout layers as

regularizers. We implement our model using the deep learning library

Keras with TensorFlow (Abadi et al., 2016) as a backend. To accelerate

the training process, we use NVIDIA Pascal X GPUs. The training time

for the Biological Process ontology model (which is the largest model)

is less than three hours and the inference time is less than one second.

We manually tuned the following set of parameters: minibatch size,

number of convolution filters, filter size, number of neurons in fully

connected layer and learning rate. We select the best parameters

depending on the value of validation loss. Supplementary Table S1

shows the validation losses for different embedding sizes and number of

convolution filters. We observe only small differences in validation loss

(based on binary cross entropy) for the different combinations of

parameters we evaluate. Source code for our implementation is avail-

able at https://github.com/bio-ontology-research-group/deepgo.

2.8 BLAST baseline and comparison
We use the BLAST (Altschul et al., 1997) sequence alignment

method as a baseline to compare our model’s performance. We use

BLAST to find the most similar sequence in a database of experi-

mentally annotated proteins for a query sequence and assign all its

annotations to the query sequence. We create a database for each

ontology with a proteins in our training set that have been annotated

with at least one term from the ontology. For a proteins in our test

set, we use the BLASTP program to obtain the protein with the high-

est alignment score from our training set and assign all its functional

terms to the protein from our test set.

For comparison, we obtain FFPred3 (Cozzetto et al., 2016) pre-

diction results for CAFA3 targets from http://bioinfadmin.cs.ucl.ac.

uk/downloads/ffpred/cafa3/ and GoFDR (Gong et al., 2016) results

through the web service available at http://gofdr.tianlab.cn/. We

apply these on a set of protein targets released on 05 June 2017 that

had no function annotations at the time of training. The dataset con-

tains 1367 proteins and 3619 annotations. It is available for down-

load at https://github.com/bio-ontology-research-group/deepgo.
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2.9 Evaluation
We evaluate our model performance with two measures (Clark and

Radivojac, 2013) that are used in CAFA challenge (Radivojac et al.,

2013). The first measure is a protein centric maximum F-measure.

Here, we compute F-measure for a threshold t 2 0;1½ � using the average

precision for proteins for which we predict at least one term and average

recall for all proteins. Then, we select the maximum F-measure of all

thresholds. We compute the Fmax measure using the following formulas:

pri tð Þ ¼
X

f I f 2 Pi tð Þ ^ f 2 Tið ÞX
f I f 2 Pi tð Þð Þ

(2)

rci tð Þ ¼
X

f I f 2 Pi tð Þ ^ f 2 Tið ÞX
f I f 2 Tið Þ

(3)

AvgPr tð Þ ¼ 1

m tð Þ �
Xm tð Þ

i¼1

pri tð Þ (4)

AvgRc tð Þ ¼ 1

n
�
Xn

i¼1

rci tð Þ (5)

Fmax ¼ max
t

2 � AvgPr tð Þ � AvgRc tð Þ
AvgPr tð Þ þ AvgRc tð Þ

� �
(6)

In these measures, f is GO class, Pi(t) is a set of predicted classes for

a protein i using a threshold t, and Ti is a set of annotated classes for

a protein i. Precision is averaged over the proteins where we at least

predict one term and m(t) is the total number of such proteins. n is a

number of all proteins in a test set.

The second measure is a term-centric where for each term f we

compute AUC of a ROC Curve of a sensitivity (or a recall) for a

given false positive rate (1 - specificity). We compute sensitivity and

specificity using the following formulas:

snf tð Þ ¼
X

iI f 2 Pi tð Þ ^ f 2 Tið ÞX
iI f 2 Tið Þ

(7)

spf tð Þ ¼
X

iI f 62 Pi tð Þ ^ f 62 Tið ÞX
iI f 62 Tð Þ

(8)

Here, Pi(t) is a set of predicted terms for a protein i using a threshold

t and Ti is a set of annotated terms for a protein i. Additionally, we

report a term-centric Fmax measure where for each term f we com-

pute the F-measure using threshold t and all proteins in our test set.

Then, we take the maximum for all the thresholds.

prf tð Þ ¼
X

iI f 2 Pi tð Þ ^ f 2 Tið ÞX
iI f 2 Pi tð Þð Þ

(9)

Fig. 1. Convolutional Neural Network Architecture. (1) The input of the model is a list of integer indexes of trig.rams generated from protein sequence and vector

of size 256 for protein PPI network representation. The trigram indexes are passed to an embedding layer which provides vector representations of size 128 for

each trigram. The output of an embedding layer is a matrix of size 1000 � 128 on which we apply convolution and max-pooling. We merge the flattened output of

the max-pooling layer and concatenate the resulting vector with the PPI network embeddings. This feature vector is then passed to hierarchically structured clas-

sification layers. (2) The hierarchically structured classification layers form a directed acyclic graph following the taxonomic structure of GO for is-a relations. For

each GO class we generate one fully connected layer with a sigmoid activation function that predicts whether the input should be classified with this GO class. To

ensure consistency, all non-leaf nodes in the graph use a maximum merge layers (rounded purple square) which outputs the maximum value of the classification

results for all child nodes and the internal node’s classification results. The output vector of the model is the concatenation of maximum merge layers of the inter-

nal nodes and the classification layers of the leaf nodes
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rcf tð Þ ¼
X

iI f 2 Pi tð Þ ^ f 2 Tið ÞX
iI f 2 Tið Þ

(10)

Fmaxf ¼ max
t

2 � prf tð Þ � rcf tð Þ
prf tð Þ þ rcf tð Þ

� �
(11)

Additionally, we compute global ROC AUC for all predictions

scores given by the models and Mathews Correlation Coefficient

(MCC) for a threshold which gives a maximum protein centric

F-measure. The ROC AUC is computed using the following formu-

las for a threshold parameter t:

AUC ¼
ð1
�1

TPR tð Þ �FPR0 tð Þð Þdt (12)

TPR tð Þ ¼ TP tð Þ
TP tð Þ þ FN tð Þ ;FPR tð Þ ¼ FP tð Þ

FP tð Þ þ TN tð Þ (13)

TP is a number of true positives, FN is a number of false negatives,

FP is a number of false positives and TN is a number of true nega-

tives. The MCC is computed using the following formula:

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TN þ FPð Þ TN þ FNð Þ

p (14)

3 Results

3.1 Feature learning and neuro-symbolic hierarchical

classification
We build a machine learning model that aims to address three chal-

lenges in computational function prediction: learning features to

represent a protein, predicting functions in a hierarchical output

space with strong dependencies, and combining information from

protein sequences with protein–protein interaction networks. The

first part of our model learns a vector representation for a protein

sequence which can be used as features to predict protein functions.

The second part of the model aims to encode for the functional

dependencies between classes in GO and optimizes classification

accuracy over the hierarchical structure of GO at once instead of

optimizing one model locally for each class. The intention is that

this model can identify both explicit dependencies between classes in

GO, as expressed by relations between classes encoded in the ontol-

ogy, as well as implicit dependencies such as frequently co-occurring

classes. While a single model over the entire GO would likely yield

best results, due to the size of the GO, we independently train three

models for each of GO’s three sub-ontologies, Molecular Function

(MF), Biological Process (BP) and Cellular Component (CC), and

focus exclusively on subclass relations between GO classes. We gen-

erate a series of fully connected layers, one for each class C in the

GO. Each of these layers has exactly one connection to an output

neuron, Out(C), and, for each direct subclass D of C, a connection

to another layer representing D. This architecture resembles the

hierarchical structure of GO and the dependencies between its

classes, ensures that discriminating features of each class can be

learned hierarchically while taking into account the symbolic rela-

tions in GO. More generally, each dense layer of this ontology-

structured neural network layout is intended to learn features that

can discriminate between its subclasses. Figure 1 illustrates the basic

architecture of our model.

We train three model in a supervised way (one model for each

of the GO ontologies). For this purpose, we first split all proteins

with manually curated GO annotations in SwissProt in a training

set (80%) and an evaluation set (20%). We use the manually

assigned GO functions of the proteins in the training set to train

our models. The performance of each model is globally optimized

over all the GO functions (within either the MF, BP, or CC hier-

archy) through back-propagation. We then evaluate the perform-

ance of our model on the 20% of proteins not used for training,

using the evaluation metrics developed and employed in the CAFA

challenge (Radivojac et al., 2013). Table 1 shows the overall per-

formance of our model and the comparison to using BLAST to

assign functions. We find that our model, which relies only on pro-

tein sequences (DeepGOSeq), outperforms BLAST in predicting

cellular locations, but does not achieve improved performance

compared to BLAST in the MF and BP ontologies when evaluated

either on the full set of GO functions or the subset used by our

model.

3.2 Incorporating protein networks
The majority of functions and biological processes in GO require

multiple proteins to be performed. One source of information for

proteins acting together can be obtained from protein–protein inter-

action networks. By adding information about protein–protein

interactions, we planned to improve our model’s performance, in

particular for prediction of associations to biological processes

which usually require more than one protein to be performed. We

encode protein–protein interactions as a multi-species knowledge

graph of interacting proteins in which proteins within a species are

linked through interacts-with edges and proteins in different species

through a orthologous-to edge. We then apply a method to generate

knowledge graph embeddings (Alshahrani et al., 2017) to this graph

and generate a vector representation for each protein. Furthermore,

we integrate this vector representation with the protein sequence

representation in our model, resulting in a multi-modal model

that utilizes both protein sequences and protein interactions.

Incorporating this network information significantly improves the

performance for almost all GO classes, and the overall performance

of our DeepGO method improves significantly in comparison with

DeepGOSeq which uses only protein sequence as a feature, and in

comparison to the BLAST baseline. Table 1 summarizes the results.

We find that the predictive performance of our model varies sig-

nificantly between proteins in different organisms, in particular

between single-cell and multi-cellular organisms. Table 2 summa-

rizes the performance we achieve for individual organisms, and fur-

ther broadly distinguishes between eukaryotic and prokaryotic

organisms. We find that DeepGO achieves high performance for

well-characterized model organisms, likely due to the rich character-

ization of protein functions in these organisms; other organisms do

not have a large set of manually asserted function annotations and

are therefore represented more sparsely in our evaluation set.

We compare DeepGO with two top-performing methods in pre-

vious CAFA challenges (Radivojac et al., 2013), FFPred3 (Cozzetto

et al., 2016) and GoFDR (Gong et al., 2016), on a benchmark

released as part of the CAFA3 competition. Neither DeepGO nor

FFPred3 or GoFDR have used the protein annotations in this bench-

mark during training. Table 3 shows the performance results of

DeepGO in comparison to FFPred3 and GoFDR on this benchmark

set. DeepGO achieves the highest AUC in all three GO branches,

while both FFPred3 and GoFDR outperform DeepGO in some GO

branches on Fmax, precision, recall, or MCC.

The UniProt database may contain orthologous proteins which

are almost identical and will have similar or identical functions.

To ensure that our testing dataset does not contain sequences that

664 M.Kulmanov et al.

Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -


are highly similar to sequences in our training dataset, we clustered

the protein sequences by their sequence similarity. We computed

pairwise sequence identity using BLAST (Altschul et al., 1997) for

all the proteins with experimental annotations. Then we clustered

the protein sequences into two clusters by placing the sequences

with at least 50% sequence identity in the first cluster and all other

sequences in the second cluster. We used the first cluster as a train-

ing set and the second cluster as a testing set (both files are provided

as Supplementary files S1 and S2). Our training set contains 45 342

sequences and our testing set contains 15 368 sequences. Table 4

show the performance of our model in the scenario where we

evaluate on a set of sequences that are dissimilar to the sequences

used in training.

We further evaluated how well DeepGO performs on different

types of proteins. InterPro classifies proteins into families, domains

and important sites (Finn et al., 2017). We evaluate DeepGO’s per-

formance by grouping proteins by their InterPro annotations.

Supplementary Table S2 shows the performance for InterPro classes

with at least 50 protein annotations in our test set. We find that for

some important protein families, such as p53-like transcription fac-

tors (IPR008967), DeepGO can achieve high performance in all

three GO ontologies, while for other kinds of proteins, such as those

Table 1. Overview of our model’s performance and comparison to BLAST baseline

Method BP MF CC

F max AvgPr AvgRc AUC MCC Fmax AvgPr AvgRc AUC MCC Fmax AvgPr AvgRc AUC MCC

BLAST 0.314 0.302 0.327 0.372 0.367 0.377 0.362 0.321 0.417

DeepGOSeq 0.293 0.304 0.282 0.814 0.266 0.364 0.453 0.304 0.875 0.328 0.568 0.602 0.538 0.924 0.520

DeepGOFlat 0.387 0.393 0.382 0.899 0.395 0.451 0.529 0.393 0.925 0.428 0.632 0.635 0.629 0.966 0.595

DeepGO 0.395 0.412 0.379 0.896 0.397 0.470 0.577 0.397 0.928 0.438 0.633 0.643 0.624 0.967 0.592

BLAST (selected) 0.344 0.376 0.317 0.541 0.615 0.483 0.497 0.506 0.489

DeepGOSeq (selected) 0.322 0.319 0.324 0.814 0.266 0.392 0.453 0.346 0.875 0.328 0.574 0.602 0.548 0.924 0.520

DeepGOFlat (selected) 0.425 0.415 0.436 0.899 0.396 0.483 0.579 0.414 0.925 0.432 0.638 0.635 0.641 0.966 0.595

DeepGO (selected) 0.435 0.444 0.426 0.896 0.399 0.503 0.577 0.447 0.928 0.438 0.639 0.643 0.635 0.967 0.592

Note: The DeepGOSeq model uses only sequence information. DeepGOFlat uses both the protein sequence and network interactions as input, but instead of

hierarchically structured classification layers DeepGOFlat has one fully connected layer with sigmoid activation function to generate output predictions. Our final

DeepGO model uses sequence and interaction networks with hierarchical classification layers. The first part of the evaluation shows performance results when

considering all GO annotations (even those that our model cannot predict), while the second part focuses on the selected terms for which our model can generate

predictions. Best performing models are highlighted in bold.

Table 2. Performance of our method distinguished by organisms

Organism BP MF CC

Fmax AvgPr AvgRc AUC MCC Fmax AvgPr AvgRc AUC MCC Fmax AvgPr AvgRc AUC MCC

Eukaryotes 0.40 0.41 0.39 0.89 0.40 0.48 0.59 0.41 0.93 0.45 0.63 0.64 0.62 0.96 0.59

Human 0.42 0.46 0.39 0.89 0.42 0.51 0.64 0.42 0.94 0.46 0.60 0.58 0.61 0.96 0.56

Mouse 0.39 0.42 0.36 0.88 0.40 0.51 0.60 0.45 0.95 0.48 0.59 0.69 0.51 0.95 0.55

Rat 0.38 0.39 0.37 0.88 0.37 0.52 0.61 0.45 0.94 0.49 0.53 0.50 0.58 0.94 0.48

Fruit Fly 0.38 0.41 0.35 0.89 0.40 0.51 0.63 0.42 0.94 0.48 0.57 0.54 0.59 0.96 0.56

Yeast 0.45 0.46 0.43 0.93 0.46 0.42 0.49 0.37 0.91 0.38 0.57 0.55 0.59 0.96 0.56

Fission Yeast 0.42 0.43 0.41 0.91 0.41 0.40 0.40 0.39 0.91 0.35 0.77 0.77 0.78 0.98 0.74

Zebrafish 0.40 0.44 0.37 0.90 0.38 0.60 0.74 0.51 0.95 0.55 0.65 0.74 0.59 0.97 0.66

Prokaryotes 0.37 0.40 0.34 0.90 0.38 0.39 0.45 0.34 0.90 0.36 0.69 0.71 0.67 0.98 0.62

E.coli 0.40 0.42 0.38 0.93 0.42 0.40 0.47 0.35 0.93 0.38 0.73 0.76 0.70 0.99 0.66

Mycobacterium tuber-s 0.29 0.28 0.31 0.88 0.24 0.38 0.45 0.33 0.91 0.35 0.68 0.65 0.71 0.99 0.63

Pseudomonas aeruginosa 0.52 0.57 0.47 0.93 0.55 0.42 0.65 0.31 0.91 0.41 1.00 1.00 1.00 1.00 1.00

Bacillus subtilis 0.36 0.50 0.29 0.87 0.34 0.39 0.43 0.36 0.91 0.33 0.50 0.64 0.42 0.97 0.53

Note: We use the DeepGO model that combines both sequence and network information for this prediction. Best performance values are highlighted in bold.

Table 3. Evaluation of DeepGO, FFPred3 and GoFDR methods on a CAFA3 preliminary evaluation set

Method BP MF CC

F max AvgPr AvgRc AUC MCC Fmax AvgPr AvgRc AUC MCC Fmax AvgPr AvgRc AUC MCC

FFPred3 0.26 0.30 0.23 0.83 0.23 0.38 0.35 0.40 0.86 0.29 0.44 0.46 0.43 0.89 0.39

GoFDR 0.20 0.27 0.15 0.61 0.00 0.52 0.89 0.36 0.84 0.60 0.40 0.40 0.41 0.72 0.31

DeepGO 0.34 0.31 0.37 0.88 0.32 0.47 0.61 0.39 0.90 0.37 0.52 0.55 0.49 0.95 0.50
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with a Ubiquitin-related domain (IPR029071), DeepGO fails to pre-

dict annotations to BP and MF accurately.

Using a term-centric evaluation measure (Radivojac et al.,

2013), we test how accurate our predictions are for different GO

functions. Supplementary Table S3 shows the best performing GO

functions from each ontology. Unsurprisingly, high-level functions

with a large number of annotations generally perform significantly

better than more specific functions. We further test whether the var-

iance in predictive performance is intrinsic to our method or the

result of different amounts of training data available for proteins of

different families, with different domains, or for GO functions

with different number of annotations. We plot the predictive per-

formance of DeepGO as a function of the number of training

samples in Figure 2, and observe that performance is strongly corre-

lated with the number of training instances. However, due to

the hierarchical nature of GO, an increased number of training

instances will always be available for more general, high-level

functions. In the future, additional weights based on information

content of GO classes (Resnik, 1999) should be assigned to more

specific functions which contain more information (Clark and

Radivojac, 2013; Radivojac et al., 2013); using these weights during

training of our model may improve performance for more specific

functions.

For automated annotation of a large number of proteins, such

as the complete proteome of a newly sequenced organism, predic-

tion time is also important. To determine the time needed for pre-

dicting functions and cellular locations of multiple proteins, we

randomly selected 10 000 proteins of varying size from different

organisms and performed function prediction with DeepGO using

all three GO hierarchies, using an Intel Xeon E5-2680 CPU and an

Nvidia GeForce GTX TITAN Z GPU. DeepGO requires 15GB of

memory. As DeepGO relies on BLAST to identify a network

embedding for a query protein, the majority of time (16 000 s, or

1.6 s per protein on average) was needed to perform the BLAST

search. Actual prediction time for the neural network ranges

between 2.2 ms per protein (for the CC model) to 3.5 ms per pro-

tein (for the BP model). Our results are similar to the reported

results of GoFDR (Gong et al., 2016) where the majority of time is

required for BLAST search while actual prediction time is signifi-

cantly faster.

4 Discussion

4.1 Multi-modal function prediction
Computational approaches to function prediction have been devel-

oped for many years (Radivojac et al., 2013). One of the most basic

approaches for function prediction has been the use of BLAST

(Altschul et al., 1997) to identify proteins with high sequence simi-

larity and known functions, and assign the functions of the best

matching protein to the protein to be characterized. Approaches for

orthology-based function prediction include more comprehensive

modelling of evolutionary relations, including relations between

protein subdomains (Gaudet et al., 2011), and these can outperform

simple BLAST baseline experiments. Other approaches for function

prediction rely on structure prediction. It is well known that protein

ternary structure strongly influences a protein’s functions, but pre-

diction of protein structure remains a challenging computational

problem (Moult et al., 2014), and even with known protein struc-

ture, functions cannot always be predicted accurately. Additionally,

high-level physiological functions, such as vocalization behavior

(GO: 0071625), will not be predictable from a single protein’s

sequence or structure alone but require complex pathways and inter-

acting proteins, all of which contribute to the function. For this pur-

pose, several methods use protein–protein interaction networks to

identify significant links between proteins that can be used to trans-

fer functions, or significant network patterns that may be predictive

of a function (Baryshnikova, 2016; Jiang and McQuay, 2012; Kirac

and Ozsoyoglu, 2008; Nguyen et al., 2011).

While many of these approaches rely on hand-crafted features,

some approaches already applied feature learning (i.e. deep learning)

to parts of these data types. For example, feature learning

approaches have significantly improved the prediction of transcrip-

tion factor binding sites and functional impact of genomic variants

(Alipanahi et al., 2015; Zhou and Troyanskaya, 2015), and

DeepGO also utilizes feature learning on protein–protein interaction

networks (Alshahrani et al., 2017). Here, we have extended the

application of deep learning approaches in function prediction in

three ways: first, we apply feature learning through the use of a

CNN and embedding layer to learn a representation of protein

sequence; second, we developed a deep, ontology-structured classifi-

cation model that can refine features on each distinction present in

the GO; and third, we use multi-modal data sources, in particular

the protein sequence and information from protein–protein interac-

tion networks, within a single model. Through the multi-modal

nature of our machine learning model, other types of data can be

Fig. 2. Term centric performance. These plots show the performance of our model for each term in our subset of GO as a function of the number of supporting

proteins in test set which are annotated by the term

Table 4. Evaluation of DeepGO on a dataset split by sequence

identity

Model Fmax AvgPr AvgRc AUC MCC

BP 0.397 0.437 0.364 0.900 0.395

MF 0.403 0.495 0.339 0.908 0.359

CC 0.625 0.654 0.598 0.963 0.598
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integrated within the DeepGO model as long as they can be used as

input to a representation learning method that learns vector repre-

sentations. For example, protein structure information, if available,

could be incorporated in our model by adding another feature learn-

ing branch that generates dense, low-dimensional representations of

protein structure (Wang et al., 2017) and using these as input to our

hierarchical classifier. Furthermore, established function prediction

methods use several additional sources of information to generate

features for function prediction, including co-expression (Wass

et al., 2012), classification in functional protein families based on

protein domains (Das et al., 2015), and phylogenetic information

(Engelhardt et al., 2011). Adding these additional sources of infor-

mation may help to further improve DeepGO’s performance in the

future.

4.2 Hierarchical classification on ontologies
In addition to the multi-modal nature of features used in DeepGO,

another contribution of our work is the deep hierarchical classification

model that optimizes predictive performance on whole hierarchies,

accounts for class dependencies (i.e. the semantics of annotations in

GO) during training time, learns features in a hierarchical manner, and

is optimized jointly together with the feature learning component of

our model in an end-to-end manner. Our method can be applied to

other applications with a similarly structured output space and which

rely on learning feature representations. In particular, we plan to apply

our model for predicting disease associations of genes which are

encoded using the Disease Ontology (Osborne et al., 2009), or pheno-

type associations of genetic variants which are encoded using pheno-

type ontologies (Gkoutos et al., 2017).

The advantages of our model are its potential for end-to-end

learning, the global optimization and the potential to predict any

class given sufficient training data. In particular the end-to-end

learning provides benefits over approaches such as structured sup-

port vector machines (Sokolov and Ben-Hur, 2010), which generally

rely on hand-crafted feature vectors.

However, our model also has disadvantages. First, it needs large

amounts of training data for each class; this data is readily available

through the manual GO annotations that have been created for

many years, but will not easily be available for other areas of appli-

cation, such as predicting phenotype annotations or effects of var-

iants. Furthermore, our model is complex and requires large

computational resources for training, and therefore may not be

applicable in all settings.

In the future, we intend to extend our hierarchical model in several

directions. First, we plan to include more information from GO, in

particular parthood relations and regulatory relations, which may

provide additional information. We will also explore adding more

features, such as additional types of interactions (genetic interactions,

or co-expression networks), and information extracted from text.
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