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Differential diagnosis of neurological disorders and their subtype classification are
challenging without specific biomarkers. Genetic forms of these disorders, typified by an
autosomal dominant family history, could offer a window to identify potential biomarkers
by exploring the presymptomatic stages of the disease. Frontotemporal dementia (FTD)
is the second cause of dementia with an age of onset < 65, and its most common
mutations are in GRN, C9orf72, and MAPT genes. Several studies have demonstrated
that the main proteins involved in FTD pathogenesis can be secreted in exosomes, a
specific subtype of extracellular vesicles able to transfer biomolecules between cells
avoiding cell-to-cell contact. Neurofilament light chain (NfL) levels in central nervous
system have been advocated as biomarkers of axonal injury. NfL concentrations have
been found increased in FTD and have been related to disease severity and prognosis.
Little information on the relationship between NfL and exosomes in FTD has been
collected, deriving mainly from traumatic brain injury. Current review deals with this
matter in the attempt to provide an updated discussion of the role of NfL and exosomes
as biomarkers of genetic forms of FTD.
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INTRODUCTION

Early diagnosis of dementia is challenging, that’s why there is an impelling need for
specific biomarkers. Frontotemporal dementia (FTD) encompasses a heterogenous group of
neurodegenerative disorders with a wide range of clinical, genetic, and neuropathological features
(Bang et al., 2015). About one-third of FTD patients have an autosomal dominant family history
(Rohrer et al., 2009), typified by mutations in three genes: granulin (GRN; Baker et al., 2006;
Cruts et al., 2006), chromosome 9 open reading frame 72 (C9orf72) (DeJesus-Hernandez et al.,
2011; Renton et al., 2011) and microtubule-associated protein tau (MAPT; Hutton et al., 1998).
It has been demonstrated that several proteins involved in FTD pathogenesis can be secreted
by cells in association with exosomes (Ghidoni et al., 2011; Benussi et al., 2016). Furthermore,
mutations in GRN strongly reduce the number of released exosomes also altering their composition
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(Benussi et al., 2016). Exosomes are a specific subtype of
extracellular vesicles (EVs) of 30–150 nm, originating in the
endosomal/multivesicular body system and widely distributed
in body fluids, including blood. Exosomes can carry a
wide variety of DNA, RNA, proteins and lipids, allowing
communication between cells avoiding cell-to-cell contact
(Raposo and Stoorvogel, 2013; Rajendran et al., 2014). They
have been reported as “Trojan horses” of toxic proteins (Ghidoni
et al., 2008a), that’s why they may serve as novel biomarkers in
neurodegenerative diseases (Rajendran et al., 2014; Longobardi
et al., 2021). Exosomes have a lipid bilayer membrane and can
cross the blood brain barrier bidirectionally, thus reflecting and
tracking neuropathological changes (Chen et al., 2013; Lai et al.,
2014). In this context, a number of studies have shown the
potential of peripheral blood EVs enriched for neuronal origin
(nEVs) to identify biomarkers in several neurological disorders
(Mustapic et al., 2017). Moreover, encouraging studies have been
published that illustrate how certain biomarkers of AD carried
within circulating nEVs, can identify individuals with age-related
cognitive decline at an early pre-clinical stage, when symptoms
are milder than mild cognitive impairment (Eren et al., 2020). In
the same line, significantly lower levels than controls of several
excitatory synaptic proteins have been found in plasma nEVs
in AD patients (Goetzl et al., 2018). In several neurological
diseases, levels of neurofilament light chain (NfL) released from
the Central Nervous System (CNS) have been demonstrated to
be altered, mainly in the cerebrospinal fluid (CSF; Bridel et al.,
2019) but also in serum (Mariotto et al., 2020). Concentrations of
NfL, biomarker of axonal damage, are increased in serum of FTD
patients and might be related to disease severity and prognosis
(Meeter et al., 2016; Rohrer et al., 2016; van der Ende et al., 2019;
Benussi et al., 2020). In the present review, the potential role of
NfL and exosomes as promising biomarkers for FTD diagnosis
are briefly explained in the context of the FTD forms typified by
autosomal dominant mutations that allow investigations in the
early or even in the presymptomatic stages of the disease.

GENETIC BASES OF
FRONTOTEMPORAL DEMENTIA

Frontotemporal dementia is an early-onset form of dementia,
with a mean age of symptoms presentation before the age of
65 (Ratnavalli et al., 2002; Knopman et al., 2004). This early
dementia is highly hereditary: 30–40% of FTD patients have
a positive family history, (Rohrer et al., 2009; Wood et al.,
2013; Fostinelli et al., 2018). In FTD families, null mutations
in GRN leads to the production of a non-functional or no
progranulin protein at all (Baker et al., 2006; Cruts et al.,
2006; Ghidoni et al., 2008b; Finch et al., 2009; Sleegers et al.,
2009). Mutations in MAPT, encoding for tau protein, typify
FTD patients with tau-positive brain inclusions (Hutton et al.,
1998; Poorkaj et al., 1998). Furthermore, an intronic expansion
of a hexanucleotide repeat in C9orf72 has been found in
some families with an autosomal dominant inheritance form
of FTD (DeJesus-Hernandez et al., 2011; Renton et al., 2011).
Most forms of FTD, encompassing both genetic and sporadic

FTD, are characterized by cell inclusion bodies composed of
tau or transactive response DNA-binding protein of 43 kDa
(TDP-43) (Greaves and Rohrer, 2019). TDP-43 cytoplasmatic
inclusion can be found in the CNS of patient with FTD
and/or amyotrophic lateral sclerosis (ALS) and could explain
neuropathological overlap between these neurodegenerative
diseases (Elman et al., 2008).

THE ROLE OF NEUROFILAMENT LIGHT
CHAIN IN THE GENETIC FORMS OF
FRONTOTEMPORAL DEMENTIA

Neurofilaments are a family of neuronal cytoplasmic proteins
divided into three subunits: heavy (NfH), medium (NfM) and
light (NfL) chain. They are expressed primarily in neuronal
axons where they provide structural support and stabilization
of myelinated axons and interact with many proteins and
organelles, including mitochondria (Petzold, 2005). NfL is the
most abundant and soluble Nf subunit and can be released
into blood and CSF in diverse neurological diseases reflecting
neuroaxonal injury (Petzold, 2005; Lu et al., 2015; Mattsson
et al., 2017; Khalil et al., 2018; Steinacker et al., 2018; Verde
et al., 2019). NF gene mutations can cause multiple familial
neurodegenerative disorders typified by NF aggregation and
transport failure leading to further NF accumulations, including
14 NF-L gene mutations known to cause type 2E and 1F
forms of Charcot–Marie–Tooth disease (Yuan et al., 2017).
Recently NfL alterations have been also associated with FTD.
NfL detection can provide some utility as a biomarker to
differentiate specific FTD subtypes and, to support differential
diagnosis of FTD from psychiatric disorders. To this regard,
it has been recently reported an increase of serum NfL (sNfL)
levels in behavioral-FTD but not in psychiatric disorders (Al
Shweiki et al., 2019). Furthermore, low CSF level of NfL
(cNfL) have been found in presymptomatic carriers of genetic
FTD in contrast to high concentration in the symptomatic
ones (Scherling et al., 2014; Meeter et al., 2016): in FTD
GRN, MAPT or C9orf72 mutation carriers, cNfL levels have
reached a 8-fold higher increase in the affected patients than in
presymptomatic carriers. On this basis, a role as a biomarker
of disease severity and for prediction of the conversion to
full dementia has been proposed for cNfL (Scherling et al.,
2014; Meeter et al., 2016). Furthermore, it has been shown that
sNfL levels were strongly associated with cNfL concentrations
in the affected patients (Scherling et al., 2014; Meeter et al.,
2016), and that NfL levels associated with disease severity,
brain atrophy and patient survival (Meeter et al., 2016). In
line with this evidence, van der Ende et al., 2019 showed
normal sNfL levels in presymptomatic FTD carriers of GRN,
MAPT or C9orf72 mutations and a significant increase of sNfL
concentrations after conversion to full dementia. The authors
also described higher concentrations of sNfL in presymptomatic
converters few years before the disease onset, pointing out to a
potential role of sNfL as a prognostic biomarker of genetic FTD
(van der Ende et al., 2019).
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TABLE 1 | Literature evidences of NfL alterations in genetic forms of FTD.

Mutated gene Source Presymptomatic mutation
carriers

Symptomatic mutation carriers References

GRN, MAPT, C9orf72 CSF Levels of CSF NfL similar to CTRL ↑ CSF NfL vs. CTRL Scherling et al., 2014

GRN, MAPT, C9orf72 CSF Levels of CSF NfL similar to CTRL ↑ CSF NfL vs. CTRL and presymptomatic
carriers (↑ CSF NfL in GRN patients

compared to MAPT and C9orf72 ones)

Meeter et al., 2016

CHMP2B CSF ↑ CSF NfL vs. CTRL ↑ CSF NfL vs CTRL and presymptomatic
carriers

Toft et al., 2020

GRN, MAPT, C9orf72 CSF Levels of CSF NfL similar to CTRL ↑ CSF NfL vs CTRL and presymptomatic
carriers

van der Ende et al., 2021

GRN, MAPT, C9orf72 SERUM Levels of serum NfL similar to CTRL ↑ serum NfL vs CTRL and presymptomatic
carriers (↑ serum NfL in GRN patients

compared to MAPT )

Meeter et al., 2016

GRN, MAPT, C9orf72 SERUM Levels of serum NfL similar to CTRL
(↑ serum NfL in converters vs

non-converter)

↑ serum NfL vs CTRL and presymptomatic
carriers (↑ serum NfL in GRN patients

compared to MAPT and C9orf72)

van der Ende et al., 2019

CHMP2B SERUM ↑ serum NfL vs CTRL ↑ serum NfL vs CTRL and presymptomatic
carriers

Toft et al., 2020

GRN, MAPT, C9orf72 SERUM Levels of serum NfL similar to CTRL
(↑ serum NfL in converters vs

non-converter)

↑ serum NfL vs CTRL and presymptomatic
carriers

Wilke et al., 2021

GRN, MAPT, C9orf72 SERUM Levels of serum NfL similar to CTRL ↑ serum NfL vs. CTRL and
presymptomatic carriers

van der Ende et al., 2021

THE ROLE OF EXOSOMES IN THE
GENETIC FORM OF FRONTOTEMPORAL
DEMENTIA

Exosomes are biologically active entities, facilitating the
intercellular communication and the transfer of biomolecules
from one cell to another without direct cell-to-cell contact
(Raposo and Stoorvogel, 2013; Rajendran et al., 2014). Alteration
in intercellular communication in FTD patients with GRN
mutation have been previously reported (Benussi et al., 2016).
The study (Benussi et al., 2016) showed not only that progranulin
was secreted in association with exosomes but also that levels of
exosomal progranulin released by fibroblasts as well as the whole
release of exosomes were reduced in mutations carrier patients.
In brain, Wren et al., 2015, showed a significant alteration
in intracellular vesicles trafficking with an accumulation of
endosomes and exosomes and a reduction of lysosomes in FTD
patients carrying N279K mutation in MAPT. These patients
also showed an increase of exosomal proteins in frontal and
temporal cortex (Wren et al., 2015). Moreover, it has been shown
that both full length TDP-43 and TDP-43 C-terminal fragments
were enriched in exosomes isolated from CSF in ALS-FTD
patients. On this basis, approaches tackling the transmission of
exosomes containing pathological TDP-43 could be a promising
therapeutic strategy to halt or delay FTD-ALS progression

TABLE 2 | Literature evidences of exosomes alterations in genetic forms of FTD.

Mutated gene Source Mutation carrier patients References

GRN Human primary
fibroblasts

↓ Exosomes vs CTRL Benussi et al.,
2016

GRN Brain, Plasma ↑ Exosomes vs CTRL (only the
symptomatic carriers)

Arrant et al., 2020

MAPT iPSC-derived neural
stem cells

↑ Exosomes vs. CTRL Wren et al., 2015

(Ding et al., 2015). Based on these studies, exosomes and their
cargo appear attractive biomarkers that could achieve a high
diagnostic efficiency.

EVIDENCE ON THE ATTRACTIVE ROLE
OF NEUROFILAMENT LIGHT CHAIN IN
EXOSOMES

The interaction of NfL and exosomes in FTD has been
preliminary explored in subjects with traumatic brain injury
(TBI). A recent study focused on veterans evidenced that
repetitive events of TBI were associated with elevated exosomal
and plasma NfL: the years from the first TBI were associated
with both plasma and exosomal NfL levels. However, the years
since the last TBI positively correlated only with exosomal NfL
(Guedes et al., 2020). Similarly, in the study from Peltz et al., 2020
on TBI, NfL in CNS-enriched exosomes isolated from plasma
were associated with cognitive impairment, suggesting the utility
of exosomal NfL as biomarker of cognitive loss. Conversely, the
analysis of plasmatic NfL didn’t show any positive results (Peltz
et al., 2020). Alongside a longitudinal study explored exosomal
sNfL in patients with moderate-to-severe TBI in association
with the free-circulating counterpart (Mondello et al., 2020).
The authors found that sNfL levels were higher than their
exosomal counterpart and that they positively correlated each
other, likely part of a common disease process but pertaining
to different pathways. Furthermore, exosomes enriched in sNfL
were significantly higher in patients with diffuse TBI rather
than in patients with focal lesions, supporting their potential
utility in the prediction of neuronal damage (Mondello et al.,
2020). In the same line, a study on HIV patients complaining
neuropsychological impairment (Sun et al., 2017) showed that
neuron-derived exosomes isolated from plasma had increased
levels of NfL compared to exosomes from neuropsychologically

Frontiers in Neuroscience | www.frontiersin.org 3 January 2022 | Volume 16 | Article 758182

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-758182 January 19, 2022 Time: 15:2 # 4

Zanardini et al. NfL-Exosomes in Genetic FTD

normal subjects highlighting their usefulness in tracking the
worsening of cognitive impairment.

CONCLUSION

Even though not exhaustive, the present overview summarizes
the most relevant evidence collected on the potential role of
NfL and exosomes in the genetic form of FTD (Tables 1, 2).
The latter can provide information on the presymptomatic stage
of the disease, offering a good chance to identify early or
prognostic biomarkers and the opportunity to deliver preventive
therapeutic strategies in this ideal time to obtain the greatest
possibility of success.

Knowledge on the matter discussed is still at the beginning,
and further investigation is needed to dissect the potential of
this promising field of research and reveal whether the potential
that emerged in the TBI study could also apply to genetic
FTD. Exosomes represent an important subtype of EVs for
the release and transfer of biomolecules among cells, without
cells-to-cells contact. The study of the EV content, such as
NfL in exosomes, from different tissues and fluids may provide
information about the source of origin, reflecting the pathological
changes. Moreover, it may predict the course of the disease and
the prognosis for the patients, as well as establish a more reliable
diagnosis. Since the first EVs description, ultracentrifugation

has been the “gold standard” for EVs isolation. Nowadays,
additional methodologies have been proposed for a more rapid
and efficient EV isolation, such as several commercial kits, based
on size exclusion.

Further prospective studies are greatly needed specifically to
clarify the performance of exosomal biomarkers in genetic FTD
diagnosis and prognosis.
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