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Abstract
Background Recent advances in texture-based computed tomography (CT) radiomics have demonstrated
its potential for classifying COPD.
Methods Participants from the Canadian Cohort Obstructive Lung Disease (CanCOLD) study were
evaluated. A total of 108 features were included: eight quantitative CT (qCT), 95 texture-based radiomic
and five demographic features. Machine-learning models included demographics along with texture-based
radiomics and/or qCT. Combinations of five feature selection and five classification methods were
evaluated; a training dataset was used for feature selection and to train the models, and a testing dataset
was used for model evaluation. Models for classifying COPD status and severity were evaluated using the
area under the receiver operating characteristic curve (AUC) with DeLong’s test for comparison. SHapely
Additive exPlanations (SHAP) analysis was used to investigate the features selected.
Results A total of 1204 participants were evaluated (n=602 no COPD; n=602 COPD). There were no
differences between the groups for sex (p=0.77) or body mass index (p=0.21). For classifying COPD
status, the combination of demographics, texture-based radiomics and qCT performed better (AUC=0.87)
than the combination of demographics and texture-based radiomics (AUC=0.81, p<0.05) or qCT alone
(AUC=0.84, p<0.05). Similarly, for classifying COPD severity, the combination of demographics, texture-
based radiomics and qCT performed better (AUC=0.81) than demographics and texture-based radiomics
(AUC=0.72, p<0.05) or qCT alone (AUC=0.79, p<0.05). Texture-based radiomics and qCT features were
among the top five features selected (15th percentile of the CT density histogram, CT total airway count,
pack-years, CT grey-level distance zone matrix zone distance entropy, CT low-attenuation clusters) for
classifying COPD status.
Conclusion Texture-based radiomics and conventional qCT features in combination improve
machine‑learning models for classification of COPD status and severity.

Introduction
COPD is a common, progressive and incurable lung disease often associated with tobacco smoking [1].
Individuals with COPD have increased symptom burden [2], reduced exercise capacity [3], risk of
exacerbations [2] and a doubled risk of lung cancer [4–6]. While spirometry is the standard technique used
to detect airflow obstruction to confirm the presence of COPD [1], it is often not performed in primary care
or in lung cancer screening trials, where COPD is largely underdiagnosed [7]. However, low-dose computed
tomography (CT) scans are used for lung cancer screening and offer an opportunity to identify undiagnosed
COPD. Estimates suggest a significant portion of screening trial participants have COPD [6]; therefore,
there is potential to use this information in risk models to determine screening eligibility and frequency.
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CT imaging is used to quantify structural lung changes in COPD, including the extent of emphysema [8]
and airway remodelling [9]. In lung cancer screening trials, CT emphysema has been shown to classify
individuals with COPD [10]; however, many individuals with COPD have no or minimal emphysema [11].
Another pathological feature of COPD is airway remodelling, and the addition of CT airway measurements
to emphysema improves COPD classification accuracy in lung cancer screening trials [12]. However, these
conventional quantitative CT (qCT) measurements provide a single global measurement and may miss
subtle changes in the lung tissue characteristics.

Emerging texture-based radiomics can provide additional information about the spatial patterns in an
image [13]. CT texture-based radiomics have been shown in previous studies to classify COPD status [14–16],
COPD severity [15] and progression to COPD [17]. A previous study demonstrated that radiomic features,
including texture-based radiomics and shape features, extracted from low-dose CT images improved
accuracy for COPD detection compared to CT emphysema alone in a cohort with moderate-severe
COPD [14]. However, there are several CT emphysema measures that reflect both emphysema extent and
clustering [18, 19]. Further, CT airway remodelling measurements have been shown to provide
complementary information that improves COPD classification [20] and numerous features derived from
the CT airway tree that have prognostic relevance in COPD [9, 20, 21]. Therefore, these CT measurements
should also be considered in COPD classification models.

We hypothesised that the addition of texture-based radiomics to conventional qCT, including both CT
emphysema and airway measures, would provide additional information about disease heterogeneity
among individuals with COPD, which will improve machine-learning (ML) model performance for COPD
classification. To investigate our hypothesis, we aimed to compare the performance of ML models with
conventional CT measurements, texture-based CT radiomic measurements and their combination for
classifying COPD status and severity. We also aimed to investigate the CT features being selected in our
models to determine which features are most predictive.

Materials and methods
Study participants
The participants evaluated in this study were from Canadian Cohort Obstructive Lung Disease
(CanCOLD), a longitudinal population-based study [22]. Participants were excluded if they were missing
CT images at the baseline visit (V1) or V1 demographics or spirometry (figure 1). The remaining
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FIGURE 1 CONSORT diagram illustrating the participants included. Any participant visit 1 CT images,
spirometry and/or demographics data were excluded. Participants were then classified as “No COPD” or
“COPD” based on their baseline forced expiratory volume in 1 s/forced vital capacity measurements.
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participants were then grouped into “No COPD” and “COPD” based on their baseline spirometry (forced
expiratory volume in 1 s (FEV1)/forced vital capacity (FVC)). The groups were further classified into
never-smokers and Global Initiative for Chronic Obstructive Lung Disease (GOLD) 0, GOLD 1 and
GOLD 2+ based on the GOLD guidelines [1]. Written informed consent was obtained from all participants
and the study received institutional review board approval at each study site (REB 2019-244). The same
CanCOLD participant population has been previously reported [16, 23].

Spirometry and questionnaires
The American Thoracic Society guidelines [24] were used to obtain spirometry measurements at V1.
Questionnaires were collected at V1, including COPD Assessment Test (CAT) scores [25] and St George’s
Respiratory Questionnaire (SGRQ) scores [26].

CT image acquisition and CT features
The CT images were acquired using a multi-slice CT scanner in the supine position from the apex to base
of the lung at full inspiration, based on CanCOLD imaging guidelines [22]. CT scanner acquisition details
are shown in supplementary table S1.

Conventional qCT features were extracted using VIDA Diagnostics Inc. clinical image analysis service
(Apollo 2.0 software package, Coralville, IA, USA), except for normalised join count (NJC) and total
airway count (TAC). The emphysema qCT features extracted include low-attenuation areas below
−950 HU (LAA950) [8], 15th percentile of the density histogram (HU15) [27], low-attenuation clusters
(LAC) [19] and NJC [18]. The airway qCT features extracted include TAC [21], average wall thickness for
a hypothetical airway of 10 mm lumen perimeter [9], the average airway wall area % (WA%) for five
segmental airways (RB1, RB4, RB10, LB1 and LB10) [20] and the average airway lumen area (LA) for
five segmental airways [20].

To extract the texture-based CT radiomic features, an in-house-developed pipeline that uses the
Standardized Environment for Radiomics Analysis [28] (MATLAB-based framework) was constructed to
calculate the features in compliance with the Image Biomarker Standardisation Initiative (IBSI) [13]. Prior
to radiomic feature extraction, CT images were pre-processed by resampling the voxels to a 1 mm3

isotropic resolution, segmentation masks were used to remove the airways and extract the lungs, and a
threshold of −1000 HU to 0 HU was applied [23]. The 95 texture-based radiomics [13] that were extracted
included 25 grey-level co-occurrence matrix (GLCM) features, 16 grey-level run-length matrix (GLRLM)
features, 16 grey-level size zone matrix (GLSZM) features, 16 grey-level distance zone matrix (GLDZM)
features, 17 neighbouring grey-level dependence matrix (NGLDM) features and five neighbourhood
grey-tone difference matrix (NGTDM) features. To account for the various feature scales, a z-normalisation
(mean of 0 and SD of 1) was applied to all features.

Machine-learning pipeline
Figure 2 illustrates the proposed methods. Demographics (age, sex, race, body mass index (BMI), height,
smoking status and pack-years) and CT features, including eight qCT and 95 texture-based radiomics, were
obtained for all participants. For each combination of features that were investigated, the dataset was split
into a training dataset (75%) and a testing dataset (25%), such that the class labels were balanced. Outlier
removal was performed on the training dataset by removing outliers outside 2 SD for a Gaussian
distribution [16]. Pearson’s correlation coefficients were used to determine highly correlated features in the
training dataset (|r|⩾0.90), which were removed from further analyses. Following outlier removal and the
removal of highly correlated features, the training dataset was then input into various feature selection
methods to select five features [16] to train the models with a 5-fold cross-validation to tune the
hyper-parameters for classifying binary COPD status and multiclass COPD severity. The hold-out testing
dataset was used to evaluate the models. Combinations of five feature selection methods and five
classification methods (supplementary table S2), available from the scikit-learn package (version 0.24.2;
Python version 3.9.6), were evaluated. The feature selection and classification combination that obtained
the highest area under the receiver operating characteristic (ROC) curve (AUC) value in the test dataset
was determined to be the optimal ML model for each outcome being investigated and the performance
metrics for the optimal model are reported.

Statistical analysis
To evaluate the ML model performance, various performance metrics were used in the testing dataset,
including AUC, accuracy and F1 scores. DeLong’s test was used to compare AUC values for significant
differences [29]. To investigate the impact of the features selected on the model, SHapely Additive
exPlanations (SHAP) analysis [30] summary plots were investigated. Pearson’s correlation test was used to
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evaluate correlations between CT features and baseline spirometry measurements and symptoms scores
(CAT and SGRQ). An ANOVA was performed for texture-based radiomics between the groups
(never-smokers, GOLD 0, GOLD 1 and GOLD 2+).

Results
Study participant demographics
Table 1 shows the demographics and lung function measurements for the participants included in this
study. There was no significant difference between the “No COPD” and “COPD” participants for sex
(p=0.77) or BMI (p=0.21) (table 1). The COPD participants were slightly but significantly older, with
greater pack-years of smoking and lower lung function than the participants without COPD (p<0.05).
There were no significant differences between the participants included (1204 participants) and the
participants excluded (357 participants) from the study for age (p=0.40), sex (p=0.86) or BMI (p=0.10)

TABLE 1 Subject demographics for participants included

No COPD COPD p-value

Subjects (n) 602 602
Age (years) 66.16±9.64 67.38±9.94 0.03
Female sex 279 (46) 232 (39) 0.77
BMI (kg·m−2) 27.74±5.14 27.37±4.94 0.21
Pack-years 10.9±18.2 22.7±25.1 <0.001
Smoking status
Never 308 (51) 196 (33) 0.03
Former 238 (40) 302 (50) 0.19
Current 56 (9) 104 (17) 0.08

FEV1 (L) 2.75±0.77 2.36±0.76 <0.001
FEV1 (% pred) 100.2±17.4 83.3±18.9 <0.001
FVC (L) 3.58±1.01 3.83±1.10 <0.001
FVC (% pred) 97.7±16.5 101.0±17.5 <0.001
FEV1/FVC 77.1±4.7 61.4±7.9 <0.001
GOLD grade
GOLD 0 346 (57) – –
GOLD 1 – 347 (58) –
GOLD 2 – 224 (37) –
GOLD 3 – 31 (5) –
GOLD 4 – 0 (0) –

Data are presented as mean±SD or n (%), unless otherwise indicated. Bold text indicates a statistically
significant difference at p<0.05. BMI: body mass index; FEV1: forced expiratory volume in 1 s; FVC: forced vital
capacity; GOLD: Global Initiative for Chronic Obstructive Lung Disease.
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FIGURE 2 Proposed methods. Machine-learning (ML) models were constructed using different combinations of five demographic, eight quantitative
computed tomography (qCT) and 95 texture-based CT radiomics measurements. The dataset was split into a 5-fold cross-validation training
dataset (75% of the data) and testing dataset (25% of the data). The training dataset was used with feature selection methods to select five
features, which were then input into a ML classifier to be trained. The ML models were then tested with the testing dataset for COPD status and
COPD severity classification. ROC: receiver operating characteristic; SHAP: SHapely Additive exPlanations.
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(supplementary table S3). The outlier cohort had slightly but significantly lower BMI (p=0.01), FEV1

(p=0.003) and FVC (p=0.002) measurements than the training dataset (supplementary table S4). There
were no significant differences between age (p=0.80), sex (p=0.42), BMI (p=0.41), pack-years (p=0.97)
or COPD labels (p=0.91) between the training and testing cohorts (supplementary table S5).

Machine-learning model performance
COPD status
Table 2 shows the performance metrics for the models with demographics, qCT and/or texture-based
radiomics for classifying binary COPD status in the testing dataset. Figure 3 shows the ROC curves and
SHAP analyses for the different feature set combinations for binary COPD status classification. The
combination of demographics, qCT and texture-based radiomics features (AUC=0.87) significantly
increased the AUC value compared to demographics with qCT features alone (AUC=0.84, p<0.05), and
compared to demographics with texture-based radiomics (AUC=0.81, p<0.05). However, there was no
significant difference between demographics with qCT (AUC=0.84) and demographics with texture-based
radiomics (AUC=0.81, p>0.05).

The SHAP analyses (figure 3) show that for the model with demographics and qCT, as well as demographics,
qCT and texture-based radiomics, lower HU15, lower TAC, higher pack-years and higher LAC values had
high positive contributions to the models, which demonstrates that these features are likely to predict a positive
class for COPD status. When texture-based radiomics was included in the model with demographics and qCT,
a texture-based radiomic feature (GLDZMzone distance entropy (GLDZMzdentr)) was selected, instead of age, as a
top feature.

A sensitivity analysis was performed to evaluate the addition of texture-based radiomics to qCT features
without demographics (supplementary table S6 and supplementary figure S1). It also showed that two
texture-based radiomics (GLDZMlarge distance low grey-level emphasis and NGTDMcoarseness) were selected and
replaced two qCT features (LAA950 and WA%) in the models with qCT and texture-based radiomics
(supplementary figure S1). In all the model combinations that included qCT features, TAC and HU15 were
consistently selected as important features for COPD status.

COPD severity
Table 2 shows the performance metrics for the models with demographics, qCT and/or texture-based
radiomics for classifying multiclass COPD severity in the testing dataset. Figure 4 shows the ROC curves
and SHAP analyses for the different feature set combinations for COPD severity classification. The
combination of demographics, texture-based radiomics and qCT features (AUC=0.81) significantly
increased the AUC value compared to demographics with qCT features (AUC=0.79, p<0.05) and to
demographics with texture-based radiomics (AUC=0.72, p<0.05). However, the AUC for the model with
demographics and qCT (AUC=0.79) was significantly higher than for the model with demographics and
texture-based radiomics (AUC=0.72, p<0.05).

The SHAP analysis (figure 4) shows that for the model with demographics, qCT and texture-based
radiomics, as well as the model with demographics and qCT, higher NJC, lower TAC, higher pack-years
and average higher smoking status had high positive contributions to the model, demonstrating the model is
likely to predict higher severity groups. In the model with qCT and texture-based radiomics, a texture-based
radiomics feature (GLDZMzone distance non-uniformity (GLDZMzdnu)) was selected, instead of a qCT feature
(WA%), as a top feature.

A sensitivity analysis was performed to evaluate the addition of texture-based radiomics to qCT features
alone (supplementary table S6 and supplementary figure S2). It also showed that a texture-based radiomic
feature (GLDZMzdnu) was selected and replaced a qCT feature (LA) in the model including texture-based
radiomics with qCT features (supplementary figure S2). Also, in all the model combinations including
qCT features, TAC and NJC were consistently selected as important features for COPD severity.

Figure 5 shows a coronal CT image slice, a pre-processed CT image slice used to extract the texture-based
radiomics and three-dimensional images for never-smoker, GOLD 0, GOLD 1 and GOLD 2+ participants.
The three-dimensional images show that participants with greater disease severity had more emphysema,
shown in red, indicated by the increased LAA950 values. The pre-processed image shows that with
increasing disease severity there was an increased pattern of parenchymal heterogeneity, reflected by the
increased GLDZMzdentr and GLDZMzdnu values.
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TABLE 2 Models comparing the impact of the addition of texture-based radiomics to conventional measurements (demographics and qCT features) for classifying COPD status and COPD
severity in the testing dataset

Feature combination Outcome

COPD status# COPD severity¶

AUC
(95% CI)

Accuracy
(95% CI)

F1 score
(95% CI)

AUC
(95% CI)

Accuracy
(95% CI)

F1 score
(95% CI)

Demographics+qCT 0.84 (0.80–0.88) 0.77 (0.72–0.82) 0.77 (0.72–0.82) 0.79 (0.74–0.83) 0.56 (0.50–0.62) 0.56 (0.52–0.63)
Demographics+texture-based radiomics 0.81 (0.76–0.85) 0.74 (0.69–0.79) 0.74 (0.69–0.79) 0.72 (0.67–0.77)+ 0.46 (0.41–0.52) 0.43 (0.38–0.49)
Demographics+qCT+texture-based radiomics 0.87 (0.83–0.91)+,§ 0.79 (0.74–0.84) 0.79 (0.74–0.84) 0.81 (0.74–0.84)+,§ 0.57 (0.51–0.62) 0.56 (0.50–0.61)

qCT: quantitative computed tomography; AUC: area under the receiver operating characteristic curve. #: machine-learning model: Lasso feature selection method+support vector machine
classification method; ¶: machine-learning model: gradient boosting decision tree feature selection method+multilayer perceptron classification method; +: significantly different AUC from
demographics and qCT model (p<0.05); §: significantly different AUC from demographics+texture-based radiomics model (p<0.05).
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Pearson correlations for top CT features with lung function and symptom scores
The Pearson’s correlation coefficients for lung function and symptoms with the top CT features selected by
the all-features ML model (demographics, qCT and texture-based radiomics) for classifying COPD status
and COPD severity are shown in table 3. All texture-based radiomic features and qCT features were
significantly correlated with FEV1 (p<0.05), FVC (p<0.05) and FEV1/FVC (p<0.05). For CAT and SGRQ
scores, only CT TAC, NJC and GLDZMzdentr features had significant correlations (p<0.05).

Supplementary table S7 shows the Pearson’s correlation coefficients for all the qCT and texture-based
radiomics features selected by the ML models without demographics (supplementary figures S1 and S2).
The ANOVA between groups shows that qCT and texture-based radiomic features (GLDZMsmall distance high

grey-level emphasis, GLDZMzdnu, GLDZMgrey-level non-uniformity, GLCMjoint maximum and NGTDMcoarseness) were
able to differentiate the severity groups (supplementary table S8).

Discussion
COPD remains largely undiagnosed, yet CT imaging is acquired for clinical investigation and in lung
cancer screening trials, which presents the opportunity to identify COPD in populations at risk. In a
multicentre, population-based study consisting of individuals with and without smoking histories, and with
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mainly mild COPD, we aimed to investigate the performance of texture-based CT radiomic features,
conventional qCT features and their combination for predicting COPD status and severity with ML. Our
results show that the combination of texture-based CT radiomics and conventional qCT features resulted in
significantly improved model performance for classifying COPD status and COPD severity than either
feature set alone. Our results also demonstrate that a variety of texture-based CT radiomics and qCT
features reflecting emphysema and airway remodelling were among the most important features affecting
the ML model performance.

Our results show that a combination of CT imaging features, both texture-based radiomics and more
conventional CT emphysema and airway disease measurements, classified COPD status and severity.
Similar results were found in our sensitivity analysis (supplementary table S5), where we demonstrated the
benefit of using only CT imaging to classify COPD. In agreement with these findings, several studies
show that conventional qCT features classify COPD status and severity in moderate-severe COPD cohorts
[31, 32]. There are also studies that show texture-based radiomics can classify COPD status and severity
with ML [14, 15]. However, few studies have investigated the combination of texture-based radiomics and
qCT features for COPD classification. One recent study by PUCHAKAYALA et al. [14] demonstrated that the
addition of a single CT emphysema measurement to CT radiomic features did not significantly improve the
performance of a COPD classification model in comparison to a model that included only CT radiomics
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FIGURE 4 Receiver operating characteristic curves and SHapely Additive exPlanations (SHAP) analysis for COPD severity with different input feature
set combinations. qCT: quantitative computed tomography; AUC: area under the receiver operating characteristic curve; NJC: normalised join
count; TAC: total airway count; WA%: wall area %; GLDZMzdnunorm: grey-level distance zone matrix (GLDZM) zone distance non-uniformity
normalised; GLDZMldlge: GLDZM large distance low grey-level emphasis; GLCMjointavg: grey-level co-occurrence matrix joint average; GLDZMzdnu:
GLDZM zone distance non-uniformity. #: significantly different AUC from demographics and qCT model; ¶: significantly different AUC from
demographics and texture-based radiomics model.
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features. However, in contrast with our study, their study only included one conventional qCT feature and
not all the IBSI-defined texture-based radiomic features. Our study included a variety of conventional qCT
features that capture the various structural changes that occur in COPD, with all six IBSI-defined
texture-based radiomic features. Our cohort also consisted of patients with mainly mild COPD, which may
be why our model performance was poorer than that of PUCHAKAYALA et al. [14]; however, our results
demonstrate the potential of these features for identifying COPD in the early/mild disease stages. Taken
together, these findings further illustrate the benefit of both texture-based radiomics and conventional qCT
measurements in ML models for classifying COPD status and severity, especially in the early and mild
disease stages.
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FIGURE 5 Original computed tomography (CT) image, pre-processed CT image and three-dimensional image for never-smoker, Global Initiative for
Chronic Obstructive Lung Disease (GOLD) 0, GOLD 1 and GOLD 2+ participants. Never-smoker: 57-year-old female, FEV1/FVC=70.46, FEV1=2.29 L,
GLDZMzdnu=1.14e

+5, GLDZMzdentr=13.3, LAA950=0.4. GOLD 0: 65-year-old male, FEV1/FVC=80.76, FEV1=2.56 L, GLDZMzdnu=1.17e
+5, GLDZMzdentr=13.3,

LAA950=4.3. GOLD 1: 63-year-old female, FEV1/FVC=60.45, FEV1=2.16 L, GLDZMzdnu=1.19e
+5, GLDZMzdentr=13.4, LAA950=4.6. GOLD 2+: 65-year-old male,

FEV1/FVC=52.76, FEV1=1.72 L, GLDZMzdnu=1.11e
+5, GLDZMzdentr=13.4, LAA950=7.0. FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity;

GLDZMzdnu: grey-level distance zone matrix (GLDZM) zone distance non-uniformity; GLDZMzdentr: GLDZM zone distance entropy; LAA950: low
attenuation areas below −950 HU.

TABLE 3 Pearson’s correlation coefficients (r) for CT features (all qCT and texture-based radiomics selected in the machine-learning models) with
baseline spirometry measurements for the whole cohort

Feature FEV1 FVC FEV1/FVC CAT score# SGRQ total score¶

r p-value r p-value r p-value r p-value r p-value

HU15 −0.11 <0.001 −0.31 <0.001 0.40 <0.001 0.03 0.33 −0.01 0.97
TAC 0.29 <0.001 0.14 <0.001 0.34 <0.001 −0.14 <0.001 −0.18 <0.001
NJC −0.08 0.005 0.13 <0.001 −0.43 <0.001 0.08 0.004 0.10 0.001
GLDZMzdnu 0.41 <0.001 0.57 <0.001 −0.26 <0.001 −0.02 0.40 −0.01 0.79
GLDZMzdentr 0.12 <0.001 0.16 <0.001 −0.06 0.04 0.10 <0.001 0.07 0.04

Total cohort n=1204. Bold text indicates a statistically significant difference at p<0.05. qCT: quantitative computed tomography; FEV1: forced
expiratory volume in 1 s; FVC: forced vital capacity; CAT: COPD Assessment Test; SGRQ: St George’s Respiratory Questionnaire; HU15: 15th percentile
of the density histogram; TAC: total airway count; NJC: normalised join count; GLDZMzdnu: grey-level distance zone matrix (GLDZM) zone distance
non-uniformity; GLDZMzdentr: GLDZM zone distance entropy. #: n=1180 owing to missing data; ¶: n=957 owing to missing data.
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We found that both texture-based CT radiomic features and conventional qCT features were selected in our
ML models as important predictive features for COPD status and severity. In the models for COPD status
that included all feature sets (demographics, qCT and texture-based radiomics), the CT features selected
included three qCT features (HU15, LAC and TAC) and one texture-based radiomics features (GLDZMzdentr).
In the model with all feature sets for COPD severity, the CT features selected included two qCT features
(NJC and TAC) and one texture-based radiomic feature (GLDZMzdnu). In both the COPD status and severity
models, the CT TAC measurement, which can differentiate COPD severity and predict lung function decline
[21, 33], was selected as a top feature and was the only qCT airway feature selected in both models. A
previous study that included airway shape radiomic features with texture-based radiomics also demonstrated
that the airway shape features were selected as important features [14]. In our models for classifying COPD
status and severity, the texture-based radiomic features that were selected as important were from the
GLDZM feature set (GLDZMzdentr and GLDZMzdnu), which has not been investigated in other studies using
texture-based radiomics for COPD classification [14]. Compared to the other texture-based radiomic feature
sets that only consider the grey levels, the GLDZM feature set considers both the grey levels and the distance
to the border in the image, indicating that the GLDZM feature set is a hybrid of texture and morphological
features [13]. We also demonstrated that texture-based radiomics are significantly correlated with lung
function and symptoms (supplementary table S7) and can be used to differentiate COPD severity groups
(supplementary table S8), demonstrating their usefulness in a mild disease population where there is minimal
disease present that may not be detected visually or by CT emphysema measurements. Overall, these results
indicate that texture-based radiomic features and conventional qCT features are able to quantify the
heterogeneous patterns within the lung and provide complementary information.

A main strength of our study is that we used participants from a population-based mild COPD cohort that
may better reflect very subtle structural changes that occur in early/mild disease. However, there are
limitations of this study to be addressed. First, CanCOLD is a multicentre study with various CT scanners,
which introduce variability into texture-based radiomic measurements [34], and therefore the results may
not be generalisable to other CT systems. The number of COPD participants included was limited and may
have contributed to nonsignificant results in the DeLong’s test because it is dependent on sample size [29].
However, using a larger dataset may allow for significant differences to be determined. Additionally,
although we used a 5-fold cross-validation to train the model and a hold-out testing dataset for model
evaluation, this study lacked an external dataset for validation purposes to test the models for
generalisability. Future studies should investigate the combination of texture-based radiomic features
compared to conventional features in other external cohorts to validate the models. One advantage of
texture-based radiomics is that it does not require airway or vessel segmentation, which can be a complex
and time-consuming process. However, with recent advances in deep learning, it is now possible to
automatically segment numerous anatomical structures [35]. This development significantly enhances the
accessibility of both texture-based radiomics and qCT features for ML models used in risk prediction.

Interpretation
In our cohort of individuals with mainly mild COPD, we demonstrated the benefit of combining
texture-based radiomics and conventional CT measurements for classifying COPD status and severity with
ML. These findings indicate that models investigating COPD outcomes should include a variety of CT
features that can capture various disease characteristics.
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