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Take home messages

e To understand the biological differences between ETP ALL and T-ALL.
e To become familiar with major oncogenic drivers and targets with therapeutic potential in T-ALL.

e To appreciate different immunotherapy approaches in T-ALL.

Introduction

Transcriptomic and genomic profiling studies distinguish 2
major_categories of T-cell acute lymphoblastic leukemia (T-
ALL)."" Early T-cell precursor T-ALLs (ETP T-ALL) are
characterized by a gene expression profile related to that of
immature T-cell precursors, hematopoietic stem cells and
myeloid progenitors. ' Genetically, these tumors show a pattern
of mutations that overlaps with that of acute myeloid leukemia
including high prevalence of activating mutations signaling
factors, inactivating lesions in hematopoietic transcription
factors and mutations targeting epigenetic regulators. ' In
contrast, typical T-ALL tumors with transcriptional signatures
related to those of developing thymocytes are characterized by
deregulated cell cycle control and constitutively active NOTCH1
signaling.

Current state of the art
NOTCH?1 signaling as therapeutic target

NOTCHTI signaling is a major driver of leukemia cell growth,
metabolism, and survival in T-ALL.> Notably, small molecule
gamma secretase inhibitors (GSIs) abrogate NOTCH1 signaling
antagonizing the oncogenic effect of T-ALL-associated
NOTCH1 mutations> (Fig. 1). Early attempts to deploy GSIs
as targeted therapy for T-ALL showed little success with limited
therapeutic activity and marked intestinal toxicity, an on-target
side effect derived from suppression of NOTCH signaling in the
intestine.? However, GSI-induced NOTCH1 inhibition shows
highly synergistic antileukemic effects with glucocorticoid
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against glucocorticoid resistant T-ALL and the combination
of glucocorticoids with GSIs can effectively suppress the
development of gastrointestinal toxicity derived from systemic
inhibition of NOTCH-signaling.® In addition, multiple other
therapeutics can also synergize with NOTCHI1 inhibition in T-
ALL?* including suppression of NF-kappaB with bortezomib,’
blocking mTOR with rapamycin®® and inhibition of protein
biosynthesis with withaferin.* Moreover, oncogenic NOTCH1
is also central for T-ALL cell metabolism” and inhibition of
NOTCHT1 signaling sensitizes leukemia cells to glutaminase
inhibitors and render the dependent on autophagy for growth
and survival.”

Cyclin-CDK complexes as therapeutic targets in T-ALL

Deregulated cell cycle progression as result of 9p deletions and
consequent loss of CPKNZA—encoded tumor suppressor genes is a
hallmark of T-ALL.”" Consequently, pharmacologic inhibition of
CDK4/CDK6 which effectively restores cell cycle control
mimicking the activity of P16/INK4A effectively suppresses
T-ALL cell proliferation® (Fig. 1).

Targeting the PI3K pathway

PTEN, a tumor suppressor gene encoding a lipid phosphatase
inhibitor _of PI3K-mTOR signaling is lost in 10% to 20% of
T-ALLs.”' Constitutively active PI3K signaling drives cell
primarily cell growth and metabolism, but also proliferation
and survival in T-ALL.” PI3K and mTOR inhibitors are in clinical
development and can induce strong antileukemic effects in
preclinical models of PTEN deficient T-ALL'® (Fig. 1). In
addition, constitutively active PI3K-mTOR signaling can interfere
with the antileukemic effects of glucocorticoids ! supporting a
role for glucocorticoid plus PI3K-mTOR inhibitor combination
therapies for the treatment of T-ALL.'>"™!

Targeting the JAK/STAT pathway

Cytokines promote cell proliferation and survival in early
lymphoid progenitor cells and in leukemia lymphoblasts signaling
via the JAK-STAT pathway. Activating mutations in the IL7R,
JAK1, JAK3, and STATS genes that induce increased JAK-STAT
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Figure 1. Oncogenic pathways, therapeutic targets, and immunotherapy-based treatments in T-ALL. Factors targeted by oncogenic
mutations are marked with red stars. Targeted therapies are shown in red. CDKi: cyclin kinase inhibitor, GSI: y-secretase inhibitor, PI3Ki:
phosphatidylinositol 3 kinase inhibitor, JAKi: Janus kinase inhibitor, TKi: tyrosine kinase inhibitor ICN1: active intracellular NOTCH1, TCR: T-cell

receptor.

signaling are highly prevalent i in ETP-ALL leukemias and can also
be found in typical T-ALL."" Analysis of preclinical models
support that inhibition of the JAK-STAT signaling pathway
induce significant antileukemic effects in T-ALL and enhance the
effect of glucocorticoid therapy'® (Fig. 1). In this context, and
most notably, the JAK-STAT inhibition can be effective not only
in tumors harboring JAK-STAT activating mutations, but also in
leukemias with enhanced sensitivity to pathway activation
follovvm,oi stimulation with IL-7 as is the case of most ETP-ALL
tumors.

Tysosine kinase inhibitors in T-ALL

Tyrosine kinase fusion oncogenes are rarely found in T-ALL, yet
they offer a unique opportunity for therapeutic targeting. The
NUP214-ABL1 oncogene present in 5% of T-ALL cases and less
frequent ABL1 gene fusions EML1-ABL1 and ETV6-ABL1
result in constitutive and oncogenic activation of ABL1 signaling,
which can be blocked with small molecule tyrosine kinase

inhibitiors ! and these agents have shown clinical benefit in some
13215

NT5C2 mutations in relapsed T-ALL

Relapsed T-ALL is genetically heterogeneous and frequently
emerges via selection of ancestral populations via branched clonal
evolution. Relapse-associated mutations in the cytosolic nucleo-
tldase 2 gene (NTSC2) drive resistance to 6-mercaptopuri-

16NTSC2 mutations can be found in 20% of T-ALL relapses
w1th one hotspot allele NT5C2 p.R367Q accounting for almost
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90% of cases. 17 Relapse-associated NTSC2 mutations are
gain of function alleles with increased nucleotidase activity and
induce 6-MP resistance by facilitating the clearance of cytotoxic
6-MP-derived metabolites generated by the salvage pathway of
purine biosynthesis.”1®!”

The role of immunotherapy in T-ALL

Chimeric antigen receptor (CAR) T cells targeting T-cell antigens
would kill each other. This barrier for product generation can be
bypassed via CRISPR knockout of the T-cell antigen as
demonstrated by the effectlve generation of CAR T cells with
specificity against CD7.'® A second strategy is the development of
CAR T cells selectively targeting cells expressing a TCRB
containing the C1 constant chain.”'” The TCRB gene locus
contains 2 alternatively sequences for the constant C region (C1
and C2) and the normal T-cell pool contains a mix of TCRB C1
and TCRB C2-expressing cells. Anti-TCRBC CAR T cells that
specifically target TCRBC1 preserve the TCRBC2+ lymphocyte
pool, and much of the immune repertoire with it, but effectively
kills TCRBC1+ normal and malignant T-cells '* (Fig. 1). Finally,
antibodies against CD3 can induce strong TCR signals in TCR+
T- ALLs which triggers negative-selection-like programmed cell
death.?®

Future perspectives

The identification of druggable oncogenic driver genes and
pathways offers new opportunities for therapeutic intervention in
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clinical trials testing the safety and efficacy of new targeted drugs
and immunotherapies in the treatment of T-ALL.
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