
Powered by EHA
Targeting subtype in ALL - Section 18
Current perspectives in T-ALL
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Take home messages

� To understand the biological differences between ETP ALL and T-ALL.
� To become familiar with major oncogenic drivers and targets with therapeutic potential in T-ALL.
� To appreciate different immunotherapy approaches in T-ALL.
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Introduction
 against glucocorticoid resistant T-ALL and the combination
of glucocorticoids with GSIs can effectively suppress the
Transcriptomic and genomic profiling studies distinguish 2
major categories of T-cell acute lymphoblastic leukemia (T-
ALL).

∗1 Early T-cell precursor T-ALLs (ETP T-ALL) are
characterized by a gene expression profile related to that of
immature T-cell precursors, hematopoietic stem cells and
myeloid progenitors.

∗1 Genetically, these tumors show a pattern
of mutations that overlaps with that of acute myeloid leukemia
including high prevalence of activating mutations signaling
factors, inactivating lesions in hematopoietic transcription
factors and mutations targeting epigenetic regulators.

∗1 In
contrast, typical T-ALL tumors with transcriptional signatures
related to those of developing thymocytes are characterized by
deregulated cell cycle control and constitutively active NOTCH1
signaling.

∗1

Current state of the art
NOTCH1 signaling as therapeutic target

NOTCH1 signaling is a major driver of leukemia cell growth,
metabolism, and survival in T-ALL.2 Notably, small molecule
gamma secretase inhibitors (GSIs) abrogate NOTCH1 signaling
antagonizing the oncogenic effect of T-ALL-associated
NOTCH1 mutations2 (Fig. 1). Early attempts to deploy GSIs
as targeted therapy for T-ALL showed little success with limited
therapeutic activity and marked intestinal toxicity, an on-target
side effect derived from suppression of NOTCH signaling in the
intestine.2 However, GSI-induced NOTCH1 inhibition shows
highly synergistic antileukemic effects with glucocorticoid
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development of gastrointestinal toxicity derived from systemic
inhibition of NOTCH-signaling.3 In addition, multiple other
therapeutics can also synergize with NOTCH1 inhibition in T-
ALL4 including suppression of NF-kappaB with bortezomib,5

blocking mTOR with rapamycin4,6 and inhibition of protein
biosynthesis with withaferin.4 Moreover, oncogenic NOTCH1
is also central for T-ALL cell metabolism7 and inhibition of
NOTCH1 signaling sensitizes leukemia cells to glutaminase
inhibitors and render the dependent on autophagy for growth
and survival.7
Cyclin-CDK complexes as therapeutic targets in T-ALL

Deregulated cell cycle progression as result of 9p deletions and
consequent loss of CDKN2A-encoded tumor suppressor genes is a
hallmark of T-ALL.

∗1 Consequently, pharmacologic inhibition of
CDK4/CDK6 which effectively restores cell cycle control
mimicking the activity of P16/INK4A effectively suppresses
T-ALL cell proliferation8 (Fig. 1).

Targeting the PI3K pathway

PTEN, a tumor suppressor gene encoding a lipid phosphatase
inhibitor of PI3K-mTOR signaling is lost in 10% to 20% of
T-ALLs.

∗1 Constitutively active PI3K signaling drives cell
primarily cell growth and metabolism, but also proliferation
and survival in T-ALL.9 PI3K and mTOR inhibitors are in clinical
development and can induce strong antileukemic effects in
preclinical models of PTEN deficient T-ALL10 (Fig. 1). In
addition, constitutively active PI3K-mTOR signaling can interfere
with the antileukemic effects of glucocorticoids

∗11 supporting a
role for glucocorticoid plus PI3K-mTOR inhibitor combination
therapies for the treatment of T-ALL.10,

∗11

Targeting the JAK/STAT pathway

Cytokines promote cell proliferation and survival in early
lymphoid progenitor cells and in leukemia lymphoblasts signaling
via the JAK-STAT pathway. Activating mutations in the IL7R,
JAK1, JAK3, and STAT5 genes that induce increased JAK-STAT
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∗16,17
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Figure 1. Oncogenic pathways, therapeutic targets, and immunotherapy-based treatments in T-ALL. Factors targeted by oncogenic
mutations are marked with red stars. Targeted therapies are shown in red. CDKi: cyclin kinase inhibitor, GSI: g-secretase inhibitor, PI3Ki:
phosphatidylinositol 3 kinase inhibitor, JAKi: Janus kinase inhibitor, TKi: tyrosine kinase inhibitor ICN1: active intracellular NOTCH1, TCR: T-cell
receptor.
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signaling are highly prevalent in ETP-ALL leukemias and can also
be found in typical T-ALL.

∗1 Analysis of preclinical models
support that inhibition of the JAK-STAT signaling pathway
induce significant antileukemic effects in T-ALL and enhance the
effect of glucocorticoid therapy12 (Fig. 1). In this context, and
most notably, the JAK-STAT inhibition can be effective not only
in tumors harboring JAK-STAT activating mutations, but also in
leukemias with enhanced sensitivity to pathway activation
following stimulation with IL-7 as is the case of most ETP-ALL
tumors.12

Tysosine kinase inhibitors in T-ALL

Tyrosine kinase fusion oncogenes are rarely found in T-ALL, yet
they offer a unique opportunity for therapeutic targeting. The
NUP214-ABL1 oncogene present in 5% of T-ALL cases and less
frequent ABL1 gene fusions EML1-ABL1 and ETV6-ABL1
result in constitutive and oncogenic activation of ABL1 signaling,
which can be blocked with small molecule tyrosine kinase
inhibitiors

∗1 and these agents have shown clinical benefit in some
cases.13–15

NT5C2 mutations in relapsed T-ALL

Relapsed T-ALL is genetically heterogeneous and frequently
emerges via selection of ancestral populations via branched clonal
evolution. Relapse-associated mutations in the cytosolic nucleo-
tidase 2 gene (NT5C2) drive resistance to 6-mercaptopuri-
ne.

∗16NT5C2 mutations can be found in 20% of T-ALL relapses
with one hotspot allele NT5C2 p.R367Q accounting for almost
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90% of cases. Relapse-associated NT5C2 mutations are
gain of function alleles with increased nucleotidase activity and
induce 6-MP resistance by facilitating the clearance of cytotoxic
6-MP-derived metabolites generated by the salvage pathway of
purine biosynthesis.

∗16,17
The role of immunotherapy in T-ALL

Chimeric antigen receptor (CAR) T cells targeting T-cell antigens
would kill each other. This barrier for product generation can be
bypassed via CRISPR knockout of the T-cell antigen as
demonstrated by the effective generation of CAR T cells with
specificity against CD7.18 A second strategy is the development of
CAR T cells selectively targeting cells expressing a TCRB
containing the C1 constant chain.

∗19 The TCRB gene locus
contains 2 alternatively sequences for the constant C region (C1
and C2) and the normal T-cell pool contains a mix of TCRB C1
and TCRB C2-expressing cells. Anti-TCRBC CAR T cells that
specifically target TCRBC1 preserve the TCRBC2+ lymphocyte
pool, and much of the immune repertoire with it, but effectively
kills TCRBC1+ normal and malignant T-cells

∗19 (Fig. 1). Finally,
antibodies against CD3 can induce strong TCR signals in TCR+
T-ALLs, which triggers negative-selection-like programmed cell
death.20

Future perspectives

The identification of druggable oncogenic driver genes and
pathways offers new opportunities for therapeutic intervention in



Ferrando Current Perspectives in T-ALL
clinical trials testing the safety and efficacy of new targeted drugs
and immunotherapies in the treatment of T-ALL.
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