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Radiomics feature as a
preoperative predictive of
lymphovascular invasion in
early-stage endometrial cancer:
A multicenter study

Xue-Fei Liu1†, Bi-Cong Yan1,2†, Ying Li1*, Feng-Hua Ma3

and Jin-Wei Qiang1*

1Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China, 2Department of
Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital, Shanghai, China, 3Departments of Radiology, Obstetrics & Gynecology Hospital, Fudan
University, Shanghai, China
Background: The presence of lymphovascular space invasion (LVSI) has been

demonstrated to be significantly associated with poor outcome in endometrial

cancer (EC). No effective clinical tools could be used for the prediction of LVSI

preoperatively in early-stage EC. A radiomics nomogram based on MRI was

established to predict LVSI in patients with early-stage EC.

Methods: This retrospective study included 339 consecutive patients with

early-stage EC with or without LVSI from five centers. According to the ratio

of 2:1, 226 and 113 patients were randomly assigned to a training group and a

test group, respectively. Radiomics features were extracted from T1-weighted

imaging (T1WI), T2-weighted imaging (T2WI), contrast-enhanced (CE),

diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC)

maps. The radiomics signatures were constructed by using the Least Absolute

Shrinkage and Selection Operator (LASSO) algorithm in the training group. The

radiomics nomogram was developed using multivariable logistic regression

analysis by incorporating radiomics signatures and clinical risk factors. The

sensitivity, specificity, and AUC of the radiomics signatures, clinical risk factors,

and radiomics nomogram were also calculated.

Results: The individualized prediction nomogram was constructed by

incorporating the radiomics signatures with the clinical risk factors (age and

cancer antigen 125). The radiomics nomogram exhibited a good performance

in discriminating between negative and positive LVSI patients with AUC of

0.89 (95% CI: 0.83–0.95) in the training group and of 0.85 (95% CI: 0.75–

0.94) in the test group. The decision curve analysis indicated that clinicians

could be benefit from the using of radiomics nomogram to predict the

presence of LVSI preoperatively.
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Conclusion: The radiomics nomogram could individually predict LVSI in early-

stage EC patients. The nomogram could be conveniently used to facilitate the

treatment decision for clinicians.
KEYWORDS

endometrial cancer, lymphovascular space invasion (LVSI), magnetic resonance
imaging, radiomics, nomogram
Introduction

Endometr ia l cancer (EC) is the most common

gynecologic malignancy in developed countries (1). Depth

of myometrial invasion, tumor grade, and histologic subtype

are the known factors to affect EC prognosis. Recent studies

showed that the presence of lymphovascular invasion (LVSI)

was an independent risk of prognostic factors of EC (2). LVSI

is strongly associated with high risk of recurrence and poor

survival rate in early-stage EC (3). A previous study showed

that LVSI was an independent risk factor for developing

pelvic lymph node metastasis in early-stage EC patients (4).

Thus, it is important to determine the presence of LVSI

preoperatively for the decision-making whether to perform

lymphadenectomy (5). Furthermore, adjuvant treatment is

recommended in early-stage EC patients with LVSI (high

intermediate risk) (6, 7).

The presence of LVSI is based on the histological

diagnosis, which is considered as the tumor cells deposit in

the vascular and lymphatic channels of the uterine specimen

(3). However, the diagnosis of LVSI could only be referred by

the hysterectomy specimen (8). LVSI status is rarely

assessable using biopsy specimens. Moreover, Kumar et al.

suggested that intraoperative frozen section (IFS) analysis

had poor sensitivity for the determination of LVSI, compared

to the final hysterectomy specimen (9).

Magnetic resonance imaging (MRI) is a non-invasive

technique with high resolution for soft tissue. Functional

MRI was previously used to predict LVSI in EC patients.

However, limited information could be provided to assess the

presence of LVSI preoperatively (10). Ueno et al. showed a

moderate diagnosis performance in preoperatively predicting

LVSI based on 2D tumor texture features (11). However, 3D

analyses were more representa t ive for the tumor

heterogeneity, which might yield better prognostic

information (12).

Radiomics, which converted MR images to mineable data

in a high-throughput process , may offer abundant

information of EC (13). Radiomics has been proposed as a
02
tool for the accurate diagnosis , preoperat ive r isk

stratification, or assessment of treatment response in several

cancer types (14). Radiomics nomograms integrating

radiomics and clinical information were reported able to

predict LVSI in breast cancer (15).

We assumed that radiomics could be used to predict the

presence of LVSI preoperatively. Thus, in this study, we

investigated whether radiomics nomograms integrating

radiomics and clinical risk factors could predict the presence

of LVSI preoperatively to evaluate the aggressiveness in early-

stage EC.
Materials and methods

Patients

This retrospective study obtained the approval of the local

inst i tut ional review board (No. 2020-10) , and the

requirement for informed consent was waived. The

multicenter study was performed jointly by five centers:

centers A, B, C, D, and E. Three hundred sixty-nine

patients from the five centers were collected consecutively

during January 2016 to December 2020, and all the patients

had MR imaging examination before the treatment for EC.

The included criteria were as follows: 1) histological

diagnosed stage I EC; 2) basic MRI sequences including T1-

weighted imaging (T1WI), T2-weighted imaging (T2WI) with

fat saturation, diffusion-weighted imaging (DWI), apparent

diffusion coefficient (ADC), and contrast-enhanced (CE)

T1WI sequences; 3) the interval time between MRI

examination and surgical less than 30 days. The exclude

criteria were as follows: 1) patients with a history of other

cancer (n = 2); 2) the imaging had apparent motion artifacts,

or the included sequences could not match well (n = 16); 3)

insufficient clinical information (n = 12). The patients from

all the five centers were randomly divided into a training

group (n = 226) and a test group (n = 113) in a ratio of 2:1.
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Clinical parameters, including age, tumor size, and cancer

antigen 125 (CA125), were obtained through the review of

clinical data. The workflow is shown in Figure 1.
MRI performance

MRI was performed by using 3.0/1.5-T scanners with a

phased-array abdominal coil. The patients lay in a supine

position and breathed freely during the acquisition. The

following sequences were obtained: T1WI, T2WI, DWI, and

CE-T1WI after intravenous administration of gadopentetate

dimeglumine at a dose of 0.2 mmol/kg of body weight in a

rate of 2 to 3 ml/s. The scanning details are shown in

Supplementary Table 1.
Image segmentation

All imaging was delivered from the PACS system and stored

in DICOM format. An ROI was drawn around the visible tumor

boundary manually in MITK Workbench (http://mitk.org/wiki/

The_Medical_Imaging_Interaction_Toolkit(MITK)). The ROIs

were drawn based on T2WI cross-sectionally and then referred

to the T1WI, DWI (the tumor area shown as high signal in high

b value sequences), ADC (the tumor area shown as low signal),

and CE-T1WI (delayed phase). All ROIs were drawn by one

radiologist (with a 6-year experience in pelvic imaging), who was

blinded to the pathological diagnosis, and were rechecked by the

other two radiologists (with 32 and 14 years of experience in

pelvic imaging, respectively). Thirty days later, 50 patients were

randomly selected and the tumors were redrawn by radiologist 1

and by radiologist 2 independently. The ROIs were drawn on
Frontiers in Oncology 03
each cross-sectional area to generate the volumetric region of

interest (VOI, resampled to as isotropic voxels [3 × 3 ×

3 mm]) (Figure 2).
Radiomics feature extraction
and selection

All the radiomics feature-extracting processes were

performed in the Pyradiomics software (https://pypi.org/

project/pyradiomics/). Radiomics features based on the VOIs

of T1WI T2WI, DWI, ADC, and CE-T1WI were extracted. The

images were normalized by subtracting from mean values and

dividing by the standard deviation. A voxel array shift of 300 was

used to make the gray-level values within a 0–600 range.

To eliminate the effect of different MRI scanning protocols

and to improve the classification efficiency of the diagnostic

models, a compensation method named “Combat” was used to

realign feature distributions computed from different MRI

equipment and protocols (16).

The inter- and intraclass correlation coefficients (ICCs) of the

extracted features were calculated to assess the reproducibility of

radiomics features. Features with both inter- and intraclass ICCs

less than 0.75 were considered non-stable features and eliminated.

Pearson’s correlation was used to identify redundant features. If two

features had a Pearson’s correlation coefficient 0.9, the one with a

larger mean absolute coefficient was eliminated.

The Synthetic Minority Oversampling Technique (SMOTE)

method was used because of unbalance of positive/negative LVSI

samples in the training group. Positive LVSI (minority class) was

oversampled and negative LVSI (majority class) was

undersampled to balance the training set to improve the

classification performance.
FIGURE 1

The work flow of this study.
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Then, a Least Absolute Shrinkage and Selection Operator

(LASSO) was used to select non-zero coefficient features

associated with LVSI with 10-fold cross-validation in early-stage

EC patients. A radscore was calculated for each patient by linear

combination of the final selected features.
Radiomics nomogram build
and validation

Clinical parameters of LVSI including age, tumor size,

and CA125 were analyzed by using multivariate logistic

regression. Clinical risk factors were identified if the

parameters were statistically significant in the analysis. A

radiomics nomogram was constructed by using multivariable

logistic regression analysis which combined the selected

radiomics features and the independent clinical risk factors.

To assess the discrimination performance of the radiomics

nomogram, the area under the curve (AUC) of the receiver

operating characteristic (ROC) curve was calculated.

Calibration curves were plotted to evaluate the calibration

performance of the radiomics nomogram.

The performances of the radiomics signature, clinical risk

factors, and radiomics nomogram were validated in the test

group. The sensi t iv i ty , specifici ty , and AUC were

also calculated.
Frontiers in Oncology 04
Clinical usefulness

By quantifying the net benefits at different threshold

probabilities in the training group, decision curve analysis

(DCA) was performed to determine the clinical usefulness of

the radiomics nomogram.
Statistical analysis

Statistical analysis was performed by using R software

(version 4.0.5; http://www.Rproject.org). An independent

sample t-test was used to compare the differences in

continuous variables (age, tumor size, and CA125). Chi-

squared test was used to compare the differences in categorical

variables (FIGO stage, LVSI status). The association between

LVSI and clinical risk factors was assessed using Spearman’s

correlation. The “glmnet” package was used for LASSO and

logistic regression, the “ComBatHarmonization” package was

used for Combat, the “DMwR” package was used for SMOTE,

the “rms” package was used for nomogram calculation, “pROC”

package was used for AUC, and the “dca.R” package was used for

DCA. ROC curve analysis was performed to calculate the AUC

and corresponding 95% confidence interval. DeLong test was

used to compare the performance of clinical risk factors,
FIGURE 2

MR images of a 78-year-old woman with endometrial cancer. (A) Axial T2-weighted imaging is marked with a region of interest. (B) Axial
diffusion-weighted imaging (b = 800 s/mm2). (C) Axial apparent diffusion coefficient imaging. (D) Axial contrast-enhanced T1-weighted imaging.
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radscore, and nomogram. A P value less than 0.05 was

considered statistically significant.
Results

Patients

Three hundred thirty-nine patients were finally included

with 54 positive LVSI and 285 negative LVSI (mean age, 56.8

years; range, 25–89 years). All patients underwent total

hysterectomy and bilateral salpingo-oophorectomy. Among

these, 216 were G1, 75 were G2, and 27 were G3; 277 were

superficial or no myometrial invasion, and 62 were deep

myometrial invasion. The patients’ clinical risk factors as well

as the stage and tumor characteristics of each subgroup are

presented in Table 1.
Feature selection and radiomics
signature construction

A total of 358 radiomics features were extracted, including

14 shape features, 72 first-order features, and 272 texture
Frontiers in Oncology 05
features. After removing features with either inter- and

intraclass ICC 0.75 and Pearson’s correlation coefficients 0.9,

231 and 96 features were retained, respectively. LASSO analysis

finally included 15 radiomics features, which were defined as the

radiomics signatures (Figure 3). The radscore calculation was

as follows:

Radscore = 0.16814 + 0.16823×shape_LAL + -0.05128×shape_

MAL + 0.00899×T2WI_firstorder_10P + 0.01112×T2WI_firstorder_

TotalEnergy + 0.03609×T2WI_glcm_Imc1 + -0.09119×T2WI_

glszm_GLNU + -0.01004×DWI_firstorder_10P + -0.0668×DWI_

glcm_CP + -0.04433×DWI_glrlm_RLNUN + -0.03675×DWI_glrlm_

RunVariance + 0.09361×DWI_glszm_GLV + 0.01592×DWI_

glszm_ZP + 0.04461×CE_firstorder_10P + -0.04113×CE_

firstorder_IR + -0.06052×ADC_firstorder_Median
Radiomics nomogram development
and validation

Multivariate logistic regression analysis showed that age,

CA125, and tumor size were risk factors of LVSI in the early-

stage EC. On considering that the selected feature “shape_

LAL” and “shape_MAL” were the same as tumor size, we did

not include tumor size in the nomogram for avoiding
TABLE 1 The comparisons of clinicopathologic characteristics between negative and positive LVSI patients in the training and test groups.

Clinical features Training group Test group

Negative LVSI
(N = 188)

Positive LVSI
(N = 38)

P Negative LVSI
(N = 97)

Positive LVSI
(N = 16)

P

Radscore 0.12 (0.16) 0.39 (0.17) 0.001 0.11 (0.13) 0.31 (0.18) 0.001

CA125 19.3 (13.1) 34.4 (29.1) 0.003 19.5 (13.3) 38.4 (37.3) 0.062

Age 56.0 (8.93) 59.9 (9.44) 0.022 56.1 (8.71) 62.6 (11.9) 0.048

Tumor size 15.3 (5.53) 20.6 (8.62) 0.001 15.4 (3.99) 19.0 (5.57) 0.023

FIGO

IA 165 (87.8%) 23 (60.5%) 0.001 79 (81.4%) 10 (62.5%) 0.166

IB 23 (12.2%) 15 (39.5%) 18 (18.6%) 6 (37.5%)

Tumor type

Carcinosarcoma 1 (0.5%) 1 (2.6%) 0.052 0 (0%) 1 (6.3%) 0.081

Clear cell carcinoma 1 (0.5%) 1 (2.6%) 2 (2.1%) 0 (0%)

Endometrioid adenocarcinoma 179 (95.2%) 31 (81.6%) 93 (95.9%) 15 (93.8%)

Mixed adenocarcinoma 2 (1.1%) 2 (5.3%) 0 (0%) 0 (0%)

Serous adenocarcinoma 5 (2.7%) 3 (7.9%) 2 (2.1%) 0 (0%)

Tumor grade 0.001 0.154

G1 129 (68.6%) 15 (39.5%) 64 (66.0%) 8 (50.0%)

G2 42 (22.3%) 8 (21.1%) 22 (22.7%) 3 (18.8%)

G3 8 (4.3%) 8 (21.1%) 7 (7.2%) 4 (25.0%)

Others 9 (4.8%) 7 (18.4%) 4 (4.1%) 1 (6.3%)

Myometrial invasion

Non-MI and SMI 165 (87.8%) 23 (60.5%) 0.001 79 (81.4%) 10 (62.5%) 0.166

DMI 23 (12.2%) 15 (39.5%) 18 (18.6%) 6 (37.5%)
frontiersi
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overfitting. Therefore, a radiomics nomogram was constructed

by integrat ing the radiomics signatures , age , and

CA125 (Figure 4).
LVSI prediction performance

The prediction performance of radscore was 0.88 (95%

CI: 0.81–0.94) and 0.82 (95% CI: 0.72–0.93) in the training

group and test group, respectively. The prediction

performance of clinical risk factors was 0.72 (95% CI: 0.63–

0.81) and 0.71 (95% CI: 0.57–0.86) in the training group and

test group, respectively. The prediction performance of the

radiomics nomogram was 0.89 (95% CI: 0.83–0.95) and 0.85

(95% CI: 0.75–0.94) in the training group and test group,

respectively. The AUC, specificity, sensitivity, positive

predictive value, and negative predictive values are shown

in Table 2.
Frontiers in Oncology 06
Clinical usefulness

The DCA showed that both the radiomics signatures and

radiomics nomogram could add net benefit to the patients to

predict the presence of LVSI preoperatively (Figure 5). When the

threshold probability was within a range from 20% to 100%, the

net benefit of using the nomogram to predict LVSI was more

than the treat-all or treat-none scheme.

Discussion

Our preliminary study showed that radiomics features based

on the multiparamater MRI image had high diagnosis

performance for LVSI in early-stage EC. It indicated that this

computer-based data analysis could be used as a helpful

diagnosis tool to predict the presence of LVSI.

Previous studies showed that the ADC value could differentiate

the presence of LVSI with moderate SEN and SPE of 65% and 80%,
B

C

D

A

FIGURE 3

Feature selection by using LASSO. (A) The parameter lambda is chosen using 10-fold cross-validation via minimum criteria, which results in 10
features with non-zero coefficients. (B) LASSO coefficient profiles of the selected features. (C) Radiomics signature. (D) A co-occurrence
network shows the correlations between radiomics signature and clinical features.
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respectively (17). This was because limited information could be

provided by the quantitative analysis based on functional MRI.

Moreover, analyzing the characteristics of EC based on a singleMRI

sequence also had limitations. The heterogeneity of ECwas not only

reflected in the restricted water molecular movement in the DWI or

ADC sequence. More information could be also provided by other

MRI sequences such as CE sequences (18). According to our results,

a good diagnosis performance was found in radiomics features

extracted from the T2WI, DWI, ADC maps, and CE-T1WI

sequences for predicting the presence of LVSI. This might be

because the radiomics features could provide information in

unraveling the tumor heterogeneity, which could not be captured

by human eyes (13, 19).

The diagnosis performance of the radiomics nomogram was

higher than the previously reported study. Yoshiko et al. suggested

that the texture feature based on tumor largest slice analysis could

differentiate the absence of LVSI with AUC, SEN, and SPE of 0.80,

80.9%, and 72.5%, respectively (11). The reason may be because we

extracted and included the features from high-dimensional data.

Yoshiko et al.’s study only included the first-order features (11).
Frontiers in Oncology 07
Results indicated that higher-order features were more helpful to

predict the presence of LVSI. Furthermore, our analysis was based

on the tumor volume rather than on the largest tumor layer. The

tumor volume may contain more information representative of the

tumor heterogeneity, which may produce more accuracy

information of the tumor.

Significantly higher tumor grade, deep myometrial invasion,

and larger tumor size were shown in LVSI patients. This suggested

that patients with higher tumor grade, deep myometrial invasion,

and larger tumor size were more likely to have a positive LVSI.

These results were in accordance with previous studies (20). Larger

tumor size was significantly and independently associated with

LVSI and myometrial invasion in patients with early-stage EC (16,

20). Given the difficulty of obtaining reliable LVSI data from frozen

sections, tumor size might be used as a surrogate at the time of

surgery to provide additional information to triage patients for

treatment (8).

Disputes existed in whether lymphadenectomy should be

performed in early-stage EC patients (21). On considering that

LVSI was an independent risk factor for developing pelvic lymph
B C

A

FIGURE 4

The radiomics nomogram and calibration curves. (A) The radiomics nomogram is constructed by integrating radscore with patient age and
CA125. The calibration curve of the radiomics nomogram for predicting LVSI in the training group (B) and the test group (C).
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node metastasis in early-stage EC, a preoperative evaluation of LVSI

was of clinical use in the decision-making process before

performing a lymphadenectomy in early-stage EC patients (22).

The LVSI could not be assessed by the human eyes; radiomics could

provide useful preoperative information from standard MR images

instead, and it may help physicians to grade the patients’ risk levels

and to guide appropriate treatment.

The strengths of this study were as follows: This was a

multicenter study with large samples. The ComBat method was

used to remove variation before combining data across MRI

scanners and sites. Also, our study had same limitations. First,

shortcomings of the inherent retrospective study should be

considered. Second, high-order wavelet or Guess features were

not included for the reason that these features may not be

stable and lack reasonable clinical interpretation. Third, the

imbalance between negative and positive LVSI should be

noticed. However, a sample equilibrium algorithm was used
Frontiers in Oncology 08
in the training progress; no obvious diagnostic performance

was declined in the test group. Fourth, the differences in

segmentations were not checked, and it is possible that some

radiomics features that would have been robust might be

discarded because of extracting from largely different

volumes. However, the radiomics nomogram model

performed well in both the training and test cohorts.

In conclusion, the radiomics nomogram could individually

predict LVSI in patients with early-stage EC. The nomogram

could be conveniently used to facilitate the treatment decision

for clinicians.
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TABLE 2 Diagnostic performance of the clinical risk factors, radscore, and radiomics nomogram in the training and test groups.

Group Index AUC 95% CI SPE SEN NPV PPV P * P #

Training Clinical risk factors 0.72 0.63-0.81 0.71 0.68 0.92 0.32 0.002 –

Radscore 0.88 0.81-0.94 0.74 0.92 0.98 0.42 – 0.002

Nomogram 0.89 0.83-0.95 0.76 0.92 0.98 0.43 0.254 0.001

Test Clinical risk factors 0.71 0.57-0.86 0.81 0.56 0.92 0.33 0.239 –

Radscore 0.82 0.72-0.93 0.94 0.56 0.93 0.60 – 0.239

Nomogram 0.85 0.75-0.94 0.96 0.56 0.93 0.69 0.116 0.104
frontiersi
AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; SPE, specificity.
*Compared with radscore; # compared with clinical risk factors by DeLong test.
FIGURE 5

The decision curve shows that when the threshold probability is from 20% to 100%, the radiomics nomogram adds more net benefit than
schemes of treat-all, treat-none, and radscore.
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