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A B S T R A C T

Objective: This study aimed to predict the level of stemness index (mRNAsi) and survival prognosis
of lung adenocarcinoma (LUAD) using pathomics model.
Methods: From The Cancer Genome Atlas (TCGA) database, 327 LUAD patients were randomly
assigned to a training set (n = 229) and a validation set (n = 98) for pathomics model devel-
opment and evaluation. PyRadiomics was used to extract pathomics features, followed by feature
selection using the mRMR-RFE algorithm. In the training set, Gradient Boosting Machine (GBM)
was utilized to establish a model for predicting mRNAsi in LUAD. The model’s predictive per-
formance was evaluated using ROC curves, calibration curves, and decision curve analysis (DCA).
Prognostic analysis was conducted using Kaplan-Meier curves and cox regression. Additionally,
gene enrichment analysis, tumor microenvironment analysis, and tumor mutational burden
(TMB) analysis were performed to explore the biological mechanisms underlying the pathomics
prediction model.
Results: Multivariable cox analysis (HR = 1.488, 95 % CI 1.012–2.187, P = 0.043) identified
mRNAsi as a prognostic risk factor for LUAD. A total of 465 pathomics features were extracted
from TCGA-LUAD histopathological images, and ultimately, the most representative 8 features
were selected to construct the predictive model. ROC curves demonstrated the significant pre-
dictive value of the model for mRNAsi in both the training set (AUC = 0.769) and the validation
set (AUC = 0.757). Calibration curves and Hosmer-Lemeshow goodness-of-fit test showed good
consistency between the model’s prediction of mRNAsi levels and the actual values. DCA indi-
cated a good net benefit of the model. The prediction of mRNAsi levels by the pathomics model is
represented using the pathomics score (PS). PS was strongly associated with the prognosis of
LUAD (HR = 1.496, 95 % CI 1.008–2.222, P = 0.046). Signaling pathways related to DNA
replication and damage repair were significantly enriched in the high PS group. Prediction of
immune therapy response indicated significantly reduced Dysfunction in the high PS group (P <

0.001). The high PS group exhibited higher TMB values (P < 0.001).
Conclusions: The predictive model constructed based on pathomics features can forecast the
mRNAsi and survival risk of LUAD. This model holds promise to aid clinical practitioners in
identifying high-risk patients and devising more optimized treatment plans for patients by jointly
employing therapeutic strategies targeting cancer stem cells (CSCs).

* Corresponding author.
E-mail address: junpingxie2023@126.com (J. Xie).

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

https://doi.org/10.1016/j.heliyon.2024.e37100
Received 8 May 2024; Received in revised form 4 August 2024; Accepted 27 August 2024

mailto:junpingxie2023@126.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e37100
https://doi.org/10.1016/j.heliyon.2024.e37100
https://doi.org/10.1016/j.heliyon.2024.e37100
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e37100

2

1. Introduction

Lung cancer, notorious for its high incidence, insidious onset, and poor prognosis, remains a significant health burden [1]. Ac-
cording to the latest Cancer Statistics data, the estimated new cases of tumors in the lung and bronchus remain substantial, with 116,
310 cases in males and 118,270 cases in females, and the estimated number of deaths consistently ranks first among all categories of
tumor-related deaths [2]. Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer [3]. Currently, the treatment
modalities for LUAD mainly include surgery, targeted therapy, radiotherapy, chemotherapy, and immunotherapy, but the overall
prognosis for advanced-stage patients remains poor [4]. For mid-to-late-stage lung cancer patients who have lost the opportunity for
surgery, the treatment goals are to prolong survival, improve quality of life, and strive for long-term survival with the disease. LUAD
prognosis is typically determined by a combination of clinicopathological factors, including tumor stage, grade, and patient age, as
well as serum biomarkers such as carcinoembryonic antigen (CEA) and soluble fragment of cytokeratin 19 (CYFRA21-1) and radio-
logical features identified by computed tomography scans [5,6]. However, as current indicators are insufficient to meet the rigorous
requirements of precision medicine, there is an urgent need for the discovery of novel biomarkers to enable accurate patient strati-
fication and personalized treatment strategies.

Cancer stem cells (CSCs), a subset of undifferentiated cells, have been identified as key drivers of tumorigenesis in various tumor
types and offer significant advantages in terms of initiation, progression, and resistance to therapy [7]. These rare and elusive cells can
infiltrate distant organs during early disease stages, where they may reside in specialized niches. Following primary tumor treatment,
these dormant cells can be reactivated, leading to recurrent disease [8]. It has been demonstrated that poorly prognostic LUAD shows
an increase in undifferentiated stem cell populations or stem cell-like characteristics, which is one of the reasons for its high inva-
siveness [9,10]. A study by Tathiane M Malta et al. stated that an algorithm can generate a stemness index (mRNAsi) based on mRNA
expression, which is commonly used to evaluate and quantify the stemness characteristics of tumor cells, namely, whether cells possess
stem cell-like properties such as self-renewal and multifunctionality differentiation potential [11]. The stemness features of tumors are
intimately linked to their ability to maintain proliferation, metastasize, and evade therapy, thereby correlating with enhanced inva-
siveness and treatment resistance. Prognostic studies based on mRNAsi have been successfully applied to various types of cancers, such
as liver cancer, squamous cell lung carcinoma, and glioblastoma, revealing its significant potential as a prognostic indicator for tumors
[12–16]. Despite the plethora of studies examining the correlation between mRNAsi and various tumor prognoses, the majority of
these investigations rely on indirect approaches, as mRNAsi must be inferred from gene expression data derived from samples.
However, this methodology is hindered by limitations arising from the challenges associated with sample collection and high detection
costs, thereby restricting the translational potential of mRNAsi in disease diagnosis and treatment.

Recent advances in artificial intelligence (AI) have revolutionized the field of pathology, enabling the conversion of pathology
images into high-fidelity, high-throughput, and exploitable data. Pathomics, a subspecialty of digital pathology, leverages AI to extract
quantitative features such as texture, morphology, edge gradient, and biological characteristics from images, which are then integrated
for comprehensive analysis in diagnostic, molecular, and prognostic applications [17–20]. Compared to traditional visual observation,
computer-assisted image analysis significantly enhances computational efficiency, accuracy, and cost-effectiveness in tumor diagnosis.
Notwithstanding the complexities of tumor heterogeneity and multiple driving factors influencing cancer prognosis, recent studies
have endeavored to integrate histopathological and molecular biological data to develop predictive models that provide a more
comprehensive understanding of tumor behavior [21,22].

Hematoxylin and eosin (H&E) stained slides are essential for clinical diagnosis and represent the most readily available imaging

Fig. 1. Flowchart showing the inclusion and exclusion criteria for LUAD patients in this study.
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data. Therefore, integrating mRNAsi with pathological image information to develop multi-omics prognostic prediction models has
become a very promising research direction. Based on these factors, this study innovatively proposes predicting the mRNAsi levels of
LUAD samples through pathomics technology while integrating bioinformatics analysis to explore the underlying biological mecha-
nisms behind pathomics.

2. Materials and methods

2.1. Data source

A total of 522 LUAD patients’ H&E-stained tissue pathology images were obtained from The Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov/). A total of 327 eligible LUAD patients were selected from the initial cohort after applying strict inclusion
criteria: primary diagnosis, adequate image quality, complete follow-up data, and survival time≥30 days. A random partitioning of the
patient cohort into training and validation sets was performed with a 7:3 ratio, allowing for robust evaluation of model performance
(Fig. 1). We also downloaded corresponding clinical feature data, somatic mutation, and mRNA sequencing data for these patients,
with an intersection sample size of 322 cases between somatic mutations and pathomics. The mRNA stemness index (mRNAsi) of tumor
samples was quantified using the algorithm proposed by Tathiane M Malta et al. [11]. The R package “survMisc” was utilized to
calculate the cutoff values of mRNAsi for these samples, dividing LUAD patients into high/low index groups, with the low index group
as the reference. The overall workflow diagram is shown in Fig. 2.

2.2. mRNAsi as a prognostic predictor of LUAD

The Kaplan-Meier survival curve was used to illustrate changes in survival rates between high and low mRNAsi groups, and the Log-
rank test was employed to assess the significance of survival rates between the two groups. Additionally, the R package “survival” was
utilized for survival analysis of each variable, while the R package “survminer” was employed to summarize and visualize the analysis
results. To investigate the independent risk factors for overall survival (OS) in LUAD patients, we performed univariate and multi-
variate Cox regression analyses on a comprehensive set of variables, including mRNAsi, age, tumor stage, primary location, and other
clinicopathological factors. Furthermore, we performed subgroup analyses using univariate Cox regression to investigate the

Fig. 2. The flowchart consists of four parts: (1) The potential of mRNAsi as a prognostic factor for LUAD; (2) Processing and segmentation of
pathological images using the OTSU algorithm; (3) Feature extraction of pathological images using PyRadiomics, selection of important features
using mRMR_RFE, and model construction using the GBM algorithm; (4) Evaluation of the model and exploration of the potential biological sig-
nificance of pathomics score.
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association between mRNAsi (high vs. low index group) and patient prognosis in subgroups defined by each covariate. Likelihood ratio
tests were conducted to assess interactions between mRNAsi and other covariates.

2.3. Processing and segmentation of histopathological images

Qualified svs format LUAD pathological images were downloaded from the TCGA database, with a maximum magnification of 20
× or 40 × . The OTSU algorithm (https://opencv.org/) was utilized to process the pathological images and obtain the tissue regions of
the slides [23]. Image segmentation was performed on the 40 × and 20 × datasets, yielding 1024 × 1024 pixel sub-images from the
former and 512 × 512 pixel sub-images that were subsequently upsampled to 1024 × 1024 pixels. Subsequently, experienced pa-
thologists carefully reviewed the images to exclude sub-images with poor quality, such as contamination, image blurring, or blank
areas exceeding 50 %. Ten randomly selected sub-images from the qualified ones were then chosen for subsequent analysis.

2.4. Extraction and screening of pathomics features

The PyRadiomics open-source package (https://pyradiomics.readthedocs.io/en/latest/) [24] was used to standardize the images of
the training set’s sub-images and extract 93 original features (including first-order and second-order features) and 372 high-order
features, namely wavelet features (LL, LH, HL, HH), consisting of intensity, gradient, and texture features extracted from
wavelet-filtered images. Pathomics features were extracted from 10 sub-images of each patient’s pathological image, with the mean
value serving as the representative pathomics feature for each sample. To facilitate effective feature analysis, we standardized the
pathomics feature values of the training set using z-scores and applied the same transformation to the validation set using the mean and
standard deviation derived from the training data. Furthermore, we investigated differences in clinical variables between the datasets.

Additionally, the Maximum Relevance, Minimum Redundancy (mRMR) algorithm, and Recursive Feature Elimination (RFE) al-
gorithm were employed to select the optimal feature subset. The mRMR algorithm selects features that balance the correlation between
features, as well as the correlation between features and the target variable. On the other hand, the RFE feature selection involves
ranking the predictive factors before modeling and sequentially eliminating less important factors. Its objective is to continuously train
the model to find the best predictor subset that can be used to generate accurate models. In this study, the mRMR method was first used
to select the top 30 features, followed by RFE feature selection to identify the optimal features.

2.5. Model construction and evaluation

In this study, the Gradient Boosting Machine (GBM) algorithm was employed to construct predictive models for mRNAsi in LUAD
samples using the pathomics features selected by the mRMR and RFE algorithms in the training set. The model’s effectiveness is
assessed by analyzing it using the receiver operating characteristic (ROC) curve. Additionally, by generating calibration curves and
applying the Hosmer-Lemeshow goodness-of-fit test, we assessed the calibration of the predictive model. We employed the Brier score
to evaluate the overall predictive performance of our pathomics model, and decision curve analysis (DCA) to illustrate its clinical
utility, providing a comprehensive assessment of the model’s diagnostic accuracy and decision-making value.

2.6. Pathomics score as a prognostic predictor of LUAD

The prediction of mRNAsi in LUAD samples by the model we constructed is represented by the pathomics score (PS). Using the R
package “ggplot2″, we visualized the differences in PS between the high and low mRNAsi groups and used the Wilcoxon test to compare
whether the differences between the two groups were statistically significant. Additionally, we merged the PS with the patient’s
clinical data and calculated the cutoff value of PS using the “survMisc” package, dividing it into high and low PS groups, and plotted
baseline data tables for each clinical variable. Similar to the previous section, Kaplan-Meier survival curves, cox regression analyses,
subgroup analyses, and likelihood ratio tests were used for prognostic analyses.

2.7. Functional enrichment analysis

The analysis of KEGG pathway gene sets comprised 186 pathways, while the analysis of Hallmark gene sets included 50 pathways.
Differential analysis between high and low PS groups was performed using the R package “limma,” with |t| = 1 as the threshold, and
the top 30 pathways were visualized.

2.8. Analysis of the immune microenvironment and prediction of immunotherapeutic response

The differences in the expression of 37 immune-related genes between the high and low PS groups were analyzed using the
Wilcoxon test [25]. We uploaded the gene expression matrix of LUAD samples to CIBERSORTx (https://cibersortx.stanford.edu/) and
quantified immune cell infiltration in each sample. Subsequent analysis revealed significant differences in immune cell infiltration
profiles between patients with high and low PS levels, which highlights the potential role of tumor microenvironment in patient
outcomes. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to assess patient response to immunotherapy.
Specifically, normalized transcriptomic data were uploaded to the TIDE database (http://tide.dfci.harvard.edu) to calculate the TIDE
score, MSI Expr Sig (Microsatellite Instability Expression Signature), Dysfunction and Exclusion scores. Subsequently, differences in
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these metrics were comparatively analyzed between the high and low PS groups.

2.9. Gene mutation analysis

The somatic mutation data in mutation annotation format (MAF) of LUAD samples were downloaded from the TCGA database
(https://portal.gdc.cancer.gov/). The “maftools” package was employed to compute the tumor mutation burden (TMB) of samples and
visualize the top 15 mutated genes by frequency. Furthermore, the Wilcoxon rank-sum test was utilized to analyze the differences in
TMB between the high and low PS groups.

2.10. Statistical analysis

All statistical analyses and data visualizations were conducted using R language (version 4.1.0), while Python language was
employed for feature extraction from pathological images. To examine the differences between groups, we used Wilcoxon’s rank-sum
test for continuous variables, and the Chi-square test or Fisher’s exact test for categorical variables. Survival analysis was conducted
using Kaplan-Meier survival curves and tested for significance using the log-rank test. All statistical tests were two-tailed, and a P-value
<0.05 was deemed statistically significant.

3. Result

3.1. Prognostic value of mRNAsi in LUAD

We integrated clinical data and transcriptome profiles from 327 LUAD patients retrieved from the TCGA database. Patients were
stratified into high mRNAsi group (n = 120) and low mRNAsi group (n = 207) based on mRNAsi with a cutoff value of 0.5453. Among
them, there were statistically significant differences in the distribution of gender (P = 0.007) and smoking status (P = 0.002) between
the high and low mRNAsi groups (Table 1). The median survival time for the low mRNAsi group was 50.93 months, while for the high
mRNAsi group, it was 40.5 months. Kaplan-Meier curves revealed an association between high mRNAsi and worse overall survival
(OS) in LUAD patients (Supplementary Fig. 1). In univariate cox analysis, high mRNAsi was identified as a risk factor for OS (HR =

1.434, 95 % CI 0.992–2.075, P = 0.055) (Fig. 3A). In multivariate cox analysis, high mRNAsi (HR = 1.488, 95 % CI 1.012–2.187, P =

0.043) was identified as an independent risk factor for OS (Fig. 3B). Furthermore, according to the results of the subgroup analysis,
there was no interaction between mRNAsi and the included covariates regarding their effects on OS (Supplementary Fig. 2 and
Supplementary Table 1).

3.2. Pathomics model

To develop a predictive pathomics model for mRNAsi in LUAD, we randomly partitioned the TCGA-LUAD dataset into a training set
(n = 229) and an independent validation set (n = 98) with a 7:3 ratio, allowing for robust evaluation of model performance.
Notwithstanding minor variations in tumor location (P = 0.014) and pathologic stage (P = 0.033), the baseline characteristics of
patients with LUAD in both the training and validation datasets were comparable, thereby ensuring robust group equivalence
(Table 2). Subsequently, we processed and segmented pathological images from the training and validation sets using the PyRadiomics

Table 1
Demographic and clinical characteristics of patients in the high and low mRNAsi groups.

Characteristics Total Low High P value

(N = 327)N(%) (N = 207)N(%) (N = 120)N(%)

Gender Female 183 (56) 128 (62) 55 (46) 0.007
Male 144 (44) 79 (38) 65 (54)

Age ≤65 years old 164 (50) 98 (47) 66 (55) 0.222
>65 years old 163 (50) 109 (53) 54 (45)

Smoking status Current 82 (25) 40 (19) 42 (35) 0.002
Former 204 (62) 135 (65) 69 (57)
Nonsmoker 41 (13) 32 (15) 9 (8)

Tumor location L-Lower 56 (17) 39 (19) 17 (14) 0.682
L-Upper 76 (23) 47 (23) 29 (24)
R-Lower 63 (19) 41 (20) 22 (18)
R-Middle 14 (4) 7 (3) 7 (6)
R-Upper 118 (36) 73 (35) 45 (38)

Pathologic stage I/II 265 (81) 173 (84) 92 (77) 0.165
III/IV 62 (19) 34 (16) 28 (23)

Radiotherapy No 293 (90) 189 (91) 104 (87) 0.256
Yes 34 (10) 18 (9) 16 (13)

Chemotherapy No 219 (67) 141 (68) 78 (65) 0.649
Yes 108 (33) 66 (32) 42 (35)

R. Chen et al.
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method, extracting a total of 465 pathomics features. To mitigate overfitting and optimize model performance, we employed mRMR
and RFE algorithms to identify the most informative 8 features (Fig. 4A), which were deemed representative of the dataset. Addi-
tionally, the machine learning GBM algorithm was employed to construct the model based on these 8 pathomics features. Fig. 4B
illustrates the ranking of the selected 8 features in terms of their importance in the GBM algorithm.

3.3. Evaluation of the model

According to the ROC curves of the model, the AUC values in the training set and validation set were 0.769 and 0.757, respectively
(Fig. 5A–B). The threshold for the training set was 0.464, with an accuracy of 0.769, sensitivity of 0.524, specificity of 0.91, and Brier
score of 0.185; for the validation set, the accuracy was 0.745, sensitivity was 0.75, specificity was 0.742, and Brier score was 0.198.
These results indicate that the pathomics model for predicting mRNAsi has good discrimination and predictive performance. Cali-
bration curves and the Hosmer-Lemeshow goodness-of-fit test also demonstrate good consistency between the model’s predictions and
the actual values of mRNAsi (P > 0.05) (Fig. 5C–D). The results of DCA analysis further confirm the model’s good clinical utility
(Fig. 5E–F).

3.4. Prognostic value of PS in LUAD

We employed our pathomics model to predict mRNAsi levels in LUAD samples, quantifying the results using the pathomics score
(PS). Notably, PS exhibited significant disparities between high and low mRNAsi groups in both the training (p < 0.001) and validation
sets (p < 0.001), as depicted in Fig. 6A–B. Using the R package “survMisc,” a cutoff value of 0.4203 was set for PS, dividing LUAD
patients into a high PS group (n = 114) and a low PS group (n = 213). Demographic and clinical characteristics were homogenous
between high and low PS groups, with no significant differences observed (p > 0.05; Table 3). Median overall survival (OS) times were
significantly different between patients with low (50.93 months) and high (39.9 months) PS groups (P = 0.038; Fig. 6C). High PS was
associated considerably with worsened OS in LUAD patients.

Fig. 3. Univariate cox analysis (A) and multivariate cox analysis (B) were conducted to explore whether various research factors, including mRNAsi,
are independent risk factors for the overall survival (OS) of LUAD patients.

R. Chen et al.



Heliyon 10 (2024) e37100

7

Furthermore, high PS was identified as an independent risk factor of OS in LUAD patients, with hazard ratios (HRs) of 1.479 (95 %
CI 1.019–2.147, P = 0.04) in univariate cox analysis and 1.496 (95 % CI 1.008–2.222, P = 0.046) in multivariate cox analysis
(Fig. 7A–B). Additionally, in subgroup analysis, it was shown that there was an interaction between PS and tumor location (p = 0.024).
Analysis of the L-lower subgroup revealed a significant association between PS and OS (HR = 3.191, 95 % CI 1.304–7.804, P = 0.011),
whereas, in the L-upper subgroup, no significant correlation was observed (HR = 0.814, 95 % CI 0.371–1.784, P = 0.61) (Supple-
mentary Fig. 3 and Supplementary Table 2).

3.5. Pathway enrichment analysis

Comparative pathway enrichment analysis between high and low PS groups in LUAD identified distinct biological processes.
Specifically, the high PS group exhibited significant enrichment in pathways related to RNA polymerase and mismatch repair, whereas

Table 2
Demographic and clinical characteristics of patients.

Characteristics Total Train Validation P value

(N = 327)N(%) (N = 229)N(%) (N = 98)N(%)

mRNAsi Low 207 (63) 145 (63) 62 (63) 1
High 120 (37) 84 (37) 36 (37)

OS Alive 213 (65) 151 (66) 62 (63) 0.735
Dead 114 (35) 78 (34) 36 (37)
OS.time, Median (Month) (Q1,Q3) 21.73 (14.48, 35.1) 21.73 (14.47, 36.03) 21.4 (14.54, 33.11) 0.545

Gender Female 183 (56) 129 (56) 54 (55) 0.933
Male 144 (44) 100 (44) 44 (45)

Age ≤65 years old 164 (50) 122 (53) 42 (43) 0.108
>65 years old 163 (50) 107 (47) 56 (57)

Smoking status Current 82 (25) 57 (25) 25 (26) 0.951
Former 204 (62) 144 (63) 60 (61)
Nonsmoker 41 (13) 28 (12) 13 (13)

Tumor location L-Lower 56 (17) 41 (18) 15 (15) 0.014
L-Upper 76 (23) 52 (23) 24 (24)
R-Lower 63 (19) 49 (21) 14 (14)
R-Middle 14 (4) 4 (2) 10 (10)
R-Upper 118 (36) 83 (36) 35 (36)

Pathologic stage I/II 265 (81) 193 (84) 72 (73) 0.033
III/IV 62 (19) 36 (16) 26 (27)

Radiotherapy No 293 (90) 202 (88) 91 (93) 0.287
Yes 34 (10) 27 (12) 7 (7)

Chemotherapy No 219 (67) 152 (66) 67 (68) 0.824
Yes 108 (33) 77 (34) 31 (32)

Fig. 4. Model construction: (A) The most representative eight pathomics features were selected through the joint application of the mRMR algo-
rithm and the RFE algorithm. (B) The importance of the selected eight features in the machine learning GBM algorithm is demonstrated.

R. Chen et al.
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the low PS group was enriched in pathways involved in alpha-linolenic acid metabolism and VEGF signaling (Fig. 8A). Functional
analysis of the Hallmark gene set revealed that the high PS group exhibited significant enrichment in the MYC targets V2 pathway,
whereas the low PS group was enriched in cholesterol homeostasis and angiogenesis pathways (Fig. 8B).

3.6. Immunological correlation analysis

Analysis of immune-related gene expression revealed significant upregulation of LAG3, TNFSF4, and CD80 in the high PS group, as
well as CD40LG, HHLA2, and TNFRSF14 in the low PS group (P < 0.05; Fig. 9A). Immune cell infiltration analysis revealed significant
differences between high and low PS groups. Specifically, T cells CD4 memory activated, NK cells activated, and Macrophages M1
exhibited higher infiltration in high PS, whereas B cell memory, T cell regulatory, and Mast cells resting showed increased infiltration
in low PS (P < 0.001; Fig. 9B).

Fig. 5. Model evaluation: ROC curves (A, B), calibration curves (C, D) and DCA analyses (E, F) of the pathomics model in the training and validation
sets. The x-axis of the ROC curve represents the false positive rate (1-Specificity), and the y-axis represents the true positive rate (Sensitivity).

R. Chen et al.
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To assess the potential efficacy of immunotherapy, we used the TIDE software to evaluate the response of high and low PS groups.
An increase in the TIDE prediction score indicates increased immune evasion, suggesting decreased responsiveness to immune ther-
apeutic interventions. Notably, no significant intergroup differences were observed in TIDE, MSI Expr Sig, and Exclusion in the high PS
group compared to the low PS group. However, a significant decrease in Dysfunction was observed in the high PS group (Fig. 10A, P <

0.001). This suggests that patients in the high PS group may derive greater benefit from immunotherapy.

3.7. Tumor mutational burden (TMB) and mutation analysis

The analysis results indicate a significant difference in TMB between the high and low PS groups (P < 0.001), with higher TMB
values observed in the high PS group (Fig. 10B). Among them, Missense Mutation is the most common mutation type, followed by
Nonsense Mutation and Frame Shift Deletion. Additionally, the mutation rates of TP53 and TTN genes are above 50 % in both the high
and low PS groups. To compare mutant genes, we listed the top fifteen mutant genes in each of the two groups (Fig. 10C–D). Significant
differences in mutation patterns and frequencies between these genes were found between the two groups, revealing potentially
distinct molecular signatures.

4. Discussion

CSCs are believed to play a crucial role in the occurrence, progression, recurrence, and drug resistance of solid malignant tumors
[26,27]. The heterogeneity and plasticity of CSCs contribute to tumor immune evasion and treatment resistance [28]. mRNAsi is
commonly used to assess and quantify stemness characteristics of tumor cells [11]. In this study, through multivariate cox regression

Fig. 6. The pathomics scores in the training set (A) and the validation set (B) exhibit significant differences in distribution between high and low
mRNAsi groups. (C) Kaplan-Meier curves illustrate the impact of high and low PS on the prognosis of LUAD patients. (*, P < 0.05; **, P < 0.01; ***,
P < 0.001).

R. Chen et al.
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Table 3
Demographic and clinical characteristics of patients in the high and low PS groups.

Characteristics Total Low High P value

(N = 327)N(%) (N = 213)N(%) (N = 114)N(%)

Gender Female 183 (56) 127 (60) 56 (49) 0.088
Male 144 (44) 86 (40) 58 (51)

Age ≤65 years old 164 (50) 106 (50) 58 (51) 0.94
>65 years old 163 (50) 107 (50) 56 (49)

Smoking status Current 82 (25) 46 (22) 36 (32) 0.14
Former 204 (62) 139 (65) 65 (57)
Nonsmoker 41 (13) 28 (13) 13 (11)

Tumor location L-Lower 56 (17) 40 (19) 16 (14) 0.107
L-Upper 76 (23) 51 (24) 25 (22)
R-Lower 63 (19) 47 (22) 16 (14)
R-Middle 14 (4) 8 (4) 6 (5)
R-Upper 118 (36) 67 (31) 51 (45)

Pathologic stage I/II 265 (81) 179 (84) 86 (75) 0.081
III/IV 62 (19) 34 (16) 28 (25)

Radiotherapy No 293 (90) 192 (90) 101 (89) 0.806
Yes 34 (10) 21 (10) 13 (11)

Chemotherapy No 219 (67) 141 (66) 78 (68) 0.776
Yes 108 (33) 72 (34) 36 (32)

Fig. 7. Univariate cox analyses (A) and multivariate cox analyses (B) explored whether multiple study factors, including pathomics score, were
independent risk factors for overall survival (OS) in patients with LUAD.

R. Chen et al.
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analysis, we identified mRNAsi as an independent prognostic factor for LUAD, suggesting its potential as a prognostic indicator for
LUAD patients. Leveraging the rapid development of machine learning in the medical field, this study aimed to establish a relationship
with mRNAsi by extracting pathomics information from LUAD pathological slides and creating a prognostic prediction model. The
results of the model’s ROC curve, calibration curve, and DCA analysis demonstrate that the model we constructed has good predictive
performance and clinical utility. Furthermore, according to enrichment analysis results, the high PS group showed enrichment in DNA
replication and repair, as well as RNA polymerase pathways, indicating a potentially stronger proliferative ability and drug resistance
in this group, which is consistent with its higher stemness characteristics. Additionally, the results of the immune-related analysis
suggest that CSCs may be involved in regulating the immune microenvironment of LUAD, thereby affecting its prognosis, and patients
in the high PS group may benefit more from immunotherapy. Through the constructed pathomics model, we can identify LUAD
populations with higher mRNAsi, recognize patients with poorer prognoses, and tailor personalized treatment plans for them.
Moreover, this approach holds promise for selecting the optimal beneficiary population for targeted CSC therapy.

In this study, multivariate cox regression analysis revealed that high mRNAsi is an independent risk factor for OS in LUAD patients.
Previous studies have consistently reported a positive correlation between mRNAsi and prognosis in LUAD patients, with higher
mRNAsi levels associated with poorer OS and more advanced disease stages [29]. According to the cancer stem cell theory, CSCs
exhibit stem-like characteristics, promoting tumor initiation and metastasis through self-renewal and differentiation potential, and are
less susceptible to anti-tumor therapies targeting primitive cells, which may contribute to treatment failure [30]. As a quantifiable
indicator of tumor stemness characteristics, mRNAsi demonstrates a strong correlation with diverse tumor prognosis. Xu et al. noted
that in hepatocellular carcinoma, higher mRNAsi levels are associated with higher tumor grades and poorer prognosis [31]. Similarly,
Xia et al. found that in neuroblastoma, patients with high mRNAsi have a significantly worse prognosis than those with low mRNAsi
[32]. Studies have also shown that in colorectal cancer and bladder cancer, patients with high mRNAsi not only have poorer prognoses
but may also exhibit higher resistance to commonly used chemotherapy drugs [33,34]. These findings underscore the robust potential
of mRNAsi as a prognostic predictor.

Currently, most existing pathomics models focus on predicting survival outcomes in lung cancer [35]. However, there is a lack of
pathomics models specifically designed to predict mRNAsi in LUAD samples. Considering the importance of histopathological images
in cancer diagnosis and prognosis prediction, we propose a workflow for image processing and data analysis to extract specific features

Fig. 8. Differences in pathway enrichment in KEGG pathway gene sets (A) and Hallmark gene sets (B) between high and low PS groups in LUAD.
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from histopathological images. We utilize pathomics features and machine learning methods to develop a predictive model for mRNAsi
and survival outcomes in LUAD patients. As indicated by the ROC curve of the model, the AUC value in the training set is 0.769, and in
the validation set is 0.757. Combined with the calibration curve and DCA analysis results of the model, it can be concluded that the
model we constructed has good clinical utility and predictive performance. Furthermore, the PS index calculated by the model shows
significant differences in distribution between the high and low mRNAsi groups, with a higher PS index associated with poorer
prognosis. These findings demonstrate the robustness of the model and its feasibility in prognosis assessment, providing new insights
and methods for evaluating LUAD prognosis. Currently, various machine learning algorithms can be used to build reliable models
based on histopathological slides to predict cancer prognosis, treatment response, gene mutations, and gene expression. For instance,
Liao et al. developed a machine-learning model from histopathological slide image features to distinguish hepatocellular carcinoma
(HCC) from adjacent normal tissue and predict the prognosis of HCC patients after surgical resection [36]. Machine learning algo-
rithms based on histopathological slides of renal clear cell carcinoma can construct reliable diagnostic and prognostic prediction
models [37]. Chen et al. combined histopathological images and gene expression patterns to analyze and predict the molecular
characteristics and prognosis of head and neck squamous cell carcinoma [38]. Effective models integrating histopathological images
and multi-omics information can predict the molecular characteristics and survival prognosis of lung adenocarcinoma [39]. This
indicates that the pathomics model can not only effectively predict disease prognosis but also predict the molecular biological in-
formation contained in these samples, which is expected to promote the continuous development of personalized medicine.

The use of artificial intelligence methods has enhanced our ability to extract quantitative information from histopathological
images. The potential differences in molecular expression within tumors often manifest as changes in tissue structure and nuclear
morphology [40]. It has been previously discovered that machine learning can predict mutations such as STK11, EGFR, KRAS, ALK,
ROS1, and TP53 in LUAD from histopathological images [39,41]. This indicates that changes in histopathological image information
may be macroscopic manifestations of microscopic components such as cellular and molecular differences. CSCs are embedded in
tumor tissues, where they exert crucial roles in tumor growth, metastasis, and chemoresistance. Notably, variations in mRNAsi, a
quantitative indicator of CSCs, may reflect the molecular pathological basis behind the differences in the histopathological image
information. This study utilized PyRadiomics to extract wavelet features from images that can characterize spatial heterogeneity
within tumor cell nuclei and provide information about cell-cell interactions in the tumor microenvironment. By using this information
to construct models to predict mRNAsi and prognosis, it may be possible to improve the diagnosis of LUAD and assist in guiding its
treatment strategies.

In this study, we conducted a deeper exploration of the molecular biological significance behind the PS calculated by the model.

Fig. 9. (A) Differential analysis of immune-related genes between high and low PS groups; (B) Differential analysis of immune cell abundance
between high and low PS groups. (*, P < 0.05; **, P < 0.01; ***, P < 0.001, ****, P < 0.0001).
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According to the results of enrichment analysis, the high PS group showed significant enrichment in DNA replication and damage
repair signaling pathways such as RNA polymerase, DNA replication, homologous recombination, and mismatch repair. This dem-
onstrates the close connection between the stemness of LUAD and their proliferative capacity, which may induce tumors to develop in
a more aggressive direction. Additionally, it has been reported that the main mechanisms of drug resistance in CSCs include high
expression of drug transporters, strong DNA repair capability, and recruitment of a protective microenvironment [42]. CSCs exhibit a
robust DNA damage repair response, akin to normal stem cells, which confers radiation and chemotherapy resistance [43,44]. The
results of this study show that the high PS group is significantly enriched in pathways related to repairing DNA double-strand breaks,
suggesting that the high PS group’s stem cell-like features are more pronounced and may confer stronger treatment resistance.

Reportedly, CSCs engage in reciprocal interactions with tumor microenvironmental (TME) cells, fostering crosstalk that confers
immune evasion and promotes their potential for recurrence [45,46]. Additionally, the TME is constantly exposed to complex
nutritional, metabolic, and hypoxic environments, which can exacerbate CSCs’ treatment resistance [47,48]. This study reveals sig-
nificant differences in immune-related gene expression and immune cell infiltration between high- and low-PS groups, indicating that
CSCs may modulate the complex immune microenvironment of LUAD to influence patient prognosis. Immunotherapy has emerged as a
promising treatment approach for lung cancer, with various modalities including adoptive cell therapy, immune checkpoint inhibitors,
and targeted antibodies [49,50]. Notably, numerous clinical trials have been conducted to investigate immunotherapeutic strategies
for lung cancer, with several ongoing Phase III trials (e.g., NCT04489862, NCT04256421, NCT04738487) demonstrating encouraging
results. Previous studies have identified mRNAsi as a crucial factor influencing tumor recurrence and immunotherapy response in
LUAD [51]. Additionally, TMB has been demonstrated to predict the benefits of immune checkpoint inhibitors in non-small cell lung
cancer, with the KEYNOTE 158 trial further supporting the efficacy of pembrolizumab in patients with high-TMB tumors (TMB≥10
mutations per megabase) [52]. Remarkably, our findings reveal a significantly higher TMB in the high PS group, suggesting that PS

Fig. 10. (A) Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to assess differential analysis of TIDE, MSI Expr Sig, Dysfunction and
Exclusion between high and low PS groups. (B) Differential analysis of TMB between high and low PS groups in LUAD. Mutation analyses of the high
PS group (C) and low PS group (D). (ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001).
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may be a predictive marker for immunotherapy response in LUAD patients. However, the conventional detection of mRNAsi is often
costly and based on local tumor tissue, which cannot accurately represent the overall tumor condition and is difficult to monitor
dynamically. This study aims to establish a pathology-based predictive model by extracting information from patient tumor tissue
sections, enabling objective, high-throughput, and accurate prediction of mRNAsi. Ultimately, this will facilitate the identification of
potential responders to immunotherapy and provide a foundation for personalized treatment guidance.

Overall, LUAD with high mRNAsi may have poorer prognostic outcomes and are more prone to metastasis and drug resistance,
which may inspire clinicians to consider adjusting follow-up frequencies and treatment strategies for these patients to maximize their
benefits. Additionally, there are numerous methods for targeting CSCs, including immunotherapy, hormone therapy, (mi)siRNA de-
livery, gene knockout, as well as vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells, which can be utilized to
suppress CSCs’ stemness, inhibit CSCs’ exogenous or endogenous signaling pathways, hypoxia, or promote cell differentiation [53–55].
Due to the common characteristics shared between CSCs and normal stem cells, targeting CSCs must be based on their unique antigens
and markers [19]. Using a machine learning-based predictive model, we leveraged clinically accessible pathological tissue images to
identify mRNAsi in LUAD samples, thereby prospectively identifying high-risk populations amenable to targeted interventions.
Through the combined use of targeted CSC therapy measures, it is possible to develop more optimized treatment plans for patients.

However, there are some limitations to the current study. Firstly, although all eligible samples were included in the analysis, the
exclusion of TCGA samples with missing data or suboptimal histopathological images may have introduced potential bias. Further-
more, the limited number of covariates included in this study may have omitted confounding factors, potentially influencing the
study’s conclusions. Moreover, we utilized data from LUAD patients in the TCGA database without an external validation set, which
may affect the model’s generalizability and practical clinical application, further validation in diverse cohorts is warranted. Finally,
this study is a retrospective analysis, and further large-scale studies or experiments are needed to validate the molecular mechanisms
underlying the pathomics features.

5. Conclusion

This study demonstrates the effectiveness of utilizing machine learning algorithms to construct a model for predicting mRNAsi
based on LUAD pathological images. The model generates clinical impact by extracting hidden information from routinely available
data, which is expected to assist pathologists and clinicians in assessing the prognosis of LUAD patients, stratifying patient risks, and
making more optimized treatment decisions.
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