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Abstract

We apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the 

GTEx Project and genome-wide association study (GWAS) data. About 60% of known trait-

associated loci are in linkage disequilibrium with a cis-eQTL, over half of which were not found 

in previous large-scale whole blood studies. Applying polygenic analyses to metabolic, 

cardiovascular, anthropometric, autoimmune, and neurodegenerative traits, we find that eQTLs are 

significantly enriched for trait associations in relevant pathogenic tissues and explain a substantial 

proportion of the heritability (40-80%). For most traits, tissue-shared eQTLs underlie a greater 

proportion of trait associations, though tissue-specific eQTLs have a greater contribution to some 

traits, such as blood pressure. By integrating information from biological pathways with eQTL 

target genes and applying a gene-based approach, we validate previously implicated causal genes 

and pathways, and propose new variant- and gene-associations for several complex traits, which 

we replicate in the UK BioBank and BioVU.

A primary goal of the Genotype-Tissue Expression (GTEx) project1 is to elucidate the 

biological basis of GWAS findings for a range of complex traits, by measuring eQTLs in a 

broad collection of normal human tissues. Several recent papers have described the GTEx 

v6p data, where cis-eQTLs were mapped for 44 tissues from a total of 449 individuals 

(70-361 samples per tissue)2 using a single-tissue method3 that detects eQTLs in each tissue 

separately, and a multi-tissue method4 that increases the power to detect weak effect eQTLs. 

Here we leverage the extensive resource of regulatory variation from multiple tissues to 

elucidate the causal genes for various GWAS locus and to assess their tissue specificity (Fig. 

1a). We highlight the challenges of using eQTL data for the functional interpretation of 

GWAS findings and identification of tissue of action. Using several polygenic approaches 

(Table 1), we provide comprehensive analyses of the contribution of eQTLs to trait variation. 

Finally, by integrating eQTL with pathway analysis, and replication in DNA biobanks tied to 

electronic health records (UK Biobank5 and BioVU6; see URLs), we propose new trait 

associations and causal genes for follow-up analyses for a range of complex traits.

URLs
PLINK 1.90: https://www.cog-genomics.org/plink2
eCAVIAR: https://github.com/fhormoz/caviar
Regulatory Trait Concordance (RTC): https://qtltools.github.io/qtltools/
TORUS: https://github.com/xqwen/torus
PrediXcan: https://github.com/hakyim/PrediXcan
Storey’s qvalue R package: https://github.com/StoreyLab/qvalue
LD score regression (LDSR): https://github.com/bulik/ldsc
GCTA: http://cnsgenomics.com/software/gcta/#Download
eGeneEnrich: https://segrelab.meei.harvard.edu/software/
eQTLEnrich: https://segrelab.meei.harvard.edu/software/
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Results

Relevance of eQTLs from 44 tissues to trait associations

We tested the extent to which cis-eQTLs (using the ‘best eQTL per eGene’ at a genome-

wide FDR≤0.05 per tissue) from each of the 44 tissues2 were enriched for trait associations 

(GWAS p≤0.05) using eQTLEnrich (see Methods and Supplementary Fig. 1). Testing 18 

complex traits (metabolic, cardiovascular, anthropometric, autoimmune and 

neurodegenerative, listed in Supplementary Table 1) with available GWAS summary 

statistics, we found significant enrichment for trait associations amongst eQTLs 

(Bonferroni-adjusted P<6.3x10-5) for 11% of 792 tissue-trait pairs tested, with a median 

fold-enrichment per trait ranging from 1.19 to 5.75 (Fig. 1b and Supplementary Table 2), 

and different tissues significant per trait (Supplementary Fig. 2). The enrichment results also 

suggest hundreds of modest-effect associations amongst eQTLs in various tissues for all 

traits tested (Supplementary Fig. 3 and Supplementary Table 2). While the adjusted fold-

enrichment (see Methods) is unaffected by differences in number of eQTLs per tissue 

(Supplementary Fig. 4), increased enrichment was observed for GWAS with larger sample 

sizes, such as Height7 (N>250k), where there is greater detection power (Fig. 1c). 

Enrichment amongst eQTLs was also found for less-powered GWAS, such as HOMA-IR8 

(N~37k), where no variants passed genome-wide significance (Supplementary Fig. 5). The 

tissues in which eQTLs were most strongly enriched for associations included relevant 

tissues, such as aortic artery for systolic blood pressure (SBP), coronary artery for coronary 

artery disease (CAD), skeletal muscle for type 2 diabetes (T2D), colon for Crohn’s disease 

(CD), and hippocampus for Alzheimer’s disease (AD) (Fig. 1d and Supplementary Table 2). 

However, the most enriched tissues per trait also included less biologically obvious tissues, 

suggesting either shared regulation with the actual tissues of action or new pathogenic 

tissues. Notably, eQTLs in (commonly studied) whole blood were enriched for associations 

with about half of the traits tested (P<6.3x10-5; e.g., Ulcerative Colitis (UC), and low- and 

high-density lipoprotein cholesterol (LDL and HDL); Supplementary Table 2), 

demonstrating the utility of blood for broadly studying the underlying genetic mechanisms 

of some associations, but also emphasizing the importance of studying gene regulation in a 

biologically diverse set of disease-relevant tissues.

Applying a Bayesian-based enrichment method that accounts for eQTL effect size and 

considers all significant variant-gene pairs, TORUS9,10 (Supplementary Note and Table 1), 

similarly showed substantial enrichment for trait associations amongst eQTLs 

(Supplementary Fig. 6 and Supplementary Table 3).

Since traits may be determined by tissue-specific processes, we further examined just the 

subset of tissue-specific eQTLs (defined as eQTLs significant in a given tissue and at most 4 

other tissues, ~10% of tissues, using multi-tissue analysis; see Methods and Supplementary 

GTEx Portal: http://www.gtexportal.org/
Gene Ontology: http://geneontology.org/
UK Biobank: http://www.ukbiobank.ac.uk/
BioVU: https://victr.vanderbilt.edu/pub/biovu/?sid=194
NHGRI-EBI GWAS Catalog: http://www.ebi.ac.uk/gwas
Mouse Genome Informatics: http://www.informatics.jax.org/downloads/reports/index.html
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Fig. 7a). Using eQTLEnrich, we found significant enrichment in fewer tissue-trait pairs 

when restricting to tissue-specific eQTLs (Supplementary Table 4 and Supplementary Fig. 

7b) than with all eQTLs (Supplementary Table 2). Among the top results were adipose-

specific eQTLs for diastolic blood pressure (DBP) and aorta-specific eQTLs for SBP, 

proposing different tissue-specific processes that may underlie DBP and SBP.

Cis-eQTL characterization of known trait associations

Since regulatory effects are enriched for top-ranked trait associations, we asked how many 

of the genome-wide significant associations (P<5x10-8) from the NHGRI-EBI GWAS 

catalog might be acting via eQTLs, and in what tissues. We annotated 5,895 genome-wide 

significant associations (P<5x10-8; hereafter “trait-associated variants”), identified primarily 

in samples of European descent (Supplementary Table 5), with GTEx eQTLs from both 

single-tissue (FDR≤0.05) and multi-tissue analyses (METASOFT4, m-value≥0.9) using a 

linkage disequilibrium (LD) cutoff of r2>0.8 (see Methods; Supplementary Table 6). 

Considering all significant variant-gene eQTL pairs, we observed that 61.5% of the 5,895 

trait-associated variants were in LD (r2>0.8) with at least one eQTL from any tissue 

(Supplementary Tables 7).

To characterize the target gene and tissue patterns of trait-associated variants in LD with an 

eQTL, we extracted a set of 3,718 independent trait-associated variants across all traits in 

unlinked loci (r2<0.1) (see Methods) and considered only protein-coding, lincRNA, and 

antisense genes (Supplementary Tables 8). Notably, 58.0% (2,158) of the trait-associated 

variants were in LD (r2>0.8) with at least one eQTL, when considering all significant 

variant-gene pairs, half of which (1,197) were the actual reported GWAS variant, and 27.8% 

(1,034) of all variants were in LD with the ‘best eQTL per eGene’ (see Methods and 

Supplementary Table 7). This is a ~5-fold increase over that reported in the GTEx pilot 

phase11 for eQTLs from nine tissues with fewer samples (27.8% versus 5.9% for ‘best 

eQTL per eGene’ set). A third of the increase is due to the expanded number of tissues, 

which resulted in 308 trait-associated variants in LD with an eQTL in only a non-pilot 

tissue, while the increased sample size (relative to the pilot-phase) leads to an additional ~3-

fold increase. Consistent with the eQTLEnrich results, the independent set of genome-wide 

significant variants were significantly enriched for eQTLs in LD with them, across the 44 

tissues (P<10-4 using variants matched on minor allele frequency [MAF], distance to nearest 

gene, and LD as the null; see Supplementary Note).

To determine whether trait-associated variants tended to have regulatory effects on multiple 

genes, or target the same gene in multiple tissues, we examined the distribution of the 

number of eQTL target genes and implicated tissues per trait-associated variant, using the 

independent set of 3,718 trait associations (Fig. 2a,b). Of the trait-associated variants in LD 

(r2>0.8) with at least one eQTL, 62% were in LD with an eQTL that targeted more than one 

gene (median 2.0 genes ± 3.8; using all eQTLs per eGene, Fig. 2a), and 77% were in LD 

with eQTLs that are significant in more than one tissue (median 5.0±11.6 tissues) (Fig. 2b). 

In contrast, among eQTLs in LD with trait-associated variants, those that target only a single 

gene were more tissue-specific than those that target multiple genes (Fig. 2c). Using eQTLs 

from the multi-tissue analysis (see Methods) further increased the number of tissues for 
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eQTLs in LD with trait-associated variants (median 31.0±16.9 tissues; Fig. 2b), with a single 

tissue implicated by eQTLs for only 4.7% (173) of the trait-associated variants, primarily 

(88%) non-whole blood. Overall, for more than 50% of trait-associated variants, more than 

one causal gene and one tissue are implicated as potential mechanisms of action. 

Importantly, the use of eQTLs versus a physical window (e.g. of ±1Mb), substantially 

reduces the number of proposed causal genes in trait-associated loci (Fig. 2c) for follow-up 

analyses and inspection.

Of the three gene biotypes examined, 85% of the target genes of eQTLs in LD with one or 

more trait-associated variants are protein-coding genes and 15% are noncoding: 7% 

lincRNA and 8% antisense genes (Supplementary Table 8). Most proposed causal genes for 

known trait associations are protein-coding, but for ~4% (134) of trait associations, only 

noncoding genes are implicated, primarily lincRNAs (Supplementary Table 6). For example, 

the neuroblastoma-associated variant rs6939340 is in LD (r2=0.86) with an eQTL 

(rs9466271) acting on the neuroblastoma associated transcript 1, NBAT112, in multiple 

tissues, including nerve and brain.

Further, a common assumption is that the nearest gene to the trait-associated variant is the 

likely causal gene. However, for only 50% of trait-associated variants in LD with at least one 

eQTL was the target gene the nearest gene, illustrating the limitations of proximity-based 

assignment in identifying potentially causal genes. In addition, the distance of eQTLs in LD 

with trait-associated variants to the transcription start site (TSS) of their target gene was 

significantly greater than that of all other eQTLs (Wilcoxon rank sum P=3.0x10-59), and 

more likely to be downstream of the TSS (Fig. 2d and Supplementary Fig. 8).

Since eQTLs are ubiquitous in the genome2, LD between an eQTL and trait-associated 

variant can occur by chance. Hence, we applied two colocalization methods, Regulatory 

Trait Concordance (RTC)13,14 and eCAVIAR15 (Supplementary Note), to three traits: SBP, 

DBP and CAD. Out of 21 (SBP), 19 (DBP), and 37 (CAD) associated variants (P<5x10-8), 

that are in LD with an eQTL, there is colocalization support for 67%, 58% and 32% of the 

loci, respectively, by at least one of the methods (Supplementary Table 9 and Supplementary 

Fig. 9). Some high-confidence genes suggested by high-LD and supported by both co-

localization methods include rs1412444-LIPA and rs6544713-ABCG8 for CAD, rs1173771-

NPR3 and rs17477177 with CCDC71L and CTB-30L5.1 (a lincRNA) for SBP, and 

rs2521501-MAN2A2 for both SBP and DBP (results and significant tissues in 

Supplementary Table 9). For CAD, the lead variant (rs6544713)16, located in the intron of 

ABCG8, is in almost complete LD with the best eQTL for ABCG8 (rs4245791; r2=0.99), 

which is specific to transverse colon (Fig. 3a,b) and has a 2.45-fold effect on expression17 

(ALT vs. REF allele). ABCG8 plays a critical role in cholesterol metabolism by limiting 

intestinal dietary sterol uptake and by secreting sterol into bile. Recessive mutations in 

ABCG8 cause sitosterolaemia, a disorder characterized by premature atherosclerosis and 

abnormal sterol accumulation18. The minor T-allele at rs6544713 is associated with lower 

expression of ABCG8 in transverse colon (Fig. 3c), and increased CAD risk and higher low-

density lipoprotein cholesterol (LDL) levels19. The three top eQTLs for ABCG8, which are 

in strong LD with the CAD-associated variant rs6544713 (r2>0.95), overlap gastrointestinal 

(GI) and liver enhancers based on Roadmap Epigenomics Project20 data.
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Breadth vs. depth of tissues: eQTL analysis of GWAS loci

Most eQTL analyses have been limited to a few readily accessible tissues (primarily blood), 

though with large sample sizes (900-5000). A specific goal of the GTEx study, in contrast, 

was to survey a wide range of (often inaccessible) tissues from the body, though with 

necessarily smaller sample sizes. To assess the relative value of breadth in sample type 

versus depth of sample size in the functional characterization of trait associations, we 

compared cis-eQTLs found in at least one of the 44 tissues to those discovered in two large 

cis-eQTL studies of whole blood (DGN21,22 n=922; Westra et al.23 n=5,311). We found 

that 80% of all ‘best eQTL per eGene’ variants and 63% of all eGenes found in ≥1 tissue in 

GTEx were not found in DGN, an RNA-seq based study (FDR<0.05; see Methods and Fig. 

3d). Of just the subset of eQTLs in LD (r2>0.8) with 467 independent trait-associated 

variants from the GWAS catalog, 62% were not found in DGN, and of these, 82% were not 

significant in GTEx whole blood (Fisher’s Exact P=3.3x10-27; Fig. 3d). Due to differences 

in analytic methods, we also inspected the overlap at the eGene level. Importantly, 47% of 

all eGenes identified in GTEx across the 44 tissues were not found in DGN, of which 81% 

were identified only in non-blood tissues in GTEx (Fisher’s Exact test P=1.1x10-15; Fig. 3d). 

In contrast, only 3% of DGN eGenes were not detected in GTEx in any of the 44 tissues, 

even though DGN detected 1.3-fold more eGenes than GTEx whole blood. Notably, the 

GTEx eQTLs not found in DGN, in particular non-blood eQTLs, tended to be more tissue-

specific than GTEx eQTLs that were also found in the larger DGN blood study (Wilcoxon 

rank sum P=1.0x10-16; Fig. 3e). Similar patterns were observed with the much larger, 

microarray-based study by Westra et al. (see Methods and Supplementary Figures 10 and 

11). Hence, while larger studies provide better discovery power for a specific tissue of 

interest, there is great value to the diversity of tissues in proposing new biological 

hypotheses, especially tissue-specific ones, for a considerable number of trait associations 

(see examples listed in Supplementary Tables 10 and 11).

Trait heritability attributable to cis-eQTLs

To quantify the proportion of genetic contribution to trait variation (heritability) that may be 

attributed to regulatory variation from across the 44 tissues, we applied (summary-statistics-

based) LD score regression (LDSR)24 to 15 of the 18 traits tested for enrichment above, 

with available GWAS meta-analysis effect sizes (Supplementary Table 1 and Methods). 

Using all significant (single-tissue) eQTL variant-gene pairs from the 44 tissues, we found 

that while the eQTLs comprise on average 33% of the variants tested in all GWAS meta-

analyses, they explained 52.1% of the variant-based heritability, showing a 1.6-fold 

concentration of heritability (see Methods; Fig. 4a and Supplementary Table 12). The 

combined set of eQTLs explains from 38.0 ± 2.7% (for BMI) to 78.2+15.2% (for AD) of the 

traits’ heritability (Supplementary Table 12), of which 10% to 16% are tissue-specific 
eQTLs (see Methods and Supplementary Table 13). By restricting our analysis to the top 10 

eQTLs per eGene, which are likely to be enriched for causal variants25, proportionately, we 

found an even greater contribution of eQTLs to the variant-based heritability (3.2-fold 

concentration of heritability; Fig. 4a and Supplementary Table 14). Considering the 

contribution of eQTLs from each tissue separately, we found that the proportion of 

heritability explained by eQTLs for the different tissue-by-trait pairs tested ranged from a 

median of 5.9% to 9.9% per trait (ranging from 0% to 32.7 ± 7.7%), based on single-tissue 

Gamazon et al. Page 6

Nat Genet. Author manuscript; available in PMC 2018 December 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



eQTL analysis (Supplementary Table 15), and a median of 18.4% to 35.8% per trait (ranging 

from 10.8 ± 2.1% to 49 ± 9.5%), based on eQTLs from the multi-tissue eQTL analysis (Fig. 

4b and Supplementary Table 16). By partitioning the heritability from the full set of 

significant eQTL variant-gene pairs by different structural/functional genomic features26 

(see Methods), we found the highest concentration of heritability was for conserved genomic 

regions, and the lowest for repressor regions (Fig. 4c).

To conduct tissue-specific assessment of the eQTL contribution to heritability, we evaluated 

the proportion of heritability attributed to those eQTLs that target ‘tissue-specific genes’ 

(i.e., genes showing higher expression in a given tissue than in all other tissues - see 

Methods), using LDSR, and found it to be a limited fraction of the heritability attributed to 

all eQTLs (Fig. 4d and Supplementary Table 17). Biologically plausible patterns of tissue-

specific heritability concentration were observed across the different traits analyzed 

(Supplementary Fig. 12 and Supplementary Note).

Since the estimated proportion of heritability is modestly correlated with GWAS sample size 

(which explains R2=2.3-13.7% of variance in LDSR-derived heritability; Supplementary 

Fig. 13c,f), we investigated the pattern of heritability attributed to eQTLs across tissues for 

several WTCCC traits27, where GWAS sample size is identical for all traits and genotype 

data are available, and also found biologically plausible (tissue- and trait-dependent) patterns 

of heritability (Supplementary Fig. 14, Supplementary Table 18 and Supplementary Note).

Using eQTLs to discover new trait associations and genes

Estimating the true positive rate—Since many more associations are likely to underlie 

trait variation than those currently passing genome-wide significance28 (e.g., Fig. 1b and 

Supplementary Fig. 3), we tested whether we could use eQTLs to identify novel 

associations, and to propose causal genes and potential tissues of action for these 

associations. We estimated the true positive rate (π1 statistic)29 of trait associations amongst 

eQTLs (using the ‘best eQTL per eGene’ sets) in the 44 tissues for the 18 traits tested above 

(see Methods). The average π1 across the 44 tissues per trait ranged from 2.9% to 45.5% for 

the 18 traits (Fig. 5a and Supplementary Table 19), suggesting that hundreds of trait 

associations (known and new) are acting via eQTLs in different tissues for all traits (Fig. 5b; 

lower bound estimates: median of 80 trait associations, and up to 1551 trait associations 

across all tissue-trait pairs tested). Consistent with the eQTLEnrich results, the 

anthropometric (height and BMI) and autoimmune (CD and UC) traits showed high π1 in 

most tissues, while other traits showed high π1 in only a subset of tissues (Supplementary 

Fig. 15). Clustering traits based on π1 across tissues (see Methods), we found that CD and 

UC clustered together (Pearson’s r=0.39, p=0.008), suggesting that eQTLs may contribute 

substantially to the known genetic correlation between these traits; waist-hip-ratio (WHR) 

clustered with T2D, more strongly than with BMI (Pearson’s r=0.37, p=0.01 versus 

Pearson’s r=0.12, p=0.44), consistent with reports that WHR is a better predictor of 

T2D30,31; and CAD clustered with SBP, a known CAD risk factor32 (Supplementary Fig. 

15).

Similar to the eQTLEnrich analysis, the tissues with highest estimated π1 contained relevant 

pathogenic tissues, such as hippocampus for AD and skeletal muscle for T2D, but also less 
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obvious tissues, such as the reproductive tissues. We therefore examined the relative 

contribution of tissue-specific eQTLs (significant in at most 10% of tissues) versus tissue-
shared eQTLs (significant in over 90% of tissues) to trait associations (see Methods). Most 

traits showed, on average, higher absolute numbers and higher rates of trait associations (π1) 

among tissue-shared eQTLs (median π1=9.3%, range: 0-88%) relative to tissue-specific 

eQTLs (median π1=5.6%, range: 0-87%) (Fig. 5c, Supplementary Fig. 17a and 

Supplementary Table 19). Thus, at least some of the less obvious tissues with high π1 are 

capturing some component of shared regulation with the actual pathogenic tissues. On the 

other hand, 2-hour glucose tolerance levels (2hrGlu), SBP, and DBP showed on average a 

larger number of tissue-specific versus tissue-shared eQTLs amongst their trait associations 

(see Methods; Supplementary Fig. 17b and Supplementary Table 19). This result persisted 

after normalizing for differences in number of tissue-specific and tissue-shared eQTLs in 

each tissue (Supplementary Fig. 17c) and was not dependent on GWAS sample size 

(Supplementary Fig. 18).

Pathway-guided discovery and replication in DNA biobanks—To identify the true 

positive trait associations that contribute to the observed enrichment, we searched for target 

genes of eQTLs with top-ranked GWAS p-values (P≤0.05) that are enriched in biological 

pathways or functionally related gene sets, such as genes that share mouse knock-out 

phenotypes. We applied eGeneEnrich (see Methods) to several tissue-trait pairs 

(Supplementary Table 20) for a number of traits (AD, CAD, LDL, SBP, and T2D) that 

showed significant enrichment based on eQTLEnrich or π1 estimates, both of which are not 

affected by tissue sample size (Supplementary Figures 4 and 16, and Supplementary Tables 

2 and 19). Multiple gene sets were nominally enriched (eGeneEnrich adjusted P<0.05) for 

each tissue-trait pair tested (Supplementary Table 20). The proposed causal genes and 

corresponding best eQTLs were then tested for replication in large-scale biobanks (see 

below).

To identify tissue-specific processes, we also applied eGeneEnrich to target genes of tissue-

specific eQTLs. We analyzed the target genes of aorta-specific eQTLs with SBP P<0.05 

(that showed one of the strongest tissue-specific eQTL-GWAS enrichment; Supplementary 

Table 4), using a GWAS meta-analysis of 69k individuals33, and found significant 

enrichment in gene sets related to body weight and the cardiovascular system. These gene 

sets suggested, for example, an aorta-specific eQTL acting on two protein-coding genes, 

GUCY1A3 and GUCY1B3, and a non-coding gene, RP11-588K22.2, as a novel association 

with SBP (Fig. 6a,b). Notably, the best aorta eQTL for GUCY1B3 (rs4691707) recently 

reached genome-wide significance in a 5-fold larger GWAS meta-analysis of ~342,000 

individuals34, but aorta would have not been prioritized as a tissue of action, based solely on 

the expression of GUCY1B3 or GUCY1A3 across tissues (Fig. 6c and Supplementary Fig. 

19).

We tested for independent support for the proposed causal target genes from the discovery 

gene set analysis (eGeneEnrich adjusted P<0.05) in two large-scale repositories – UK 

Biobank5, a prospective study with extensive phenotypic data, and BioVU6, an electronic 

health records-linked DNA biobank (see Methods). First, using the gene-level association 

method, PrediXcan35,36, we evaluated the contribution of the genetic component of gene 

Gamazon et al. Page 8

Nat Genet. Author manuscript; available in PMC 2018 December 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



expression to trait variance in the UK Biobank for two traits with sufficient sample size: 

SBP and myocardial infarction (MI), as a proxy for CAD (see Methods). The eGeneEnrich-
proposed causal genes for SBP in aorta or MI in coronary artery (Table 2 and Supplementary 

Table 20) each had significantly lower replication p-values than the remaining genes 

analyzed by PrediXcan in the specific tissue (Wilcoxon Rank-Sum one-tailed test 

P=1.5x10-7 for SBP and P=5.8x10-5 for MI; Fig. 6d,e and Supplementary Table 21). At 

FDR<0.05, 33 (58%) of the proposed causal genes replicated for SBP, some of which have 

been previously implicated, such as FURIN (P=6.94x10-34), a gene important for the renin-

angiotensin system and sodium-electrolyte balance37,38, ARHGAP42 (P=1.66x10-28), 

shown to contribute to variation in blood pressure by modulating vascular resistance39, and 

GUCY1B3 (P=2.65x10-19), implicated in the development of hypertension in mice, and 15 

(28%) proposed genes replicated for CAD (Supplementary Table 21). The significant 

association of the expression of HLA-C (P=2.96x10-5) with MI lends further support to an 

important role for a chronic inflammatory process in the development of 

atherosclerosis40,41.

Second, we tested for replication of association of the best eQTL variants for the proposed 

causal genes (eGenes) (Supplementary Table 20) in the UK Biobank. The proposed aorta 

eQTLs were more likely to be replicated for SBP than matched null variants with GWAS 

p<0.05 (Fig. 6f; fold-enrichment=11.9, empirical P<0.01; see Methods), and similarly for 

coronary artery eQTLs and MI (Fig. 6g; fold-enrichment = 4.9, empirical P<0.01 for MI; see 

Methods), implicating robust novel variant-level associations for SBP and CAD (list of 

eQTLs with replication p<0.05 and those that pass Bonferroni correction in Supplementary 

Tables 22 and 23).

Finally, we found substantial replication (17%) of the eGeneEnrich-proposed genes in the 

specific tissue for the remaining GWAS traits (AD, LDL, T2D, as well as SBP and CAD), 

by applying PrediXcan to related clinical phenotypes in BioVU (Supplementary Table 20 

and Supplementary Note), most of which are new associations (Supplementary Table 6).

Taken together, these results demonstrate a new and robust framework for identifying true 

positive associations, at both the gene and variant levels, for complex traits.

Discussion

Characterizing the biological mechanisms underlying genetic variants associated with 

disease predisposition and other complex traits has proven to be an enormous, but critical 

challenge. Here we conducted integrative analyses of eQTL and GWAS data for a broad 

spectrum of complex traits. Using a diverse set of tissues, we assessed the contribution of 

regulatory variants to trait variation through several approaches, including enrichment 

analysis, heritability analysis, and true positive rate estimation, and investigated the relative 

contribution of tissue-specific eQTLs. Our analyses demonstrate a substantial polygenic 

contribution from eQTLs, including tissue-shared and tissue-specific ones, to a range of 

complex traits. A broader sampling of cell types with larger sample sizes promises greater 

resolution on the impact of regulatory variants on disease risk and trait variation.
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We observed a five-fold increase in the number of known trait-associated variants in LD 

with at least one best eQTL per eGene in the 44 tissues compared to the GTEx pilot phase 

with 9 tissues. Notably, for over half of these trait-associated variants, more than one target 

gene, in one or more tissues, was suggested by the linked eQTLs, raising the possibility that 

more than one causal gene, and possibly tissue, might underlie many of the associations. 

This pattern was also observed from colocalization analysis (also shown for v6p in2). 

Measuring eQTLs in individual cell types might increase resolution and narrow down the list 

of candidate genes and cell types. Furthermore, gene- and causal inference-based methods 

(such as PrediXcan35 or a Mendelian Randomization approach42) and additional functional 

validation (such as with CRISPR-mediated genome editing43,44) will be important in 

determining the causal genes at trait-associated loci. The proposed causal gene for trait-

associated variants based on the strongest eQTL-derived target gene was, notably, often 

discordant (~50%) with proximity-based assignment, reinforcing the importance of eQTL 

analysis for prioritizing causal genes.

Our study implicates non-coding target genes, in particular lincRNAs and antisense genes 

that are polyadenylated, for about 15% of trait associations. This is of particular interest as 

many non-coding RNAs have regulatory functions (e.g., associated with chromatin-

modifying complexes45), and participate in regulatory networks46. This suggests that 

among the trait-associated variants acting via non-coding RNA targets, some may be trans-

eQTLs.

For the complex traits tested, eQTLs explain a substantial proportion of the genetic 

contribution to trait variation (10-50% per tissue), only a small fraction of which is due to 

eQTLs acting on tissue-specific genes. The proportion of heritability explained by all eQTLs 

(40-80%) is likely to increase with greater tissue sample size, which will lead to improved 

detection of eQTLs with weaker regulatory effects and additional independent eQTL signals 

per gene. The observation that tissue-shared eQTLs comprise a larger fraction of the trait 

associations than tissue-specific eQTLs for many of the tissue-trait pairs tested poses 

challenges in distinguishing pathogenic tissues from shared regulation among tissues. 

Alternatively, it also suggests that the underpinnings of many noncoding trait associations 

may be decipherable even if the actual pathogenic tissue is not available. Integrating 

additional layers of information, such as the tissue-specificity of eQTLs14,47, expression of 

transcriptional regulators, or broader cellular network effects on the locus in different cell 

types, may assist in detecting relevant tissue(s) of action.

While tissue-shared regulation appears to underlie an appreciable proportion of the genetic 

component of complex traits, we find multiple examples for which the trait associations are 

tissue-specific eQTLs, that were not found in previous, much larger whole blood eQTL 

studies. Our polygenic analyses also demonstrate the importance of a broad sampling of 

tissues; for some traits, enrichment for trait associations amongst eQTLs is most prominent 

only in a subset of difficult-to-acquire tissues.

By integrating prior biological knowledge (of pathways and mouse phenotype ontologies) 

with top-ranked trait-associated eQTLs in relevant tissues, followed by additional analysis 

for independent support in large-scale DNA biobanks, we were able to propose and replicate 
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potentially causal genes and novel trait associations. Our work suggests that gene-based 

approaches that test the contribution of the genetically determined expression to trait 

variation35, coupled with better understanding of biological networks in a diverse set of 

tissues, promise to greatly enhance the functional interpretation of GWAS findings and 

identification of disease-relevant genes.

Online Methods

All statistical tests based on theoretical distributions were two-sided, unless noted otherwise.

Genotype Tissue Expression (GTEx) Project

All eQTLs used in the paper were computed from 44 tissues in GTEx release v6p2. 

Complete descriptions of the donor enrollment and consent process, and the biospecimen 

procurement methods, sample fixation, and histopathological review procedures were 

previously described51. Description of single-tissue and multi-tissue eQTL analyses can be 

found in Supplementary Note.

eQTL analyses of trait-associated variants

eQTL annotations of genome-wide significant associations with complex 
traits—To assess the utility of GTEx eQTLs (release v6p) for providing functional insights 

into trait-associated variants, we used all genome-wide significant associations (p-value 

≤5x10-8) from the NHGRI-EBI GWAS Catalog version 1.0.1, release 2016-07-10 (see 
URLs), which contains significant associations from published GWAS studies for 659 

distinct complex diseases and traits (referred to as “trait-associated variants”) and 563 

unique phenotype ontologies (Experimental Factor Ontology), supplemented with 25 

genome-wide significant variants for coronary artery disease16,50. In total, these data 

represented 11,010 entries corresponding to 7,076 unique dbSNP identifiers (Supplementary 

Table 5). For our analyses, we excluded entries that did not have a single dbSNP identifier 

for the association (n=179 entries), as well as all entries without mention of the use of 

European samples in either the discovery or replication sample set (n=1,885 entries; n=1,181 

unique dbSNP identifiers).

Using PLINK 1.9052 (see URLs) on all non-Finnish northern European samples from the 

1000 Genomes Phase 3 release53, all variants in strong LD (r2>0.8) with the remaining 

5,895 unique GWAS index variants were identified. These index variants were then 

annotated with four categories of GTEx eQTLs, based on overlap of the GWAS index or 

their LD-proxy variants with: (1) the most significant eQTL for an eGene within ±1MB 

window around the transcription start site (TSS) (“best eQTL per eGene”; FDR≤0.05) in ≥1 

tissue; (2) all significant variant-gene pairs for an eGene in ≥1 tissue (FDR≤0.05); (3) the 

most significant variant for an eGene in ≥1 tissue based on the multi-tissue method, 

METASOFT4 (see Supplementary Note) with significant evidence for an eQTL (m-
value≥0.9); (4) all significant variant-gene pairs for an eGene showing significant evidence 

for an eQTL (m-value≥0.9) in ≥1 tissue based on METASOFT4.

The GWAS catalog was annotated with all analyzed GTEx genes, but for downstream 

analyses only the “protein_coding”, “lincRNA” and “antisense” biotypes were considered. 
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Since entries in the complete GWAS catalog could comprise multiple index variants at the 

same locus for a single or different traits, LD-pruning was performed to provide a list of 

independent GWAS variants for downstream analyses. Variants associated with more than 

one trait were considered only once. Starting with the variants with the greatest number of 

eQTL annotations, pruning was performed according to three LD thresholds (r2>0.8, 0.5 and 

0.1), as recorded in Supplementary Table 6. For analyses presented in this paper r2>0.1 was 

used unless mentioned otherwise. The eQTL annotated GWAS catalog is in Supplementary 

Table 6 and posted on the GTEx Portal (see URLs).

Comparison of GTEx eQTLs to previous large whole blood eQTL studies—We 

compared the eQTLs and eGenes discovered in any of the 44 tissues in GTEx to those cis-

eQTLs discovered in two previous whole blood eQTL studies of substantially larger sample 

sizes: (1) a microarray-based study of 5,311 samples imputed to HapMap2 by Westra et 
al23, and (2) an RNA-Seq study of 922 samples from the Depression Genes and Networks 

(DGN)21,22, imputed to 1000 Genomes Project Phase 1. For the comparison with the 

Westra et al. study, we considered only protein-coding eGenes and eQTLs within +/- 250kb 

of the TSS of the target gene (14,303 eGenes). For the comparison with the DGN study, we 

considered protein-coding, lincRNA, and antisense gene types (23,219 eGenes) and eQTL 

variants within +/-1Mb of the TSS of the target gene, which were also tested in DGN 

(21,643 ‘best eQTL per eGenes’). For eQTL comparison, a single best eQTL variant was 

chosen per eGene across tissues - the variant with the largest number of significant tissues, 

determined by m-value≥0.9 in METASOFT and/or FDR≤0.05 in the single-tissue analysis.

We computed the proportion of eGenes and ‘best eQTL per eGenes’ discovered in ≥1 tissue 

in GTEx, but not found in DGN, and compared them (and their tissue specificity) to that of 

GTEx eQTLs found in DGN (Fig. 3d,e). For comparison with Westra et al. we considered 

only eGenes, due to impartial overlap of variants tested between GTEx and Westra et al. 
(Supplementary Figures 10 and 11). Furthermore, we determined the proportion of 

independent trait-associated variants (from the GWAS catalog) that are in LD (r2>0.8) with 

≥1 eQTL, none of which was found in DGN or Westra et al. (Supplementary Tables 10 and 

11). In cases where multiple eQTLs were in LD with a given GWAS variant, the eQTLs 

were grouped into one count; being significant in the non-GTEx blood study took 

precedence over not being identified in the study, and being significant in whole blood in 

GTEx took precedence over not being significant in blood.

Polygenic analyses of top ranked trait associations using eQTLs

GWAS meta-analysis data—Polygenic analysis is an approach aimed at relating 

phenotypic variation to multiple genetic variants simultaneously. It differs from conventional 

single-variant tests of association by allowing large numbers of loci (potentially in the 

thousands) to be tested for their contribution to the genetic architecture of phenotype. We 

analyzed 18 complex traits with available GWAS summary statistics, as well as several 

extensively studied WTCCC phenotypes27, for which genotype and phenotype data are 

available. These phenotypes span a wide range of complex traits, including metabolic, 

cardiovascular, anthropometric, autoimmune, and neurodegenerative phenotypes 
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(Supplementary Table 1), allowing us to conduct comprehensive polygenic analyses (Table 

1) of their genetic basis, using the eQTLs from the single-tissue and multi-tissue analyses.

Tissue-specific and tissue-shared eQTLs—For the GWAS-eQTL fold-enrichment 

and π1analyses in the paper, tissue-specific eQTLs were defined as eQTLs with m-value≥0.9 

in METASOFT and/or FDR≤0.05 in the single-tissue analysis in 1-5 tissues (up to ~10% of 

tissues; the most highly similar tissues, except brain, are in sets of 2-3), including the tissue 

of interest, and tissue-shared eQTLs were defined as eQTLs with m-value≥0.9 in 

METASOFT and/or FDR≤0.05 in the single-tissue analysis in 40-44 tissues (over 90% of 

tissues), including the tissue of interest (Supplementary Fig. 7a).

Rank and permutation-based GWAS-eQTL fold-enrichment analysis—To test 

whether a set of eQTLs in a given tissue are enriched for sub-threshold (e.g., 

5x10-8<P<0.05) to genome-wide significant (p≤5x10-8) common variant associations with a 

given complex disease or trait, more than would be expected by chance, we developed the 

following rank and permutation-based method, called eQTLEnrich. Specifically, for a given 

GWAS and for each of the 44 tissues with eQTLs, the most significant (best) cis-eQTL per 

eGene was retrieved (to control for linkage disequilibrium between the multiple variants 

tested per gene), and the GWAS variant association p-values for each set of eQTLs were 

extracted (eQTLs affecting more than one gene are considered only once). The distribution 

of GWAS p-values for each set of eQTLs is then tested for enrichment of highly ranked trait 

associations compared to an empirical null distribution sampled from non-significant 

variant-gene expression associations (FDR>0.05), also called null-eVariants, as follows: (i) 

A fold-enrichment is computed for each GWAS-tissue pair as the fraction of eQTLs with 

GWAS variant p-value<0.05 compared to expectation (5% of eQTLs; assuming a uniform 

distribution of GWAS p-values, if eQTLs contain no GWAS signal); (ii) Similar fold-

enrichment values are computed for 100 to 100,000 randomly sampled sets (with 

replacement) of null-eVariants of equal size to the eQTL set, matching on potential 

confounding factors (using 10 quantile bins): distance of eQTL to TSS of the target gene, 

MAF, and number of proxy variants (at r2≥0.5), representing local LD (see Supplementary 

Fig. 1); (iii) An enrichment p-value is then computed as the fraction of permutations with 

similar or higher fold-enrichment than the observed value; (iv) An adjusted fold-enrichment 
(column H in Supplementary Table 2) is computed by dividing the fold-enrichment for a 

specific GWAS-tissue pair by the fold-enrichment of all null-eVariants with GWAS p<0.05 

for the tissue-trait pair. The adjusted fold-enrichment is used as the enrichment test-statistic 

for ranking tissues per trait, because it is not dependent on tissue sample size (variance in 

adjusted fold-enrichment explained by tissue sample size is R2=0.04%), while the 

enrichment p-value is weakly correlated with tissue sample size (variance in the p-value 

explained by tissue sample size is R2=0.64%; Supplementary Fig. 4). Lower and upper 

bound 95% confidence intervals were estimated using bootstrapping of randomly sampled 

sets of null eVariants with replacement, matching on the three potential confounding factors 

above. We note that our definition of null-eVariants (FDR>0.05) for this method should 

yield a conservative estimate of the adjusted fold-enrichment.
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eQTLEnrich was applied to 18 GWAS meta-analyses (Supplementary Table 1) using eQTLs 

from the single-tissue analysis at FDR≤0.05 (Supplementary Table 2) and tissue-specific 

eQTLs (defined above; Supplementary Table 4). Significant GWAS-tissue pairs were 

assessed using Bonferroni correction, correcting for total number of GWAS-tissue pairs 

tested (P<6.3x10-5). The adjusted fold-enrichment of the tissue-specific eQTLs is also not 

dependent on tissue samples size, number of eQTLs analyzed, or GWAS sample size 

(Supplementary Fig. 20).

eGeneEnrich: Gene set enrichment analysis of top ranked eQTL target genes
—When enrichment for trait associations (subthreshold to genome-wide significant) is found 

amongst a set of eQTLs, gene-set enrichment analysis (GSEA) can help detect the true 

associations over noise amongst the top ranked eQTLs. This is based on the assumption that 

causal genes affecting a given trait will tend to cluster in a limited number of biological 

processes. To this end, we developed a gene-set enrichment analysis approach, called 

eGeneEnrich that tests whether the top ranked target genes of eQTLs with GWAS p-values 

below a given cutoff (P<0.05 used here) for a given trait-tissue pair are enriched for genes in 

predefined gene sets, compared to a null distribution that includes only genes expressed in 

the given tissue, as defined below (based on method described in54,55). For each gene set gs 
and a set of eQTLs, l (FDR<0.05), we computed the probability (hypergeometric) of 

observing at least k target genes of eQTLs l with GWAS P<0.05 out of a total of m eGenes 

with GWAS P<0.05 that belong to gene-set gs, given that n out of N target genes of all 

(eQTLs and null-eVariants) ‘best-eQTL per gene’ eQTLs belong to the gene-set gs:

Pgs, l X ≥ k = 1 − ∑
i = 0

k − 1
m
i

N − m
n − i
N
n

To account for potential bias that may arise from the subset of genes expressed in a given 

tissue, we computed an eGeneEnrich adjusted p-value, i.e., an empirical GSEA p-value, that 

is the fraction of 1,000 to 10,000 randomly sampled target genes from a null set of variants, r 
(null-eVariants and eQTLs with GWAS p>0.05) of equal size to the eQTL set l, that have the 

same or more significant probability, Pgs,r than the observed probability, Pgs,l(X ≥ k).

We tested a range of sets of functionally related genes with ≥10 genes expressed in the given 

tissue, including metabolic and signaling pathways, gene ontology and mouse phenotype 

ontology, starting with: 674 gene-sets from REACTOME (downloaded from MSigDB v5.1), 

186 gene-sets from KEGG (downloaded from KEGG in 2010), 1,942 gene ontologies (GO; 

see URLs) and 3,792 mouse phenotype ontologies (downloaded from Mouse Genome 

Informatics, MGI in 2013; see URLs). Bonferroni correction was applied per resource, 

correcting for number of gene-sets tested that contained ≥1 target gene of a best eQTL per 

eGene with GWAS p<0.05. The method was applied to GWAS meta-analyses for SBP, T2D, 

LDL, CAD, and AD, and a number of tissues chosen based on significant eQTL enrichment 

for trait associations or high π1 statistic and their relevance to the trait.
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Replication framework using large-scale biobanks—To evaluate the role a gene 

may play in the etiology of a trait, we used PrediXcan35. Evaluating the genetically 

determined component of gene expression in an independent dataset for contribution to trait 

variance may facilitate replication of proposed causal genes. Specifically, from the weights 

β j derived from the gene expression model35 and the number of effect alleles Xij at the 

variant j, the genetically determined component of gene expression was estimated as 

follows:

Gi = ∑
j

Xi jβ j

An observed association between the estimated genetic component of gene expression and a 

trait proposes a causal direction of effect, as with eQTLs.

To test for independent support for the proposed causal genes for given trait-tissue pairs 

from the eGeneEnrich analysis, we utilized GWAS data from two large-scale biobanks. For 

replication analysis of proposed genes using the 500k UK Biobank5, we performed (variant-

level) GWAS of SBP (phenotype code=4080, Systolic blood pressure, automated reading; 

n=473,460) and myocardial infarction (MI; phenotype code=20002_1075, Non-cancer 

illness code, self-reported: heart attack / myocardial infarction; number of cases=10,866, 

number of controls=428,004), using the mixed model association method, BOLT-LMM56, 

and applied PrediXcan using summary statistics36. The two phenotypes were chosen for 

their available large sample size. Replication of a gene was tested in the same discovery 

tissue (aorta artery for SBP and coronary artery for CAD), and significance was assessed 

using the q-value approach (FDR<0.05) applied to all genes tested in the given tissue for 

each trait. To test for higher replication rate for the proposed genes (in the given tissue 

context), we compared the distribution of replication p-values for the proposed genes to that 

of the remaining genes with gene expression imputation models (Wilcoxon Rank Sum one-

tailed test).

We also sought variant-level replication of the associations of the best eQTLs for the 

eGeneEnrich-proposed genes using the BOLT-LMM results for SBP and MI in the UK 

Biobank. To determine whether our framework for finding true positive associations yields 

significantly improved replication rates, we generated an empirical distribution from 100 

sets of null variants of equal size to the input set, matching on distance of the eQTL to the 

TSS of the proposed gene, MAF, and number of LD-proxy variants (at r2≥0.5). In addition, 

the null variants were chosen from the best eQTLs for non-significant eGenes (FDR>0.05) 

and were required to show a nominal GWAS association p-value<0.05.

We sought to replicate the proposed gene-tissue pairs for all remaining traits (AD, LDL, 

T2D), as well as SBP and CAD, from the eGeneEnrich analysis using BioVU6. For each 

gene-tissue pair, we estimated the genetic component of gene expression in the implicated 

tissue in 18,620 BioVU samples using PrediXcan35, enabling testing of gene association 

with the trait despite the lack of directly measured gene expression on the samples.

Gamazon et al. Page 15

Nat Genet. Author manuscript; available in PMC 2018 December 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Estimation of true positive trait associations amongst eQTLs using π1 

statistic—We calculated the proportion (π1) of true positive trait associations amongst the 

set of ‘best eQTL per eGene’ (FDR≤0.05) for each of the 44 tissues (computed with the 

single-tissue analysis) for 18 complex traits (Supplementary Table 1), by applying Storey’s 

method29 (qvalue R package 2.4.2, default options) to the GWAS association p-values for 

each tissue-trait pair (Supplementary Table 19). The π1 statistic considers the full 

distribution of GWAS p-values (from 0 to 1). We used the ‘best eQTL per eGene’ to control 

for potential confounding effects due to LD between the multiple variants tested per eGene. 

The π1 statistic was not correlated with number of ‘best eQTL per eGenes’ analyzed per 

tissue-trait pair (r=-0.03, p=0.35; Supplementary Fig. 16b). Furthermore, the tissue sample 

size explained only a small percentage of the variability (R2=1%) in the π1 statistic 

(Supplementary Fig. 16a). The π1 statistic was not correlated with GWAS sample size after 

excluding the Height GWAS meta-analysis, which is an outlier with respect to its much 

larger sample size compared to the other meta-analyses (Pearson’s r=0.06, p=0.1; 

Supplementary Fig. 16c,d). We performed hierarchical clustering of the traits based on the 

π1 values using Euclidean distance between pairs of traits.

The estimated number of eQTLs in a given tissue that are true positive trait associations was 

computed as π1 × NeQTL, where NeQTL is the number of ‘best eQTL per eGene’ variants 

that have available summary statistics in the given GWAS meta-analysis (Fig. 5b). Note 

these are lower bound estimates, as the overlap of the GTEx eQTL variants, imputed using 

1000 Genomes Project Phase 1 vs3 (March 2012), with publicly available GWAS data 

variants, imputed using HapMap2 or earlier versions of 1000 Genomes Project, was partial 

(~26% of ‘best eQTL per eGenes’ for HapMap2 and 73-82% for 2010 and 2011 releases of 

1000 Genomes Project Phase 1; see Supplementary Table 1).

For each tissue t, we also estimated the π1 statistic for tissue-specific eQTLs and tissue-
shared eQTLs, anchored to the tissue t (as defined above) (Supplementary Figures 7a and 

17a). The π1 of small eQTL sets (with ≤30 eQTLs) was set to ’NA’. We calculated a tissue-

specificity measure per tissue-trait pair TSt,t.s., defined as the estimated number of tissue-

specific eQTLs that are true positive trait associations based on π1,tissue−specific divided by 

the estimated number of tissue-shared eQTLs that are true positive trait associations based 

on π1,tissue−shared, for tissue t:

TSt, t . s . = π1, tissue − speci f ic × NeQTL(t . s . )/π1, tissue − shared × NeQTL(t . sh . )

π1,tissue−shared below 0.01 were set to 0.01. The statistic provides a measure of eQTL tissue-

specificity per tissue and controls for the effect of GWAS sample size and number of eQTLs 

tested per tissue (Supplementary Figures 17b and 18). Normalizing by the total of number of 

tissue-specific and tissue-shared eQTLs per tissue: π1,tissue−specific / π1,tissue−shared gave 

similar results with respect to the extent that tissue-specific eQTLs versus tissue-shared 

eQTLs underlie trait associations for the 18 complex traits tested (see Supplementary Fig. 

17c compared to Supplementary Fig. 17b).
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LD Score regression and summary statistics-based heritability methods—We 

performed LD score regression (LDSR)24 using the ldsc software package (see URLs) 

following the recommended steps in the web tutorial to estimate the relative contribution of 

eQTLs to the heritability of complex traits. To estimate the overall contribution to 

heritability from the eQTLs to 15 complex traits with available GWAS meta-analysis variant 

effect sizes, LDSR was applied to three different sets of eQTLs aggregated across all 44 

tissues: (i) all significant variant-gene pair eQTLs (FDR≤0.05) from the single-tissue 

analysis, (ii) all tissue-specific eQTLs based on multi-tissue analysis (defined above), and 

(iii) a more stringent set of just the top 10 eQTLs per eGene in each of the tissues 

(Supplementary Tables 12-14). We also assessed the heritability attributed to eQTLs in each 

tissue separately, using either the single-tissue analysis (Supplementary Table 15) or the 

multi-tissue, METASOFT analysis (Supplementary Table 16). To carry out tissue-specific 

assessment (Supplementary Table 17), we ran the group analysis module in ldsc using the 

METASOFT4 derived eQTLs (m-value≥0.9) that were associated with tissue-selective genes 

in each GTEx tissue. For each tissue, tissue-selective (specific) genes were defined using a 

weighted tissue selectivity score (ts_score>3), that identifies genes with higher expression 

levels in a given tissue compared to all other tissues57.

For each of the eQTL classes, we calculated the proportion of heritability explained by 

eQTLs, Pr(h2
g), and a “heritability enrichment” score (or “concentration of heritability”), 

defined as the proportion of the heritability explained by the eQTL variants, divided by the 

proportion of all variants represented by these eQTLs in the given GWAS: Pr(h2
g)/Pr(SNPs). 

We note that the smaller variant set size for eQTLs acting on tissue specific genes may affect 

precision of LDSR heritability estimates. The 2hrGlu GWAS meta-analysis (Supplementary 

Table 1) was found to be unsuited for LD score regression, as the mean chi-square value 

obtained with LDSR was 1.02, suggesting very little polygenic signal (chi-square below 1.02 

was reported as not suitable for LDSR24). All other traits tested had higher chi-square 

values. The heritability results for 2hrGlu were not included in the summary of all LDSR 

analyses (Fig. 4).

To assess the heritability of human disease risk and trait variation from eQTLs within 

different genome features, we computed the heritability enrichment score with ldsc, defined 

as the proportion of heritability explained by eQTL variants in each functional category 

taken from26, divided by the proportion of all variants represented by these eQTLs in the 

GWAS. All significant variant-gene pair eQTLs from all 44 GTEx tissues based on the 

single-tissue analysis were used for this analysis. The functional categories analyzed are 

displayed in Fig. 4c.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank the DIAGRAM, MAGIC, GIANT, GLGC, CARDIoGRAM, ICBP, IGAP and IIBDGC consortia for 
making their GWAS meta-analysis summary statistics publicly available. This work was conducted using the UK 
Biobank Resource (application number 25331). E.R.G. acknowledges support from R01 MH101820, R01 

Gamazon et al. Page 17

Nat Genet. Author manuscript; available in PMC 2018 December 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



MH090937, R01 MH113362, and R01 CA157823 and benefited immensely from a Fellowship at Clare Hall, 
University of Cambridge. A.V.S., F.A., M.K., G.G., and K.G.A acknowledge support from the NIH contract 
HHSN268201000029C to The Broad Institute, Inc. M.v.d.B. acknowledges support by a Novo Nordisk postdoctoral 
fellowship run in partnership with the University of Oxford. F.H. and E.E. are supported by NIH grants R01-
MH101782 and R01-ES022282. X.W. acknowledges support from NIH grants R01 HG007022 and R01 AR042742. 
M.I.McC is a Wellcome Senior Investigator supported by Wellcome (098381, 090532, 106130, 203141) and NIH 
(U01-DK105535, R01-MH101814). E.T.D. acknowledges support from the Swiss National Science Foundation, 
European Research Council, NIH-NIMH, and Louis Jeantet Foundation. N.J.C. is supported by R01 MH113362, 
R01 MH101820, and R01 MH090937. The datasets used for part of the replication analysis were obtained from 
Vanderbilt University Medical Center’s BioVU, which is supported by numerous sources: institutional funding, 
private agencies, and federal grants. These include the NIH funded Shared Instrumentation Grant S10RR025141; 
and CTSA grants UL1TR002243, UL1TR000445, and UL1RR024975. Genomic data are also supported by 
investigator-led projects that include U01HG004798, R01NS032830, RC2GM092618, P50GM115305, 
U01HG006378, U19HL065962, R01HD074711; and additional funding sources listed at https://
victr.vanderbilt.edu/pub/biovu/.

References

1. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013; 45:580–5. 
[PubMed: 23715323] 

2. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017; 
550:204–213. [PubMed: 29022597] 

3. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for 
thousands of molecular phenotypes. Bioinformatics. 2016; 32:1479–85. [PubMed: 26708335] 

4. Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of 
genome-wide association studies. Am J Hum Genet. 2011; 88:586–98. [PubMed: 21565292] 

5. Sudlow C, et al. UK biobank: an open access resource for identifying the causes of a wide range of 
complex diseases of middle and old age. PLoS Med. 2015; 12 e1001779. 

6. Denny JC, et al. Systematic comparison of phenome-wide association study of electronic medical 
record data and genome-wide association study data. Nat Biotechnol. 2013; 31:1102–10. [PubMed: 
24270849] 

7. Wood AR, et al. Defining the role of common variation in the genomic and biological architecture of 
adult human height. Nat Genet. 2014; 46:1173–86. [PubMed: 25282103] 

8. Dupuis J, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 
2 diabetes risk. Nat Genet. 2010; 42:105–16. [PubMed: 20081858] 

9. Wen X. Molecular QTL Discovery Incorporating Genomic Annotations using Bayesian False 
Discovery Rate Control. Annals of Applied Statistics. 2016

10. Wen X, Lee Y, Luca F, Pique-Regi R. Efficient Integrative Multi-SNP Association Analysis via 
Deterministic Approximation of Posteriors. Am J Hum Genet. 2016; 98:1114–29. [PubMed: 
27236919] 

11. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: 
multitissue gene regulation in humans. Science. 2015; 348:648–60. [PubMed: 25954001] 

12. Pandey GK, et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma 
progression by regulating cell proliferation and neuronal differentiation. Cancer Cell. 2014; 
26:722–37. [PubMed: 25517750] 

13. Nica AC, et al. Candidate causal regulatory effects by integration of expression QTLs with 
complex trait genetic associations. PLoS Genet. 2010; 6:e1000895. [PubMed: 20369022] 

14. Ongen H, et al. Estimating the causal tissues for complex traits and diseases. Nat Genet. 2017; 
49:1676–1683. [PubMed: 29058715] 

15. Hormozdiari F, et al. Colocalization of GWAS and eQTL Signals Detects Target Genes. Am J Hum 
Genet. 2016; 99:1245–1260. [PubMed: 27866706] 

16. CARDIoGRAMplusC4D Consortium. Large-scale association analysis identifies new risk loci for 
coronary artery disease. Nat Genet. 2013; 45:25–33. [PubMed: 23202125] 

17. Mohammadi P, Castel SE, Brown AA, Lappalainen T. Quantifying the regulatory effect size of cis-
acting genetic variation using allelic fold change. Genome Res. 2017; 27:1872–1884. [PubMed: 
29021289] 

Gamazon et al. Page 18

Nat Genet. Author manuscript; available in PMC 2018 December 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://victr.vanderbilt.edu/pub/biovu/
https://victr.vanderbilt.edu/pub/biovu/


18. Berge KE, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in 
adjacent ABC transporters. Science. 2000; 290:1771–5. [PubMed: 11099417] 

19. Kathiresan S, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 
2009; 41:56–65. [PubMed: 19060906] 

20. Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, 
regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016; 
44:D877–81. [PubMed: 26657631] 

21. Battle A, et al. Characterizing the genetic basis of transcriptome diversity through RNA-
sequencing of 922 individuals. Genome Res. 2014; 24:14–24. [PubMed: 24092820] 

22. Kukurba KR, et al. Impact of the X Chromosome and sex on regulatory variation. Genome Res. 
2016; 26:768–77. [PubMed: 27197214] 

23. Westra HJ, et al. Systematic identification of trans eQTLs as putative drivers of known disease 
associations. Nat Genet. 2013; 45:1238–1243. [PubMed: 24013639] 

24. Bulik-Sullivan BK, et al. LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat Genet. 2015; 47:291–5. [PubMed: 25642630] 

25. Brown AA, et al. Predicting causal variants affecting expression by using whole-genome 
sequencing and RNA-seq from multiple human tissues. Nat Genet. 2017; 49:1747–1751. 
[PubMed: 29058714] 

26. Finucane HK, et al. Partitioning heritability by functional annotation using genome-wide 
association summary statistics. Nat Genet. 2015; 47:1228–35. [PubMed: 26414678] 

27. Wellcome Trust Case Control, C. Genome-wide association study of 14,000 cases of seven 
common diseases and 3,000 shared controls. Nature. 2007; 447:661–78. [PubMed: 17554300] 

28. Eichler EE, et al. Missing heritability and strategies for finding the underlying causes of complex 
disease. Nat Rev Genet. 2010; 11:446–50. [PubMed: 20479774] 

29. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S 
A. 2003; 100:9440–5. [PubMed: 12883005] 

30. Qiao Q, Nyamdorj R. Is the association of type II diabetes with waist circumference or waist-to-hip 
ratio stronger than that with body mass index? Eur J Clin Nutr. 2010; 64:30–4. [PubMed: 
19724291] 

31. Cheng CH, et al. Waist-to-hip ratio is a better anthropometric index than body mass index for 
predicting the risk of type 2 diabetes in Taiwanese population. Nutr Res. 2010; 30:585–93. 
[PubMed: 20934599] 

32. Emerging Risk Factors, C. et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 
2009; 302:1993–2000. [PubMed: 19903920] 

33. International Consortium for Blood Pressure Genome-Wide Association, S. et al. Genetic variants 
in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011; 
478:103–9. [PubMed: 21909115] 

34. Ehret GB, et al. The genetics of blood pressure regulation and its target organs from association 
studies in 342,415 individuals. Nat Genet. 2016; 48:1171–84. [PubMed: 27618452] 

35. Gamazon ER, et al. A gene-based association method for mapping traits using reference 
transcriptome data. Nat Genet. 2015; 47:1091–8. [PubMed: 26258848] 

36. Barbeira AlvaroS KP, Torres Jason M, Wheeler Heather E, Torstenson Eric S, Edwards ToddGarcia 
TzintzuniBell Graeme I, Nicolae DanCox Nancy J, Im Hae Kyung. MetaXcan: Summary Statistics 
Based Gene-Level Association Method Infers Accurate PrediXcan Results. bioRxiv. 2017

37. Ganesh SK, et al. Loci influencing blood pressure identified using a cardiovascular gene-centric 
array. Hum Mol Genet. 2013; 22:1663–78. [PubMed: 23303523] 

38. Li N, et al. Associations between genetic variations in the FURIN gene and hypertension. BMC 
Med Genet. 2010; 11:124. [PubMed: 20707915] 

39. Rippe C, et al. Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the 
Notch signaling pathway. Sci Rep. 2017; 7 1334. 

40. Davies RW, et al. A genome-wide association study for coronary artery disease identifies a novel 
susceptibility locus in the major histocompatibility complex. Circ Cardiovasc Genet. 2012; 5:217–
25. [PubMed: 22319020] 

Gamazon et al. Page 19

Nat Genet. Author manuscript; available in PMC 2018 December 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



41. Lahoute C, Herbin O, Mallat Z, Tedgui A. Adaptive immunity in atherosclerosis: mechanisms and 
future therapeutic targets. Nat Rev Cardiol. 2011; 8:348–58. [PubMed: 21502963] 

42. Zhu Z, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait 
gene targets. Nat Genet. 2016; 48:481–7. [PubMed: 27019110] 

43. Jinek M, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial 
immunity. Science. 2012; 337:816–21. [PubMed: 22745249] 

44. Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat 
Biotechnol. 2016; 34:933–941. [PubMed: 27606440] 

45. Khalil AM, et al. Many human large intergenic noncoding RNAs associate with chromatin-
modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009; 106:11667–72. 
[PubMed: 19571010] 

46. Bai Y, Dai X, Harrison AP, Chen M. RNA regulatory networks in animals and plants: a long 
noncoding RNA perspective. Brief Funct Genomics. 2015; 14:91–101. [PubMed: 24914100] 

47. Finucane HK, et al. Heritability enrichment of specifically expressed genes identifies disease-
relevant tissues and cell types. Nat Genet. 2018; 50:621–629. [PubMed: 29632380] 

48. Pruim RJ, et al. LocusZoom: regional visualization of genome-wide association scan results. 
Bioinformatics. 2010; 26:2336–7. [PubMed: 20634204] 

49. Kang EY, et al. ForestPMPlot: A Flexible Tool for Visualizing Heterogeneity Between Studies in 
Meta-analysis. G3 (Bethesda). 2016; 6:1793–8. [PubMed: 27194809] 

50. Nikpay M, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis 
of coronary artery disease. Nat Genet. 2015; 47:1121–30. [PubMed: 26343387] 

51. Carithers LJ, et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The 
GTEx Project. Biopreserv Biobank. 2015; 13:311–9. [PubMed: 26484571] 

52. Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. 
Gigascience. 2015; 4:7. [PubMed: 25722852] 

53. Sudmant PH, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 
2015; 526:75–81. [PubMed: 26432246] 

54. Morris AP, et al. Large-scale association analysis provides insights into the genetic architecture and 
pathophysiology of type 2 diabetes. Nat Genet. 2012; 44:981–90. [PubMed: 22885922] 

55. Segre AV, et al. Pathways targeted by antidiabetes drugs are enriched for multiple genes associated 
with type 2 diabetes risk. Diabetes. 2015; 64:1470–83. [PubMed: 25368101] 

56. Loh PR, et al. Efficient Bayesian mixed-model analysis increases association power in large 
cohorts. Nat Genet. 2015; 47:284–90. [PubMed: 25642633] 

57. Yang RY, Quan J, Sodae R, Aguet F, Segrè AV, Allen JA, Lanz TA, Reinhart V, Crawford M, 
Hasson S, GTEx Consortium. et al. A systematic survey of human tissue-specific gene expression 
and splicing reveals new opportunities for therapeutic target identification and evaluation. bioRxiv. 
2018

Gamazon et al. Page 20

Nat Genet. Author manuscript; available in PMC 2018 December 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 1. Incorporating eQTLs from 44 tissues into GWAS of complex traits.
a, Schematic diagram demonstrating how eQTL annotation from various tissues can be used 

to propose one or more potential causal genes whose regulation is either tissue-specific 

(orange) or tissue-shared (blue) for a trait-associated (GWAS) variant. A gene close to the 

trait-associated variant (grey) may have an eQTL that is not in LD with the trait-associated 

variant. b, Fold-enrichment of eQTLs (FDR≤0.05) with GWAS p≤0.05 compared to a 

uniform null distribution of GWAS p-values, shown for 44 tissues by 18 complex traits. Red 

circles: tissue-trait pairs that pass Bonferroni correction (P<6.3x10-5; 89 out of 792 tissue-

trait pairs tested). Dashed line: median fold-enrichment of all significant tissue-trait pairs. 

The ‘best eQTL per eGene’ set per tissue was used here. c, Quantile-quantile (Q-Q) plot of 

variant association p-values from a large GWAS meta-analysis of Height (n=253,288) for all 

variants tested (black), and for eQTLs in tissues most highly enriched for height 
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associations: pituitary (green), stomach (peach), and esophaus muscularis (brown). All 

significant variant-gene eQTL pairs were plotted. d, Top ranked tissues based on their 

adjusted fold-enrichment of trait associations amongst eQTLs (compared to the best eQTL 

for all non-significant eGenes) that pass Bonferonni correction (P<6.3E-05) for type 2 

diabetes (T2D, n=69,033), Alzheimer’s disease (AD, n=54,162), coronary artery disease 

(CAD, n=184,405), and systolic blood pressure (SBP, n=69,395) (Supplementary Table 2). 

Estimated lower and upper bound 95% confidence intervals for the adjusted fold-enrichment 

are shown (see Methods).
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Fig. 2. eQTL annotation of variants from GWAS catalog.
a, Distribution of number of target genes for one or more eQTLs (from any of 44 tissues) 

with which a trait-associated variant is in LD (r2>0.8), considering only protein-coding, 

antisense and lincRNA genes. All significant variant-gene pairs per eGene from single-tissue 

analysis were used. Colors of stacked bars denote an LD-pruned threshold at r2>0.1 (blue) or 

unpruned (red) GWAS catalog variants with association p<5x10-8. b, Distribution of number 

of tissues implicated for each of the trait-associated variants in LD (r2>0.8) with at least one 

eQTL, using either all significant eQTLs per eGene discovered from the single-tissue (top 
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panel) or multi-tissue (bottom panel) analysis. c, Number of eGenes implicated per trait-

associated variant based on eQTLs (from 44 tissues) in LD with each trait-associated 

variant, is shown compared to number of genes within ±1Mb of the GWAS variant. The 

pruned set of GWAS catalog variants was used. Number of tissues implicated per variant, 

averaged in bins of 4 along the x-axis, is reflected in blue to red color gradient. d, 
Distribution of distance of eQTLs to TSS of their target genes in a ±250kb window, shown 

for eQTLs in LD (r2≥0.8) with a GWAS catalog variant based on single-tissue analysis (red; 

median distance to TSS: 21kb, interquartile range -66kb to 129kb) or multi-tissue analysis 

(blue), relative to eQTLs that are not in strong LD (r2<0.8) with any of the GWAS catalog 

variants (cyan; median distance to TSS: 0.7kb, interquartile range: -87kb to 91kb).
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Fig. 3. Proposing causal genes in inaccessible tissues.
a, LocusZoom48 plot showing that the lead variant at ABCG5/8 locus for CAD (n=184,405) 

and LDL cholesterol (n=95,454) (rs6544713; purple diamond) is in LD (r2=0.99), and 

colocalizes, with an eQTL signal for ABCG8 in transverse colon, using eCAVIAR and RTC. 

No other gene in the locus was implicated based on LD and colocalization. b, Forest PM-

plot49 of single-tissue eQTL – log10(P-value) against the METASOFT posterior probability, 

m-value (indicating multitissue support), demonstrating rs6544713-ABCG8 eQTL is 

specific to transverse colon. c, Box plot showing correlation between rs6544713 and 

normalized ABCG8 expression in transverse colon, corrected for covariates used in cis-

eQTL analysis. Box edges depict interquartile range, whiskers 1.5x the interquartile range, 

and center lines the median. Minor T-allele, associated with lower expression, is associated 

with increased CAD risk and higher LDL19. d, Fraction of best eQTL per eGenes (‘eQTLs’) 

or ‘eGenes’ significant in at least one GTEx tissue identified (yellow and purple) or not 

identified (blue and red) in DGN blood study at FDR≤0.05, further stratified by being 

significant (FDR≤0.05) (blue and yellow) or non-significant (red and purple) in GTEx 

blood. We compared all (21,643) eQTLs in GTEx (‘All’) to the subset of eQTLs in LD 

(r2≥0.8) with a GWAS variant (‘GWAS’; 471 independent trait-associated variants from 

GWAS catalog). e, Distribution of number of significant tissues per ‘best eQTL per eGene’ 
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(FDR<0.05) sets in LD with GWAS variants, stratified by discovery in DGN (n=922) and 

being a GTEx blood eQTL (n=338; color-code as in d).
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Fig. 4. Heritability estimates explained by eQTLs in 44 tissues.
a, Heritability enrichment estimates for 15 traits, defined as the proportion of heritability 

explained by all eQTLs (blue bars) or top 10 significant eQTL variants per eGene (red bars) 

aggregated across the 44 tissues divided by the fraction of GWAS variants that are eQTLs, 

using LD score regression analysis (Supplementary Tables 12 and 14). ** Heritability 

enrichment p-value passes Bonferroni correction, p<0.0017; * Heritability enrichment 

p<0.05. b, Distribution of proportion of heritability of 15 traits explained by eQTLs in 44 

tissues, computed by multi-tissue (METASOFT) analysis (Supplementary Table 16). c, 
Heritability enrichment estimate computed for subsets of eQTLs that fall in different 

genomic features taken from 26, sorted in ascending order by percentage of eQTLs in each 

functional category shown in brackets. eQTLs from all 44 GTEx tissues based on single-

tissue analysis were used. TFBS, transcription factor binding site. DGF, digital genomic 

footprint. d, Distribution of proportion of heritability explained by eQTLs acting on tissue-

specific genes (Methods and Supplementary Table 17) divided by the proportion of 
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heritability explained by all eQTLs (Supplementary Table 16) in each of the 44 tissues, 

computed by multi-tissue (METASOFT) analysis. All significant variant-gene pairs per 

eGene were used in all panels. 4a,c show the standard error from the LD score regression 

method. In 4b,d the boxes depict the interquartile range, whiskers depict 1.5x the 

interquartile range, center lines show the median, and ‘+’ represent the outliers.
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Fig. 5. Estimated true positive rate of trait associations amongst eQTLs in 44 tissues.
a, Distribution of estimated true positive rate (π1 statistic29) of trait associations 

(considering the full spectrum of GWAS p-values) amongst eQTLs across 44 tissues shown 

for 18 complex traits. b, Estimated number of true trait associations that are eQTLs in each 

of the 44 tissues, computed for 18 complex traits by multiplying π1 by the number of eQTLs 

analyzed per GWAS. The median number per trait ranges from 0 to 554, with a median of 80 

trait associations per tissue-trait pair (dashed line) and a maximum of 1551 for CD. These 

are lower bound estimates due to incomplete overlap of variants between the GTEx and 

GWAS studies (see Methods). c, Distribution of estimated true positive rate (π1 statistic) of 

trait associations amongst tissue-specific eQTLs (yellow; significant in ≤~10% of tissues 
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including the given tissue, based on METASOFT) versus tissue-shared eQTLs (pink; 

significant in ≥90% of tissues and the given tissue, based on METASOFT) was computed for 

44 tissues by 18 traits. The ‘best eQTL per eGene’ set per tissue were used for all π1 

analyses (Supplementary Table 19). In 5a,c the boxes depict the interquartile range, whiskers 

depict 1.5x the interquartile range, center lines show the median, and ‘+’ represent the 

outliers.
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Fig. 6. Discovery and replication of novel associations and genes.
a, PM-plot49 of best eQTL for GUCY1B3 in artery aorta (n=197) (rs4691707) showing –

log10(P-value) from single-tissue eQTL analysis versus the multi-tissue, m-value. b, 
rs4691707 is also an eQTL for GUCY1A3, though less specific to artery aorta, being 

significant (m-value>0.9) also in nerve tibial (n=256) and thyroid (n=278). c, Violin plots of 

GUCY1B3 expression across 44 tissues. Overlaid boxes indicate interquartile ranges and 

center-lines the median. Artery aorta is not the top ranked tissue for GUCY1B3 based on 

expression alone. d-e, Box plots of PrediXcan p-values (-log10) with UK Biobank GWAS 
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for SBP and aorta artery genes (d) and MI and coronary artery genes (e), comparing 

eGeneEnrich-proposed genes to remaining genes expressed in the corresponding tissues. For 

both traits, proposed genes show significantly lower p-values, as assessed by Wilcoxon 

Rank-Sum one-tailed test (P=1.5x10-7 for d, P=5.8x10-5 for e). The boxes indicate 

interquartile ranges, whiskers 1.5x interquartile range, center-lines median values, and ‘+’ 

represent the outliers. f, Q-Q plot of replication association p-values from UK Biobank 

GWAS of SBP for artery aorta eQTLs (purple), enriched for SBP associations in a discovery 

GWAS33, compared to 100 null variant sets (gray; empirical P<0.01). g, Q-Q plot of 

replication association p-values from a UK Biobank GWAS of MI for coronary artery 

eQTLs (orange), enriched for CAD associations in a discovery GWAS50, compared to 100 

null variant sets (gray; empirical P<0.01). In 6f,g the eQTLs and null variants have 

association p<0.05 in the corresponding discovery GWAS.
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Table 1
Summary of polygenic methods used to test contribution of eQTLs to trait variation.

Method* Goal Description and assumptions Limitations eQTL set used GWAS data types

eQTLEnrich, Rank and permutation-based 
GWAS-eQTL enrichment method

Tests 
whether 
eQTLs from 
a given 
tissue are 
significantly 
enriched for 
trait 
associations 
more than 
would be 
expected by 
chance and 
estimates 
adjusted 
fold-
enrichment.

Estimates the probability of 
observing a given fold-
enrichment of top ranked trait 
associations (e.g. GWAS 
p<0.05) amongst eQTLs in a 
given tissue, relative to the 
fold-enrichment of 
nonsignificant eVariants 
(adjusted fold-enrichment), 
using a null distribution 
derived from multiple 
randomly sampled variants 
matched on MAF, distance to 
TSS, and local LD. Per 
GWAS tested, tissues are 
ranked based on their adjusted 
fold-enrichment.

Adjusted fold-
enrichment is 
correlated with GWAS 
sample size.

Best eQTL per 
eGene

Variant association p-values

TORUS, Bayesian and MLE approach for 
quantifying GWAS-eQTL enrichment

Estimates 
an 
enrichment 
parameter 
that 
represents 
the 
relationship 
between the 
log-odds 
ratio of the 
trait 
associations 
being causal 
and their 
eQTL effect 
size.

Estimates the relationship 
between the (absolute value 
of) single variant eQTL z-
scores and the corresponding 
log odds of a variant being 
causally associated with the 
complex trait of interest. A 
confident positive estimate of 
the log odds ratio indicates the 
increased odds of a variant 
being causally associated with 
the trait with stronger effect of 
eQTL association. Uses z-
scores from all gene-variant 
pairs for a given tissue, and 
assumes a single causal trait 
association per LD block 
(following the assumption of 
fgwas).

Enrichment parameter 
estimation (esp. 
standard error) is 
correlated with tissue 
sample size of eQTLs

All variant-
gene pairs 

tested

Variant association test 
statistics

π1 method Estimates 
the fraction 
of eQTLs in 
a given 
tissue that 
are likely to 
be 
associated 
with a given 
complex 
trait.

Estimates the fraction of true 
trait associations amongst 
eQTLs in a given tissue, using 
the π1 statistic, which 
assumes a standard uniform 
distribution for the null 
distribution and independence 
between variants.

Results not robust to 
small variant sets.

Best eQTL per 
eGene

Variant association p-values

Summary statistics-based heritability 
estimation

Estimates 
the relative 
contribution 
of eQTLs in 
aggregate to 
the 
heritability 
of complex 
traits, using 
LD Score 
regression 
applied to 
publicly 
available 
GWAS 
summary 
statistics.

Estimates the per-variant 
effect of the trait association 
by an annotated eQTL vs. an 
unannotated variant. A larger 
difference indicates a higher 
degree of enrichment of 
contribution of eQTLs to trait 
associations.

Works optimally when 
the per-variant variance 
is not correlated with 
the LD score.

All significant 
variant-gene 

pairs

Variant association test 
statistics
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Method* Goal Description and assumptions Limitations eQTL set used GWAS data types

Mixed-effects-model heritability estimation Estimates 
proportion 
of complex 
trait 
variance 
explained 
by eQTL 
variants in 
aggregate 
using 
GWAS 
genotype 
data.

Estimates the heritability 
attributable to eQTL variants 
using the Restricted 
Maximum Likelihood 
approach. The approach 
assumes a normal distribution 
of trait effect sizes for the 
eQTL variants and uses a 
genetic similarity matrix 
generated from the eQTL 
variants.

Requires genotype data. All significant 
variant-gene 

pairs

Individual genotype data

*
See URLs for links to methods’ software.
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Table 2
Complex trait causal genes proposed by gene set enrichment and PrediXcan analyses of 
top ranked eQTL target genes.

Trait eQTL Tissue eGene
# significant
gene sets**

PrediXcan
UK Biobank

q-value

SBP Aorta artery* FURIN 22 1.16E-32

SBP Aorta artery* ARHGAP42 1 1.39E-27

SBP Aorta artery* GUCY1A3 23 2.05E-19

SBP Aorta artery* GUCY1B3 31 1.11E-18

SBP Aorta artery* PRKAR2B 33 5.71E-17

SBP Aorta artery* CSK 25 7.27E-13

SBP Aorta artery ACADVL 6 7.35E-12

SBP Aorta artery* PRDM6 2 6.23E-11

SBP Aorta artery SLC4A7 12 3.46E-07

SBP Aorta artery MED8 1 1.54E-06

SBP Aorta artery ARVCF 1 1.68E-06

SBP Aorta artery MED19 1 3.81E-05

SBP Aorta artery ATF1 1 1.30E-04

SBP Aorta artery HFE 2 1.40E-04

SBP Aorta artery PCDHA4 1 1.40E-04

SBP Aorta artery FBLN7 1 1.86E-04

SBP Aorta artery* GTF2IRD1 35 2.40E-04

SBP Aorta artery* MRAS 5 5.74E-04

SBP Aorta artery RTN4 1 4.72E-03

SBP Aorta artery GRID1 9 5.85E-03

SBP Aorta artery FSCN2 12 7.20E-03

SBP Aorta artery TCF4 1 1.40E-02

SBP Aorta artery JPH2 1 1.64E-02

SBP Aorta artery TMEM8B 1 2.57E-02

SBP Aorta artery DCHS1 9 2.98E-02

SBP Aorta artery ULK2 1 3.71E-02

CAD Coronary Artery PHACTR1 1 2.00E-12

CAD Coronary Artery HLA-C 4 2.24E-04

CAD Coronary Artery ANAPC13 1 3.31E-02

CAD Coronary Artery CDC25A 4 3.31E-02

CAD Coronary Artery CEP63 2 3.31E-02

CAD Coronary Artery CTSK 6 3.31E-02

CAD Coronary Artery HLA-DOB 4 3.31E-02

CAD Coronary Artery GSTT2 2 3.95E-02

CAD Coronary Artery NME1 4 3.95E-02
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Trait eQTL Tissue eGene
# significant
gene sets**

PrediXcan
UK Biobank

q-value

CAD Coronary Artery SRD5A3 1 3.95E-02

CAD Coronary Artery NPHP3 1 4.04E-02

CAD Coronary Artery BAG6 4 4.81E-02

CAD Coronary Artery DDT 1 4.81E-02

CAD Coronary Artery DDTL 1 4.81E-02

CAD Coronary Artery RPS28 2 4.81E-02

*
denotes aorta-specific eQTLs (significant in at most 4 tissues other than aorta).

**
The list of gene sets, from four different databases, in which the eQTL target genes were enriched, based on eGeneEnrich (adjusted P<0.05; see 

Methods), along with additional results, can be found in Supplementary Table 21. See Methods (“Replication framework using large-scale 
biobanks”) for description of the statistical approach (PrediXcan) used for the replication analysis. SBP, systolic blood pressure; CAD, coronary 
artery disease.
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