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Extracellular vesicles (EVs) are important players of intercellular signalling

mechanisms, including communication with and among immune cells.

EVs can affect the surrounding tissue as well as peripheral cells. Recently,

EVs have been identified to be involved in the aetiology of several diseases,

including cancer. Tumour cell-released EVs or exosomes have been shown to

promote a tumour-supporting environment in non-malignant tissue and,

thus, benefit metastasis. The underlying mechanisms are numerous: loss

of antigen expression, direct suppression of immune effector cells, exchange

of nucleic acids, alteration of the recipient cells’ transcription and direct sup-

pression of immune cells. Consequently, tumour cells can subvert the host’s

immune detection as well as suppress the immune system. On the contrary,

recent studies reported the existence of EVs able to activate immune cells,

thus promoting the tumour-directed immune response. In this article, the

immunosuppressive capabilities of EVs, on the one hand, and their potential

use in immunoactivation and therapeutic potential, on the other hand, are

discussed.

This article is part of the discussion meeting issue ‘Extracellular vesicles

and the tumour microenvironment’.
1. Introduction
Extracellular vesicles (EVs) were initially described a few decades ago; all cells

release certain membrane vesicles with a great variety of important functions.

In 1984, vesicle release was described as a novel mechanism of transferrin recep-

tor secretion in sheep reticulocytes [1]. This release is linked to the formation of

intracellular exosomes, originating from an endosomal multi-vesicular body

(MVB), which fuse with the cells plasma membrane [2].

Originally, budding of vesicles from the plasma membrane was suggested

to be part of the lysosomal degradation pathway, responsible for the excretion

of cell debris [3] and emergency membrane repair [4]. Subsequent studies drew

attention to the role of B lymphocyte-secreted EVs in regulation of the immune

response [5] and, about a decade later, intercellular exchange of mRNAs and

miRNAs via EVs was confirmed by Valadi et al. [6].

Cells produce and release different types of EVs, which can be distinguished

according to their size: apoptotic bodies (1000–5000 nm) characterize the lar-

gest fraction, microvesicles (200–1000 nm) comprise the intermediate fraction

and exosomes (30–150 nm) are the smallest fraction [7]. Exosomes are ubiqui-

tously released by all cells, including malignant cells, and are present in the

body fluids [8]. In contrast with other EVs, the biogenesis of exosomes starts

with an invagination of the plasma membrane. During maturation, the initial

endosome experiences several inward invaginations forming numerous
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intraluminal vesicles and thus incorporating components of

the cytosol. The endosome becomes a so-called MVB com-

prising multiple vesicles which contain different proteins

and nucleic acids [9]. MVBs can subsequently fuse with the

plasma membrane releasing the contained exosomes into

the extracellular space. Apart from that, MVBs can enter the

lysosomal degradation pathway. The fate of the MVBs is

dependent on the amount of ceramides contained in the

membrane-associated lipids [7]. The exosomes released in

this manner carry a characteristic and cell type-specific com-

position of nucleic acids, proteins, enzymes, lipids, cytokines

and other soluble factors inherited from the parental cell

[10,11]. The endosomal sorting complex required for trans-

port (ESCRT) is responsible for packing and trafficking of

exosomes or subtypes of exosomes [12]. During this process,

exosomes are loaded with components of the ESCRT and

associated molecules [13,14], which are common markers

used to identify exosomes of endocytic origin [7,11]. These

molecules include parent cell-characteristic annexins, flotillin,

GTPases, lipids and cholesterol [15–17], as well as tetraspa-

nins (CD9, CD63, CD81, CD82) [18,19] and proteins of the

accessory ESCRT pathway (e.g. ALIX and TSG101) [13].

Although the content of the exosomes does not completely

resemble the profile of the parental cell, the partial similarity

inspired the idea of using exosomes as biomarkers for

tumours. Differences in the profile of parent cells and exo-

somes indicate the participation of still unknown processes

[20,21]. Besides the ESCRT, other sorting mechanisms depen-

dent on raft-based microdomains have been proposed to be

involved in the genesis of exosomes [22,23]. Apart from the

exosome fraction, certain microvesicles, the so-called ecto-

somes, can be formed by membrane blebbing [9]. These

EVs are also suggested to play a role in intercellular com-

munication. Yet the differentiation between exosomes and

microvesicles is not completely understood [9]. This chal-

lenges the use of vesicle size as reliable indicator for the

definition of EVs and both fractions need to be analysed to

identify suitable EV-associated biomarkers [20].

Composition, biogenesis and secretion of EVs/exosomes

are adaptive processes influenced by extrinsic stimuli includ-

ing cellular stress. Cells are able to respond to intracellular

stress situations by secretion of vesicles influencing their

environment [24]. Moreover, they play an important role in

the host’s immune response. Among others, dendritic cell-

derived exosomes (Dex) are involved in the immune system’s

response to tumours and promote the proliferation and cyto-

lytic activity of natural killer (NK) cells [25]. Malignant cells

are frequently challenged with stress situations such as

hypoxia, starvation or chemotherapeutic drugs in their micro-

environment which they need to overcome to facilitate

progression of the tumour [24]. It is well known that tumours

shape their microenvironment by EV/exosome-mediated

communication with the surrounding stromal tissue, thus

promoting proliferation, angiogenesis, suppression of the

host’s immune defence and initiation of pre-metastatic niches

[26]. Further, the release of tumour-derived EVs/exosomes

(T-EVs) is frequently increased in tumour patients [27] and

especially elevated after chemotherapy or photodynamic

treatment [28]. Interestingly, the tumour suppressor p53,

which is tightly connected to the aetiology of cancer, is

involved in the regulation of vesicle release [29]. Protein

microarray analysis of peripheral blood mononuclear cells

(PBMCs) revealed an immunosuppressive effect of T-EVs at
high concentrations, whereas PBMCs showed an activated

phenotype at low concentrations [30]. In line with the latter,

T-EVs can also carry so-called tumour-associated antigens

(TAAs), costimulatory molecules and major histocompatibil-

ity complexes (MHC) components mediating a stimulatory

effect on immune cells [31,32]. These findings suggest a

switch in the virtue of EVs from immunoactivation towards

immunosuppression during tumour progression. To date,

the underlying molecular basis for this functional alteration

remains largely elusive.
2. Immunosuppression by cancer-derived
extracellular vesicles

T-EV-mediated communication is likely to benefit the tumour’s

progression and survival. During their progression, tumours

develop several T-EV-based approaches to interfere with the

host’s immune system counteracting anti-tumour activities.

This requires some sort of interaction between T-EVs and

immune cells such as binding or internalization of the vesicles

[33]. Ligands or antigens present in or on T-EVs can directly

interact with receptors on lymphocytes or bind to cellular

MHC receptors, respectively. Receptor-mediated uptake

allows T-EVs to fuse with the cell’s plasma membrane and

release their contents into the cytoplasm. In addition, phagocy-

tic cells (e.g. macrophages and dendritic cells; DCs) can easily

internalize T-EVs. T-EVs interacting with surface molecules on

T-cells transfer signals and by this alter their function [34]. To

bypass the host’s immune response, tumours subvert the rec-

ognition by cytotoxic T-lymphocytes (CTLs), impair the

antigen presentation by antigen-presenting cells or interfere

with the host’s immune response. Moreover, immune cells

can be tricked to support the tumour. In these strategies, the

appropriate surface proteins, intravesicular cytokines or nucleic

acids, with which EVs are equipped, play a crucial role [35].

T-EVs containing so-called death ligands, e.g. Fas ligands

or tumour necrosis factor-a (TNF-a), hold the potential to

directly induce cell death in immune cells through activation

of the death receptor family members TNF receptor 1 (TNF-

R1) and Fas receptor (FasR), respectively. Activation of these

receptors is tightly linked to the induction of necrosis and

caspase-dependent cell death [36–40].

One strategy of immune evasion is direct EV-mediated

immune suppression. The primary target of this strategy

are the CTLs. The potential of T-EVs to inhibit the growth

of CD8þ CTLs is reported for several cancer types [38,41].

Transforming growth factor-b (TGF-b) is one of the most pro-

minent immunosuppressive cytokines found on the surface

of EVs. Suppression of NK cell function and T-cell prolifer-

ation by vesicular TGF-b on T-EVs was observed in

patients suffering from acute myeloid leukaemia [27] and

breast cancer [42]. Peinado et al. [43] demonstrated the poten-

tial of T-EVs derived from highly metastatic melanomas to

reprogramme bone marrow cells to form a melanoma-

friendly environment. Thus, T-EVs are able to interfere with

the development and differentiation of haematopoietic cells

as well as with the functions of mature cells [44,45].

Additional to direct suppression and cell death induction,

T-EVs can induce the differentiation of regulatory T cells

(Tregs) and myeloid-derived suppressor cells [38,46].

Host cells express MHC-I molecules, protecting them

from the attack of CTLs, whereas tumour cells expressing
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MHC-I/TAA complexes are destroyed by CTLs. Downregu-

lation of the MHC-I/TAA complexes allow the tumour to

escape detection by the adaptive immune system [47]. How-

ever, cells lacking the MHC-I complex are approached and

eliminated by NK cells [48]. To avoid the attack of NK cells,

tumours are able to release EVs influencing the cytotoxic

activity of NK cells [49], which is regulated by an equilibrium

of activating and inhibitory receptors. The ligands of the NK

cell-activating receptor NK group 2, member D (NKG2D)

MHC class I chain-related proteins A and B (MIC-A and

MIC-B) and UL-16-binding protein [50] are present on the

surface of EVs [51]. EVs bearing NKG2D ligands act as bait

for NK cells by distracting the immune cells from the

tumour [51]. Additionally, these EVs elicit a downregulation

of NKG2D receptors on NK cells [52,53]. Owing to the high

proliferation rate of many tumour cells, the tumour is likely

to outgrow the blood supply, resulting in large parts of the

tumour tissue being supplied with low oxygen concentrations.

In order to survive in the hypoxic microenvironment, tumour

cells are known to adapt their metabolism [54]. A study pub-

lished by Berchem et al. proved that T-EVs emerging from

hypoxic conditions had a stronger inhibitory impact on NK

cells compared to T-EVs originating from normoxic con-

ditions. The increased immunosuppressive potential was

attributable to the transfer of miR-23a and TGF-b to NK

cells [55]. In addition, increased levels of miR-4498 were

observed in hypoxic T-EVs derived from melanoma cells

[35]. CD83, which is a key in the communication between

cells of the innate and adaptive immune response, is regulated

by miR-4498 [56].

In vitro studies indicate the intercellular exchange of

nucleic acids via EVs [6,57]. Ding et al. demonstrated an

increase in cancer-related miRNAs as well as inhibition of a

wealth of mRNAs in DCs exposed to pancreatic cancer-

derived T-EVs. Interestingly, the authors revealed an

inhibition of the MHC II transcription factor regulatory

factor X-associated protein (RFXAP) by miR-212-3p received

from T-EVs. This was further confirmed by clinical data nega-

tively correlating miR-212-3p and RFXAP in pancreatic cancer

tissue [58]. The presence of inhibitory miRNAs or mRNAs

promoting the aetiology of cancer and negatively influencing

the host’s immune response was also suggested for T-EVs

derived from other cancer species [59,60]. A recent study

stated that T-EV-recipient cells experience a regulation of

genes responsible for the immune response [61]. In detail,

gene profiles of several human T-cell subsets exposed to

T-EVs in vitro were analysed. Tregs were most sensitive

to EV-mediated effects and experienced downregulation of

genes involved in the adenosine pathway, which induces a

high expression of CD39 and enhanced adenosine production

[61]. Extracellular ectonucleotidases such as CD39 contribute

to high levels of the purine nucleoside adenosine [62], which

is a powerful immune regulator attenuating local immune

responses [63]. Besides, T-EVs caused an upregulation of

inhibitory genes in CD4þ T cells that are responsible for loss

of function via downregulation of CD69 expression. T-EVs

carrying the ectonucleosidases CD73 and CD39 on their

surface can, moreover, produce extracellular adenosine,

directly interfering with T cells [64]. Concomitant with in-

duction of necrosis, TNF-containing T-EVs from melanoma

cells induce the production of intercellular reactive oxygen

species in T-cells, which impairs the T-cell receptor signalling

pathway and hence leads to a decrease in T cells [65].
3. Extracellular vesicle-mediated
immunoactivation

Apart from the critical immunosuppressive potential of T-EVs,

vesicles bearing immune-activating effects have been descri-

bed recently. This mirrors the diverse and differentiated

functions of EVs. Latest research has focused on the immunos-

timulatory properties of dendritic cell-derived exosomes (Dex)

and their potential value for immunotherapy [66,67]. Dex

maintain the central functions of DCs: presentation of TAAs

and activation of TAA-specific immune responses. Their mem-

brane harbours a variety of molecules responsible for antigen

presentation (MHC class I, class II, CD1), adhesion (inter-

cellular adhesion molecules), costimulatory signals (CD86,

CD40) and docking (integrins) [68,69].

Viaud et al. demonstrated that Dex promote an interleukin-

15 Ra- (IL-15Ra) and NKG2D-dependent proliferation and

activation of NK cells in a murine in vivo model, resulting in

an anti-metastatic effect. Furthermore, human Dex are equip-

ped with NK cell-activating NKG2D ligands. A Dex-based

vaccine was able to restore NKG2D-dependent functions of

NK cells in half of the tested melanoma patients [25].

The melanoma-associated tumour antigens (MAGEs) are

usually not present on host cells but are commonly expressed

by different tumour species [70]. An early phase I clinical

study addressing the therapeutic use of MAGE antigen-

loaded Dex in 15 MAGE3þ advanced melanoma patients

reported a response in one patient, one minor response and

two stabilizations of disease. Although almost two-thirds of

patients showed NK cell effector functions, no MAGE-specific

T-cell responses were observed in the peripheral blood [71]. In

a second phase I clinical trial performed by another group,

one-third of advanced MAGEþ non-small cell lung cancer

(NSCLC) patients developed MAGE3.A1-specific systemic

immune responses in line with upregulation of NK cell

activity [72]. TAA-loaded Dex have proven their feasibility

of large-scale production and outstanding safety profile in

these studies [71,72]. In contrast with Dex from immature

DCs, new approaches using EVs derived from TLR4 L- or

interferon (IFN)-g-maturated DCs showed improved Dex-

induced T-cell stimulation [73–76]. A recent phase II clinical

trial applying IFN-g-Dex loaded with MHC class I- and

class II-restricted cancer antigens as immunotherapy of

NSCLC patients after chemotherapy showed that the

expression of MHC class II on Dex correlated with the

expression of the NK cell activating NKp30 ligand BCL2-

associated athanogene 6 (BAG6) [77]. The chaperone BAG6

plays a role in a multitude of cellular processes and was ident-

ified as ligand of the activating NK cell receptor NKp30

[78,79]. The expression patterns of both BAG6 and MHC-II

are tightly connected and controlled by the IFN-g-inducible

class II transactivator (CIITA) [80]. BAG6 is necessary for

the accumulation of HSP70 [81,82], which bears the potential

to activate the immune response. HSP70 induces the matu-

ration of DCs and promotes the phagocytosis of tumour

cells as well as cross-presentation of chaperoned peptides.

NK cells are required for the interaction of DCs and HSP70

to induce a CTL response and anti-metastatic effect in vivo
[83]. Moreover, HSP70/BAG4 surface-positive T-EVs specifi-

cally facilitate migration and HSP70 reactivity of NK cells.

HSP70-specific antibodies can inhibit the T-EV-induced cyto-

lytic activity of NK cells [84]. It should be noted that a soluble

form of BAG6 (sBAG6) in the plasma of chronic lymphocytic
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leukaemia patients critically impaired the function of NK cells

[85], whereas vesicular BAG6 is a powerful activator of NK

cells [86]. According to Besse et al. [77], a possible explanation

for the opposing virtue of EV-BAG6 and sBAG might be the

interplay of BAG6 and HSP70 on exosomes to activate NK

cells via co-engagement of NKp30 and a second regulatory

NK cell receptor, CD94, also known as NKG2. An upregula-

tion of CD94 receptors on NK cells is described to correlate

with enhanced cytolytic activity after stimulation with

HSP70 or HSP70 and IL-2 [87,88]. Alternatively, the oligomer-

ization of EV-BAG6 was discussed as possible explanation for

the contrasting activities of EV-BAG6 and sBAG6 [79]. The

cytosolic immune-sensing receptor retinoic acid-inducible

gene I (RIG-I) is ubiquitously expressed in nucleated cells,

including malignant cells [89], and activated by viral 50-

triphosphorylated RNA [90,91]. Dassler-Plenker et al. discov-

ered a novel mechanism of RIG-I-mediated release of EVs

with anti-tumour activity from tumour cells. The EVs

showed increased expression of BAG6 on their membrane,

thus activating NKp30-mediated cytotoxic activity of NK

cells [92].

Besides BAG6, B7-H6, which is a member of the B7 family

of immunoreceptors, is a well-known cell surface ligand for

the NK cell-activating receptor NKp30 [93,94]. In contrast to

BAG6, the expression of B7-H6 is restricted to tumour cells

[93,95]. B7 family members are induced on myeloid cells

upon inflammatory stimuli [96,97], but the underlying mech-

anism remains unresolved. Matta et al. discovered B7-H6 in

the vesicle fraction after ultracentrifugation, indicating that
B7-H6 could be included in EVs present in patients’ serum

or be present as soluble variant. In vitro experiments revealed

that the isolated B7-H6 originated from activated monocytes

and neutrophils and possessed the potential to modulate the

activity of NK cells [98].
4. Conclusion and future challenges
Tumour cell-derived EVs may either trigger or, on the con-

trary, suppress anti-tumour immune responses and their

biological role is controversial (figure 1). Some molecules

expressed on immune-activating or suppressive EVs are indi-

cated; however, the plasticity of T-EVs or differences in EV

subtypes remain to be investigated. This analysis will

enable us to identify the cargo (including nucleic acids,

lipids and proteins) which is responsible for the functional

activity of EVs or of a given EV subtype. There is emerging

evidence that DNA damage or stimuli of the microenviron-

ment such as hypoxia or receptor activation impact on EV

biosynthesis, cargo loading or their release. A better molecu-

lar understanding of the downstream pathways directing EV

composition and secretion is mandatory for the rational

therapeutic application of EVs to combat cancer.
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