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Abstract: Roadside testing of illicit drugs such as tetrahydrocannabinol (THC) requires simple, rapid,
and cost-effective methods. The need for non-invasive detection tools has led to the development of
selective and sensitive platforms, able to detect phyto- and synthetic cannabinoids by means of their
main metabolites in breath, saliva, and urine samples. One may estimate the time passed from drug
exposure and the frequency of use by corroborating the detection results with pharmacokinetic data.
In this review, we report on the current detection methods of cannabinoids in biofluids. Fluorescent,
electrochemical, colorimetric, and magnetoresistive biosensors will be briefly overviewed, putting
emphasis on the affinity formats amenable to on-site screening, with possible applications in roadside
testing and anti-doping control.
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1. Introduction

Cannabis sativa is an annual flowering plant consisting of several botanical variants
that produce terpenes, fatty acids, and flavonoids, alongside the major compounds, the
cannabinoids. Over time, cannabis has been used for both therapeutic and recreational
purposes because cannabinoids are involved in many physiological processes in animals
and plants. [1]. Cannabinoids are produced first as carboxylic acids that are further decar-
boxylated into their more pharmacologically active homologs by exposure to light, heat, or
prolonged storage [2]. More than 100 cannabinoids have been identified so far [3]. Among
these, ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the decarboxylated forms of
∆9-tetrahydrocannabinolic acid (THCa) and cannabidiolic acid (CBDa) are the most sought
after by consumers, due to their psychoactive and therapeutic effects.

There are three types of cannabinoids:

- Cannabinoids that are produced within the body, (i.e., anandamide or arachidonoyl
ethanolamide, AEA, and di-arachidonoyl glycerol, (2-AG) [1,4];

- Phytocannabinoids (cannabinoids that occur naturally in the cannabis plant) such as
THC and CBD [5];

- Synthetic cannabinoids that are hallucinogenic chemicals [4,6].

It has been almost three decades since THC has been used for curative purposes. Vari-
ous cannabis extracts with settled THC/CBD ratios, as well as pharmaceutical-grade herbal
cannabis, have been reported in the treatment of several conditions [7]. The pharmacolog-
ical attributes of THC are related to its high affinity for the type-1 cannabinoid receptor
(CB1R) [8]. CBD interacts with both receptors of the human endocannabinoid system (ECS),
CB1R and type-2 cannabinoid receptor (CB2R), although with lower affinities, compared to
THC [9]. The regulatory functions carried out by ECS in the central nervous system are
cognition, appetite control, and analgesia [10]. The other targets of CBD are the orphan
G-protein coupled receptor (GPR55), the transient receptor potential channel subfamily V
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member 1 (TRPV1), and the peroxisome proliferator-activated receptors (PPARs) [11,12].
Targeting the cannabinoid receptors has the potential to treat various health issues and
develop biosensing assays for THC.

The metabolic route of THC starts with its hydroxylation to 11-hydroxy-∆9-
tetrahydrocannabinol (THC-OH) in the liver (by cytochrome P450), followed by the oxida-
tion of THC-OH to 11-nor-∆9-tetrahydrocannabinol-9-carboxylic acid (carboxy-THC) [13].
Thus, THC exposure and metabolization may be assessed by monitoring carboxy-THC
levels in various body fluids [14]. An individual’s impairment state can be evaluated by
the quantitation of THC and THC-OH, since both cannabinoids are psychoactive [15]. The
most common matrices tested for THC consumption are plasma and urine, but saliva and
hair have been exploited more recently, as they are less invasive.

Although CBD is non-psychoactive, it has been extensively used for its validated ben-
efits in the treatment of various health issues such as epilepsy, chronic pain, insomnia, and
addiction [4,16]. The CBD formulations have been granted the “Orphan Drug” designation
by the US Food and Drug Administration and the European Medicines Agency for use in
the treatment of neonatal asphyxia and epilepsy in children [17]. In contrast to THC, CBD
is largely excreted intact or in its glucuronide form, as it was reported in recent studies
on animals [17]. The degree of CBD exposure can be quantitated by analyzing plasma or
urine samples. One advantage of drug testing of saliva over urine is a faster collection
process. Another advantage is that a positive result from the saliva test can be confidently
assigned to recent drug abuse (within 24 h) and not to a past event, that occurred days to
weeks earlier [18,19].

The significant growth of cannabis consumption has heavily impacted the synthetic
cannabinoids (SCs) markets. SCs belong to a class of chemicals from the new psychoactive
substances (NPS) group, being marketed as natural herbal mixtures under various brand
names [6,20]. SCs display mechanisms of action similar to phytocannabinoids, i.e., by
binding to the CB1 and CB2 receptors, thus causing psychoactive effects usually obtained
with THC [21]. The abuse of SCs started in the early 2000s, even though their synthesis
began in the mid-1960s [22]. The first detected SC in herbal smoking mixtures was JWH-
018. [23]. Newly reported SCs ((JWH-122, JWH-210), along with their metabolites, have
been detected in biofluidic matrices [24]. The EU Early Warning System on NPSs currently
monitors SCs in Europe [24].

Cannabinoids are listed as substances whose use is prohibited in sports competitions
along with performance-enhancing substances (PES). Anabolic substances that stimulate
muscle growth, and substances that enhance oxygen transport are also included in the
PES list [25]; Cannabis abuse should be banned not only during sports competitions but
also prior to competitions, considering the time span required for carboxy-THC to clear
from urine to a level below the World Anti-Doping Agency’s (WADA) recommended
threshold value of 15 ng/mL [26]. The most relevant cannabinoids, along with their
chemical structures and functions, are listed in Table 1.

The established detection method of cannabinoids in authorized laboratories is gas
chromatography-tandem mass spectrometry GS-MS/MS. However, the GC-MS/MS meth-
ods require complex sample derivatization steps and long analysis times [13]. In ad-
dition, lateral-flow immunoassay (LFIA) and fluorescence polarization have also been
reported [27–30]. While these methods have provided accurate results, especially in the
case of urine samples, there is an impending need to conduct further analytical testing
roadside [31].
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Table 1. Chemical structures and main functions of most relevant cannabinoids. Adapted with
permission of [32]. Copyright (2020) American Chemical Society.

Cannabinoid Structure Function

∆9-tetrahydrocannabinol (THC)
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Overall, roadside testing requires (a) the use of portable, easy-to-handle, and miniatur-
ized equipment (b) non-invasive sample collection with minimum risk of contamination,
and (c) adequate analytical methods (fast, sensitive, robust). As in the case of point-of-care
(POC) applications, these systems must meet the ASSURED (affordable, sensitive, specific
user-friendly, rapid, robust, equipment free, deliverable to end users) criteria. Electro-
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chemical sensing is by far a technique able to match the ASSURED conditions with respect
to cannabinoid detection in body fluids. THC detection is based on its electrochemical
oxidation, following a reaction path similar to phenol [15]. There are several excellent
reviews addressing the electrochemical detection of cannabinoids, based on their simple
or mediated oxidation at various modified electrodes [32–35]. This topic is not covered
in the present work, with the focus being put on detection methods based on molecular
recognition. The aim of this paper is to assess the feasibility of implementing biosensors in
miniaturized and portable platforms for on-site cannabinoid detection in biofluids (blood,
urine, saliva, sweat, and breath), especially for roadside testing and anti-doping control.

2. Main Matrices for Cannabinoids Screening

The testing manner is heavily dependent on the cannabinoids’ pharmacokinetics. THC
appears right away in blood following the first inhalation, with the TCH level reaching a
peak within 8 min. Almost 65% of cannabis is eliminated via feces as TCH-OH, while 20%
is excreted in urine as carboxy-THC and its glucuronic acid conjugate [27]. The pharma-
cokinetics of THC and implicitly the half-life depend on the frequency of ingestion [36].
The half-life of THC is about 1–2 days for infrequent users, and around 5–13 days for
frequent users [35]. THC can be detected in saliva for up to 34 h after exposure with a
0.5 ng/mL cutoff limit, in plasma for up to 5 h, with a 10 ng/mL limit, and in urine for
up to 95 days with a 15 ng/mL cutoff limit [19,37]. Therefore, the sensing methods must
be developed according to the actual testing purpose and the complexity of the sample
matrix. For example, the early consumption of cannabis may be better assessed by THC
levels in saliva or breath, which are the best choices for roadside testing. Rapid screening
of carboxy-TCH in serum or urine samples may be required in routine anti-doping control
at sports competitions.

2.1. Oral Fluid

Oral fluid (saliva) contains more than 97% water, plus electrolytes, epithelial cells,
white blood cells, enzymes (amylase, lipase, peroxidase, and dehydrogenase) immunoglob-
ulins, and glycoproteins (mucin) [38]. Unlike blood, collection of saliva is non-invasive,
fast, and can be performed under direct supervision [39,40]. Salivary THC is an indicator
of recent drug exposure, while THC-OH is seldom present in saliva [40]. Recent data on
impairment levels suggest that a THC concentration of 5 ng/mL in the saliva is equivalent
to the legal alcohol limit [41].

2.2. Exhaled Breath

Exhaled breath contains a multitude of volatile organic compounds (VOCs) in the va-
por phase, and non-volatile compounds impregnated in the suspended solid particles [42].
THC is the most detected cannabinoid in breath, while the levels of carboxy-THC and THC-
OH in breath are insignificant. There are few reported devices that collect breath samples
and can be used further for THC testing The most common device for sample collection
is the SensAbues DrugTrap which utilizes a polymeric filter to capture THC-containing
microparticles from exhaled breath [35]. The filter pad is integrated into a plastic collector
provided with a mouthpiece to be breathed into by the user [42,43]. The contents of the
filter are then dissolved in an organic solvent and made ready for LC-MS/MS analysis [43].
Current breath trapping techniques are operational for roadside testing. Breath has a
detection window of 1–12 h and marks recent cannabis exposure [32].

2.3. Sweat

Sweat contains 99% water, plus salts, fat, ammonia, urea, and sugars; overall, there
are fewer impurities than in other biofluids. Sweat is less prone to degradation [44]. Sweat
is collected in a non-invasive manner: a cellulose pad that is applied to the individual for
7–10 days. As the individual sweats, impurities accumulate on the cellulose pad. The patch
is removed afterward and spiked with a deuterated internal standard of the compound of
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interest. A laborious extraction process is carried out to produce a solution for GS-MS/MS
analysis; the limits of detection (LODs) have been reported as ng/patch [45]. There are
few studies regarding the profile of THC in sweat. A study monitoring THC in the sweat
of 11 individuals following interruption of regular consumption, reported a mean THC
concentration of 3.85 ng/patch over 7 days [32].

2.4. Plasma

Collecting blood samples is an invasive procedure that requires skilled personnel.
Electrochemical sensors can detect simultaneously THC and its metabolites in a single
blood sample. The ratios of cannabinoid concentrations provide information about the
timeline of cannabis ingestion [46]. The THC:THC-OH ratio becomes 2:1 in about 2–3 h after
exposure [47]. Plasma concentrations of THC exceeding 2–3 ng/mL have been attributed
to recent ingestion [48].

2.5. Urine

Urine is the most tested matrix for cannabinoid detection, being reliable, inexpensive,
and easy to collect [49]. The factors that influence the time evolution of concentrations
and the detectability of THC metabolites in urine include frequency of cannabis usage,
the timing of sample collection, body fat content, and degree of urine dilution [50,51].
Carboxy-THC is the relevant analyte in urine testing, since little to no THC or THC-OH can
be found in urine [47]. The detection span for carboxy-THC in urine is 33.9 ± 9.3 h [36].

3. Trending Methods for Rapid Detection

In this section, we discuss papers reporting on various methods for rapid detection
amenable to on-site testing. The experimental techniques to be described here are elec-
trochemical, fluorescence, and colorimetric. Emphasis will be put on novel strategies for
surface modification, and assay principle, as both factors affect sensor efficiency. In the
past decade, a new class of sensors (giant magnetoresistive, GMR) gain ground in the
bimolecular detection in protein assays using magnetic tags [52].

Modified surfaces can also act as filters that allow only the target analyte to participate
in the electrode reaction. In the case of cannabinoids, as in the case of other drugs, the
investigation of the mechanism of action within the organism is the basis of biosensor
development. A drug’s mechanism of action is based upon its interaction with bio-targets
such as antibodies, enzymes, ion channels, receptors, and transporters. Assays that mea-
sure the interaction between drugs and their bio-targets are carried out in vitro and may
use whole cells or cellular lysates containing isolated bio-targets [53]. Most colorimetric-
based detection methods use either competitive enzyme-linked immunosorbent assay
(ELISA) or sandwich ELISA formats. However, in the case of cannabinoids’ on-site detec-
tion/screening, there is no general affinity concept to be assigned. Most reported biosensors
exploit antigen/antibody or ligand/receptor interactions in various formats, either with
immobilized or labeled biomolecules, where the label may consist of enzymes, fluorescent,
magnetic or conductive nanoparticles. The binding experiments may occur via competition
(for antigen/antibody, ligand/receptor, inhibitor/enzyme pairing), modulation (allosteric
modulator/enzyme, allosteric modulator/receptor, or in some cases, both ways. In these
experiments, the binding of one or more fixed concentrations of a labeled small ligand,
(i.e., cannabinoids) is measured at equilibrium in the presence of an incrementing series of
concentrations of the non-labeled ligand or allosteric modulator [54].

3.1. Electrochemical Detection

Electrochemical techniques are rapid and cost-efficient, widely applied and amenable
to the detection of illicit drugs, such as cocaine, marijuana, and ecstasy [55]. The electro-
chemical techniques related to cannabinoid detection include square wave voltammetry
(SWV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy
(EIS). It is worth mentioning that the direct detection of THC relies on its electrochemical
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oxidation. As mentioned before, THC is an electroactive compound that undergoes oxida-
tion following a phenol-like mechanism [56]. The reaction route in the basic medium (as
proposed by Balbino et al. [57]) involves the deprotonation of the phenolic hydroxyl group,
followed by oxidation and formation of a phenoxy radical (Scheme 1). After its formation,
the phenoxy radical reacts with another THC molecule or other similar compounds [58].
Despite overwhelming advantages, the electrochemical detection of THC is challenging,
because of the hydrophobicity of THC [59].
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Scheme 1. Phenol-like oxidation mechanism of THC as proposed by Balbino et al. [56]. Adapted
from [56] (with permission of Elsevier) and from [57] (with permission of Wiley).

To overcome the drawback associated with THC’s low solubility in aqueous media
or with inherent interferences caused by alcohol solvents, biosensors based on affinity
recognition of THC and metabolites by immobilized biomolecules, have been recently
spotted. The most relevant papers will be further discussed.

3.1.1. SWV- and DPV-Based Biosensors

In SWV, the staircase potential ramp is modified with square-shaped potential pulses [60].
At each step of the staircase ramp, two opposite potential pulses that are equal in height
are imposed. The current sampling is carried out at the end of each potential pulse for
decreasing the contribution of the non-faradaic current [61]. DPV is a technique related
to SWV. Here, pulses of constant amplitude are superimposed on the potential linear
sweep [62]. The current sampling is achieved just before and at the end of the modulation
pulse, and the difference is recorded, in order to reduce the contribution of the non-
faradaic current [63]. In both SWV and DPV the net current vs. potential pulse displays a
symmetrical peak-shaped feature.

Kohansal et al. have developed an immunosensor for 2-AG in human plasma and
rat serum exploiting the conductivity changes at the modified electrode in the presence of
the ferricyanide/ferrocyanide system [64]. The interrogation techniques were DPV and
SWV. Gold nanostars (GNS) were used to expand the electroactive surface and immobilize
Anti-2-Ag antibodies. Firstly, the affinity format exploited the interaction between the
surface-immobilized anti-2-Ag antibody and the 2-Ag protein conjugate. The net peak
current decreased with the increase in the 2-Ag protein concentration, because of electron
transfer blocking between the ferry/ferrocyanide couple and the electrode surface. 2-AG
protein was measured with a linear range of 0.48–1 ng/mL and a limit of quantification
(LOQ) of 0.48 ng/L. Secondly, 2-Ag was detected in real samples based on the competition
between 2-Ag protein and the target 2-Ag for the binding sites of the immobilized anti-2-Ag
antibodies. The detection principle was based on the increase in the net peak current with
the target (2-AG) concentration. The signal enhancement was accompanied by a slight shift
of the redox potential to more negative values. The developed immunosensor showed high
sensitivity and specificity in the presence of interferents. Bovine serum albumin (BSA) was
used for surface blocking. The preparation of the immunosensor is depicted in Figure 1.
This affinity format may be as well applied to the detection of relevant phytocannabinoids
or SCs.
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Figure 1. Schematic representation of the immunosensor proposed by Kohansal et al. for the detection
of 2-Ag protein conjugate. Reproduced with permission from [64]. This article is licensed under a
Creative Commons Attribution 3.0 International License, which permits use, sharing, adaptation,
distribution, and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons license unless indicated otherwise in a credit line to the material.

3.1.2. EIS-Based Biosensors

According to the relation between the charge transfer and the measured parameters,
EIS-based sensors can be categorized into (A) faradaic and (B) non-faradaic (capacitive) [65]:

(A) Faradaic (bio)sensors use electrodes with conductive surfaces; the charge transfer
resistance (Rct) is measured in the presence of redox-active species in solution, such as
hexacyanoferrate (II)/(III) anions, or hexaammineruthenium (II)/(III) cations [66]. The
deposition of non-conductive molecules onto the surface blocks the electron transfer causing
an increase in Rct. Conversely, the deposition of conductive molecules or molecules able to
catalyze redox reactions determines the decrease in Rct.

(B) Non-Faradaic (bio)sensors are devices containing electrodes with surfaces covered
by layer(s) with insulating properties. Here, the double-layer capacitance (Cdl) is the main
parameter that characterizes the processes at the electrode interface [67]. The adsorption of
molecules onto the surface usually decreases the value of Cdl [68]. Modified electrodes can
be used in disposable sensors, to overcome the drawbacks of low signal-to-noise ratios [69].

Durmus et al. proposed an EIS immunosensor for the detection of JWH-018 (N-4-
hydroxypentyl metabolite) [70]. First, a functional surface was built up using a catechol-
attached polypeptide (CtP). Then, the anti-K2 antibody was incorporated within the poly-
mer via a covalent cross-linker. The modifications, carried out on the glassy carbon electrode
surface, are shown in Figure 2, together with the Nyquist plots. The principle of detection
lies in the increase in Rct following the direct binding of the target to the functionalized
surface. Linearity and the limit of detection for JWH-018 (N-4-hydroxypentyl metabo-
lite) were determined as 10–500 ng/mL and 5.892 ng/mL, respectively. The selectivity
of the biosensor was evaluated with different interfering molecules (cocaine, codeine,
and(methamphetamine). Finally, the immunosensor successfully detected JWH-018 (N-
4-hydroxypentyl metabolite) in spiked synthetic urine samples. The results showed that
the developed platform can be applied to detect other JWH series with high sensitivity
and accuracy.
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Figure 2. Development of the impedimetric immunosensor for the detection of JWH-018 (N-4-
hydroxypentyl metabolite. Each step of the sensor development is accompanied by an increase in Rct.
Reproduced with permission from [70]. Copyright (2020) American Chemical Society.

The affinity-based immunosensor developed by Stevenson et al. was able to detect
THC in saliva [19]. Non-faradaic EIS was utilized to monitor de binding of a BSA-THC
hapten to the capture antibody previously immobilized onto the electrode surface. A linker
molecule (dithiobis succinimidyl propionate, DSP) was chemisorbed onto the electrode
surface using the gold/thiol chemistry. Then, the capture antibody for the BSA-THC
hapten was bound to the surface via the DSP linker. The binding of the hapten to the
immobilized antibody was analyzed by non-faradaic changes in the dielectric properties of
the electrode/electrolyte interface. The overall measurement of THC took approximately
1 min and provided a LOD of 100 pg/mL.

3.1.3. Chronoamperometric Biosensors

Chronoamperometry (CA) is a potential step method: it measures the current variation
vs. time as a response to a variation (step, pulse) in potential. Since the measurements are
performed in a transient state, it allows a dramatic reduction of response time compared to
amperometry in stirred solution [71]. A sandwich immunoassay based on a double-layer
gold nanoparticles-amplification system for THC detection was reported by Lu et al. [72].
Chitosan/gold nanoparticles (GNPs) nanocomposites were deposited onto a glassy carbon
electrode (GCE), to absorb horseradish peroxidase (HRP) and thionine (Thi). The anti-
THC was trapped between two conductive layers of chitosan/GNP/HRP/thionine. In
the presence of H2O2, the immobilized HRP and thionine were involved in a sequence of
consecutive redox reactions that led to the increase in the faradaic current. The binding of
the target THC to the immobilized antibody prevented the electron transfer due to steric
hindrance. Chronoamperometry was used to determine the THC in phosphate buffer saline
(PBS). The results showed that the response current had a good linear correlation with the
THC concentration range from 0.01 to 103 ng/mL. The LOD for THC was decreased to
3.3 pg/mL.

3.2. Magnetoresistive Biosensors

Magnetoresistance (MR) represents the change of resistance upon applying an external
magnetic field. The capability of converting magnetic signals to electrical signals has led
to the successful development of sensing devices based on the MR effect [73]. The GMR
effect exists in metallic structures with alternating ferromagnetic and nonmagnetic layers.
Following the application of a magnetic field, the magnetization directions of two adjoining
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ferromagnetic layers become either parallel or antiparallel, depending on the orientation
of the external field. GMR biosensing technology has the advantages of low cost, high
possibility in portability, high sensitivity, and real-time signal readout [52,74]. The principle
of the surface competition assay, adaptable for on-site screening of cannabinoids, is depicted
in Scheme 2 [73].
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Scheme 2. Principle of surface competition assays using MR sensors: (a) capture antibodies are
pre-coated on the sensor’s surface. A mixture of magnetic nanoparticles (MNPs) labeled antigen
and unlabeled antigen from the testing sample is injected onto the surface. Both labeled and sample
antigens are competing for the antibody’s binding sites; (b) antigens are pre-coated on the sensor’s
surface. A mixture of MNPs-labeled antibodies and unlabeled antigens from the sample is injected
onto surface. Here, the competition occurs between the immobilized and the free antigen for the
MNPs-labeled antibody’s binding sites. In both types of assays, the recorded signal is directly
proportional to the number of MNPs bound to the surface. Reproduced with permission from [73].
This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons license unless indicated otherwise in a
credit line to the material.

A sensing platform that employs GMR immunosensors integrated with a portable
reader system and smartphone to detect THC in saliva using competitive immunoassays
was reported by Lee et al. [75]. The competitive assay required only one type of antibody to
recognize THC and link the magnetic nanoparticles (MNPs) to THC bound on the electrode
surface via biotin−streptavidin interaction. The biotinylated antibodies were added to the
sample containing THC to bind to THC in the sample in the preincubation step. Then,
the mixture was added to the chip where BSA and THC conjugated with BSA (THC-BSA)
were immobilized on different sensors to allow active antibodies to bind to THC-BSA on
the sensors. After the washing step, the chip cartridge was inserted into the measurement
reader and streptavidin-coated MNPs were added. The stray field from the bound MNPs
disturbed the magnetization of the sensors underneath, changing the resistance (Figure 3).
The changes in resistance, monitored as GMR signals (∆MR/MR0), were proportional to
the number of bound MNPs and have an inverse relationship with the concentration of
THC in the sample due to the nature of competitive assays. THC was detected in the range
of 0–50 ng/mL, covering most cutoff values proposed in previous studies. The reported
work is amenable to the on-site screening of THC.
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Figure 3. Schematic representation of the GMR biosensing platform for THC: (a) 1: biotinylated
anti-THC antibodies were incubated with THC-containing samples. 2: the mixture was injected on
a chip with immobilized bovine serum albumin (BSA) and THC–BSA bioconjugate, to allow the
antibodies to bind. 3: Streptavidin-coated MNPs were added to the chip to communicate the signals.
(b) Representation of the measured signals of THC-BSA, BSA, and biotinylated BSA (Biotin-BSA)
immobilized on different sensors. Adapted with permission from [75]. Copyright (2016) American
Chemical Society.

3.3. Optical Detection

Fluorescence-based detection has grown in popularity, being a swift and on-point
detection technique. The popularity of this technique is probably due to its simplicity,
high sensitivity, and capability of detecting analytes in small volumes. Moreover, low-cost
and simple devices for on-site detection can be designed using a light-emitting-diode
(LED) for excitation and photodetector [76]. Fluorescent quantum dots (QDs) techniques
have massively improved detection performances. Quantum confinement effects of small
nanoscale materials can produce a strong enhancement of fluorescence emission leading to
new possibilities over traditional fluorescent organic dye [77]. Lateral flow immunoassay
(LFIA) strips coupled with fluorescence analytic devices were used to detect THC from
saliva samples.

Plouffe and Murthy [78] reported a fluorescence-based LFIA for THC detection in
saliva. Anti-THC antibodies were conjugated to polymeric phycoerythrin-fluorescent
particles. The antibodies were used further to capture THC. The positive interaction of
THC with the conjugates and the test line produced a fluorescent quantifiable signal. The
strategy provided a LOD of 2.57 nM.

LFIA results are often obtained by visualizing the color changes in specific areas, thus
providing qualitative information about the presence/absence of the target analyte [79].
Colorimetric detection is an intuitive method for obtaining positive or negative results in
LFIA multiplexed detection because the color changes are easy to observe, without the
need for special equipment [80,81]. Most of the colorimetric systems involve enzymes with
peroxidase activity such as horseradish peroxidase and/or hydrolases such as alkaline phos-
phatase (ALP) as components of the color development process. Enzymes are preferred
in the assays based on color development due to their high specificity toward the target
analyte [82]. In all the affinity assays discussed in this review, the recognition elements
were antibodies from various sources. Although not so often reported, the cannabinoids’
interaction with the CB1 and CB2 receptors was exploited to develop activity-based bioas-
says. A bioassay in which the cannabinoid receptor activation by cannabinoids caused the
recruitment of truncated β-arrestin 2 to the cannabinoid receptors, resulting in functional
complementation of a split luciferase, allowed readout via bioluminescence [83]. This
method seems suitable for a yes/no format around a threshold value (since positive results
were obtained for THC levels exceeding 12 ng/mL. It was found recently that CBD and
carboxy-THC act as allosteric modulators of the growth hormone secretagogue receptor
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(GHS-R1a) during its interaction with the endogenous ligand, ghrelin (GHR) [26], and
this fact can be further exploited to detect these cannabinoids using a surface competition
assay format.

Allosteric modulators are in general small molecules that can bind to a distant site
(allosteric site) from the binding (orthosteric) site, causing a functional change of the binding
site (Scheme 3). Some allosteric modulators bind both allosteric and orthosteric sites [84].
Thus, the allosteric modulators “push” the conformational equilibrium towards a specific
state [85]. Allosteric activators shift the equilibrium towards the active state, where the
orthosteric ligand binds with higher affinity, while allosteric inhibitors shift the equilibrium
towards the inactive state, where the orthosteric ligand cannot bind [84].
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Scheme 3. Schematic representation of allosteric modulator/receptor and orthosteric ligand/receptor
interactions that can be exploited in surface competition assays, where the surface-bound receptor
interacts with both labeled ligand and unlabeled modulator from the sample.

Thus, carboxy-THC and CBD were detected via their interaction with the growth
hormone secretagogue receptor (GHS-R1a), in competition with the labeled ghrelin GHR)
(GHS-R1a’s endogenous ligand) [26] (Figure 4). It was noticed that the two cannabinoids
acted as allosteric modulators of GHS-R1a. First, biotinylated anti-GHS-R1a antibodies
were coated onto the surface via biotin/streptavidin interaction. Then, the receptor was let
to interact with the immobilized antibody, which acted as support for controlled GHS-R1a
immobilization. Peroxidase-labeled GHR and cannabinoids competed for the binding sites
of GHS-R1a. Finally, after the addition of hydrogen peroxide and chromogenic substrate
(tetramethylbenzidine), color development was monitored to build up an affinity profile.
The absorbance was directly proportional to labeled GHR bound onto the surface. It was
found that CBD strongly enhances the binding of the labeled GHR, probably due to its
interaction with the allosteric site of GHS-R1a. The results suggested that CBD binds to the
allosteric site only, while carboxy-THC binds to both allosteric and orthosteric sites.



Biosensors 2022, 12, 608 12 of 19

Biosensors 2022, 12, x FOR PEER REVIEW 12 of 20 
 

 

Scheme 3. Schematic representation of allosteric modulator/receptor and orthosteric 

ligand/receptor interactions that can be exploited in surface competition assays, where the surface-

bound receptor interacts with both labeled ligand and unlabeled modulator from the sample. 

Thus, carboxy-THC and CBD were detected via their interaction with the growth 

hormone secretagogue receptor (GHS-R1a), in competition with the labeled ghrelin GHR) 

(GHS-R1a’s endogenous ligand) [26] (Figure 4). It was noticed that the two cannabinoids 

acted as allosteric modulators of GHS-R1a. First, biotinylated anti-GHS-R1a antibodies 

were coated onto the surface via biotin/streptavidin interaction. Then, the receptor was let 

to interact with the immobilized antibody, which acted as support for controlled GHS-

R1a immobilization. Peroxidase-labeled GHR and cannabinoids competed for the binding 

sites of GHS-R1a. Finally, after the addition of hydrogen peroxide and chromogenic 

substrate (tetramethylbenzidine), color development was monitored to build up an 

affinity profile. The absorbance was directly proportional to labeled GHR bound onto the 

surface. It was found that CBD strongly enhances the binding of the labeled GHR, 

probably due to its interaction with the allosteric site of GHS-R1a. The results suggested 

that CBD binds to the allosteric site only, while carboxy-THC binds to both allosteric and 

orthosteric sites. 

 

Figure 4. Biosensing principle of CBD and carboxy-THC detection according to their affinity profile 

in direct competitive assay with HRP-labeled ghrelin. The immobilized recognition element was 

GHS-R1a. Reproduced from [26] with permission from Elsevier. 

Figure 4. Biosensing principle of CBD and carboxy-THC detection according to their affinity profile
in direct competitive assay with HRP-labeled ghrelin. The immobilized recognition element was
GHS-R1a. Reproduced from [26] with permission from Elsevier.

The analysis was performed on spiked urine samples and was able to detect cannabi-
noids even in the presence of GHR mimetics. The proposed method exploited the linear
parts of the competitive binding curves to detect CBD and carboxy-THC. A linear range of
5–30 ng/mL was obtained for both CBD and carboxy-THC.

A summary of biosensors for cannabinoid detection based on molecular recognition
along with their performance features and drawbacks is presented in Table 2.
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Table 2. Relevant biosensors for cannabinoids’ detection.

Platform Target Capturing
Element/Assay Format Detection Technique Matrix LOD/Linear Range Benefits Drawbacks Ref.

Paper substrate
Whatman grade 1
chromatography

THC

Anti-THC antibodies
conjugated to

phycoerythrin-
fluorescent

particles/sandwich

Fluorescence/LFIA Oral fluid 0.1 ng/mL/Not reported

Rapid detection
nonradioactive,

high-throughput,
low sample

volume

Poor stability of the
florescent probe, low

reproducibility
[78]

Nitrocellulose
membrane JWH-073

Anti-K2 antibodies
conjugated to

Rhodamine B–loaded
polymersome/

sandwich

Colorimetric/LFIA Saliva 0.53 ng/mL
5.0–1000 ng/mL

High-throughput,
low sample

volume

Smaller molecules
cannot be detected by

two antibodies
(sandwich assays)

[86]

HBC-2-
dimethylamino

ethyl methacrylate
DMAEMA-

modified glassy
carbon electrode

(GCE)

JWH-073 Anti-K2 antibodies
/direct binding Electrochemical/DPV Synthetic urine 31.87 ng/mL

25–500 ng/mL
Rapid detection,
high specificity

LOD above the cutoff
limit for cannabinoids

levels
[87]

Chit/AuNP-
modified

(GCE)
THC

Anti-THC antibodies
conjugated to

AuNPs/direct binding

Electrochemical/
chronoamperometry Buffer 3 pg/mL/

0.01–0.01 × 103 ng/mL

Rapid detection,
enhanced
sensitivity

Use of labeled
reagents, additional
signal amplification

steps, low stability of
nanomaterials

[72]

Au deposited onto
polyethylene
terephthalate

(PET) substrate

THC

Anti-THC antibodies
immobilized onto

dithiobis(succinimidyl
propionate) (DSP)

SAM/direct
competitive

Electrochemical/
EIS Human saliva 100 pg/mL/

100 pg/mL–100 ng/mL

High selectivity,
suitable for on-site

detection

Extended time range
for sensor

equilibration,
multiple

washing steps

[19]
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Table 2. Cont.

Platform Target Capturing
Element/Assay Format Detection Technique Matrix LOD/Linear Range Benefits Drawbacks Ref.

Au electrode THC NanoMIP for THC Electrochemical/
capacitive Buffer 1.0 × 10–14 M

1.0 × 10−12–1.0 × 10−5 M

High sensitivity
suitable for on-site

detection

Extended time range
for sensor

equilibration,
multiple

washing steps

[88]

AuNP-modified
screen-printed
carbon array

electrodes

THC

Anti-THC antibodies
immobilized onto
AuNP-modified
electrode/direct

competitive

Electrochemical/SWV Spiked urine
sample

7 pg/mL/
10 pg/mL–10 µg/mL

Multiplexing
capability,
enhanced
sensitivity

Risk of cross-reactivity [89]

ELISA microplates THC

Plant-produced
monoclonal anti-THC

antibody/indirect
competitive

Colorimetric Buffer 0.625 µg/mL
0.625–10 µg/mL

High specificity
and selectivity

Use of labeled
reagents,

time-consuming steps
[90]

Functionally
activated

microplates

Carboxy-
THC
CBD

Growth hormone
secretagogue

receptor/direct
competitive

Colorimetric Synthetic urine

5.12 ng/mL/
5–30 ng/mL
7.63 ng/mL/
5–30 ng/mL

High sensitivity,
low sample

volumes

Use of labeled
reagents, multiple

washing steps
[26]



Biosensors 2022, 12, 608 15 of 19

4. Conclusions

THC and its metabolite, carboxy-THC, are important targets for the assessment of
cannabis use, with regards to both drugged driving (THC levels), and drug use over
time (carboxy-THC levels) [30]. Synthetic cannabinoids such as JWH-018 and JWH-073
have become new targets in both roadside testing and anti-doping control. The recent
papers discussed here demonstrate the enormous potential of affinity-based biosensors
for cannabinoid detection. Surface competition assay formats involving biofunctionalized
transducers and labeled ligands are mandatory for developing portable biosensors for
roadside testing. EIS detection does not require the use of labeled biomolecules yet in-
volves several steps that should be performed by trained personnel. DPV and SWV ensure
faster and less time-consuming detection provided that redox or enzymatically labeled
ligands are used. Modification of the sensor’s surface with various nanocomposites and
immobilization of biorecognition counterparts for cannabinoids would result in enhanced
specificity, sensitivity, and selectivity. Several biosensors have been able to detect THC
in saliva after cannabis exposure The main drawbacks related to these sensing devices
are nonspecific adsorption and interference of components from complex sample matri-
ces. Fluorescent and colorimetric LFIA tests provide low-cost, facile, fast, and portable
detection and may be the best-suited devices for roadside testing, especially when the
samples are collected from saliva GMR biosensors using antigen-pre-coated transducers
are also promising alternatives to LFIA tests since they can be implemented in portable and
easy-to-use equipment. Nevertheless, any affinity assay uses antibodies or other proteins
that require special storage conditions such as being refrigerated at low temperatures. The
lifetime of such biomolecules is also limited. Another concern is the fact that the portability
of biosensors is still restricted due to issues related to fluid handling, sample preparation,
device packaging, integration of electronics for data collection/evaluation, and the need for
external power sources. Disposable electrochemical biosensors integrated with microfluidic
platforms may deliver the much-sought outcome for on-site screening. Paper-based electro-
chemical sensors combined with droplet-based microfluidics may balance the requirement
of device miniaturization with performance characteristics. The development of stable and
long-lasting biosensors with high selectivity in complex matrices and minimum nonspecific
interactions is another matter the scientific community must address. Could the techniques
discussed here provide reliable commercial devices for real-world on-site screening? Time
will tell.
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