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Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous
as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports
of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of
cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the
cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.

1. Introduction

Functional genomics, transcriptomics, and proteomics have
improved the speed of discovery in scientific research by
adding a genome-wide perspective. In the majority of these
studies, analyses of individual gene groupings and entire
genomes have demonstrated that the extension of multigene
families through gene duplication is a critical and repeating
phenomenon in the advancement of new gene capacity and
increasingly complex living things. As early as the 1930s,
researchers hypothesized that repetitive duplicates of existing
genes would be under decreased specific pressure and could
change and ultimately develop new functions [1, 2]. Later,
researchers would contend that gene and genome duplica-
tions were an essential, although not the only, mechanism
by which new gene capacity could emerge. Because of
repeated duplications throughout history, multigene super
families, such as the serine proteases and the protein kinases,
have come to represent an important portion of protein cod-
ing groupings in the genomes of complex life forms [3, 4].
The cytochrome P450s (P450s) comprise various hemopro-
teins and are one of the largest and most functionally versa-
tile superfamilies. The functional range of P450 activity is
remarkable from microscopic organisms to humans [5].

The history of “P450 investigation” began in the early
1950s, and originally, it was thought that “P450” was a soli-
tary cytochrome that was present only in the liver and that

its role was to process drugs and other synthetic exogenous
substances. These protein interactions have been studied,
and it was suggested that they were of clinical importance
in medicine and treatment [6, 7]. With the explosion of
molecular science in the 1980s, P450 genes were revealed to
exist in practically all animals, from prokaryotes to rodents
and humans, and the amino acid sequences prompted the
main proposal of a transformative disparity-dependent gene
classification system. This hypothesis proposed that all P450
genes arose today from a lonely precursor, most likely more
than three billion years ago. Six vertebrates, namely, rodents,
mice, humans, rabbits, dairy cattle and chickens, and yeast
and Pseudomonas putida acquired the 30 genes originally
announced in 1987. A quarter of a century later, the group
had expanded to an Internet nomenclature that aggregates
18,687 protein-coding genes called P450s with putative tasks
beginning in 2012 [5, 8]. P450s are helpfully organized into
families and subfamilies in view of the percent amino acid
similarity. Proteins sharing more than or approximately
40% identity are relegated to a specific family assigned by
an Arabic numeral, while those sharing more than or approx-
imately 55% identity make up a specific subfamily assigned
by a letter. For instance, both sterol 27-hydroxylase and 25-
hydroxy-D 1α-hydroxylase are assigned to the CYP27 family
since they share more than 40% sequence identity [8, 9]. The
human genome thus contains 18 P450 families, divided into
41 protein-coding subfamilies encoding 57 genes [10].
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A growing amount of studies on P450s showed through-
out the 1970s and 1980s that they were present in many spe-
cies with numerous apparently unrelated life processes,
including in crops; therefore, P450s were suggested to be
significant upstream molecules in the synthesis and degra-
dation of nearly all nonprotein ligands binding to receptors
or activating second-messenger pathways governing growth,
homeostasis, apoptosis, and neuroendocrine and differentia-
tion functions [11]. As a rule, therapeutically relevant P450s
affect compounds that are similar to essential endogenous
substrates and can affect their functions. Numerous human
P450 drugs are used to treat human maladies. Others are
important for amalgamation of endogenous substances fun-
damental for human physiology. In a few occurrences,
changes in explicit P450s can influence various processes
and lead to serious human diseases [12]. Cancer is a com-
plex disease mediated by many molecular and cellular pro-
cesses. Cancer constitutes one of the world’s major causes
of death [13]. A global metabolic network expressed in
many species, including phase I xenobiotic enzymes, CYPs,
and phase II xenobiotic-conjugating enzymes, also uncov-
ered a metabolic pathway that was discovered to bioactivate
chemicals and cause cancer. Many researchers have found
that P450s (1A1, 1A2, 1B1, 2A6, 2A13, 2E1, and 3A4) play
a role in the activation of different carcinogenic compounds
in the environment, including tobacco-related nitrosamines
and polycyclic aromatic hydrocarbons (PAHs) [14–16].
Electrophilic intermediates from various tobacco-related
nitrosamines and PAHs can form covalent bonds on DNA
nucleotides, particularly protooncogenes or tumor suppres-
sors, with nucleophilic areas. With the lack of precise
DNA repair of adducts, these chemical changes can lead to
changes in the encoded genes, which in turn can start the
shift from an ordinary cell to a cancer cell [17]. P450s are

the most important enzymes that catalyze reactions related
to antineoplastic agents. The use of cytotoxic antineoplastic
agents in chemotherapy remains a key part of the manage-
ment of malignant tumors. The CYP2A, CYP2B, CYP2C,
CYP2D, and CYP3A subfamilies are mainly responsible
for the metabolism of anticancer drugs. One of the most
important problems in the treatment of intracranial tumors
is chemoresistance [18, 19]. Increased concentrations of
P450s may result in intracellular drug inactivation. It has
also been suggested that local expression of P450s in tumors
is essential for cancer management because P450s expressed
in tumors may be involved in chemotherapeutic drug activa-
tion and/or inactivation [20]. P450s may be present in tumor
cells as part of a pleiotropic reaction to tumor growth. More-
over, they could partially weaken the production and migra-
tion of cells. For instance, CYP2W1, CYP1B1, CYP2C9,
CYP2C8, CYP2J2, and CYP4A have been linked to tumor-
specific expression. These findings have led to the identifica-
tion of the part played by P450s in cancer growth and tumor
formation. For that reason, P450s have a crucial role in cancer
formation, chemoprevention, metastasis, and chemotherapy
(Figure 1). The aim of this review was to summarize the
detailed impact and involvement of P450s in human cancer.

2. Role of P450s in Cancer Formation

As people reach their 6th decade, they face an exponentially
expanded risk of developing cancer. Approximately 5% of
human malignant growths are caused by infections, 5% by
radiation, and 90% by chemicals. Of these, an expected 30%
are caused by the utilization of tobacco and the rest by syn-
thetic substances related to diet, lifestyle, and the environ-
ment [21]. The significance of these substances in the
etiology of malignant growth is reflected by the finding that
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Figure 1: The potential role of P450 family proteins in cancer.
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up to 8% of cases of every single human disease are related to
synthetic factors [22]. Synthetic cancer-causing agents, or
their metabolites, are exceptionally receptive electrophiles,
which have electron-insufficient molecules that can respond
to nucleophilic, electron-rich regions in the cell [23]. Deoxy-
ribonucleic acid (DNA), specifically, comprises a variety of
nucleophilic foci at which these DNA-damaging agents can
form DNA adducts through at least one covalent bond [24,
25]. CYP-mediated reactions can be used to examine the
potential of chemicals to be activated to form reactive species,
leading to the formation of covalent DNA adducts [26–28].
In the large group of enzymes involved in the metabolism
of carcinogens, P450s are the most important enzymes in
the metabolism of PAHs [29–33].

2.1. Xenobiotic Metabolism. Procarcinogens are extremely
hydrophobic compounds found in “xenobiotics.” Therefore,
these procarcinogens are substrates for some P450 family 1
isoforms (CYP1A1, CYP1A2, and CYP1B1) [16, 34, 35].
The substrate-inducible CYP1A1 and CYP1A2 are responsi-
ble for xenobiotic metabolism, such as polycyclic aromatic
hydrocarbon metabolism [36–40]. In this group, charred food
and cigarette smoke catalyze N-oxidation of carcinogenic
aromatic and heterocyclic amines [41–43]. The enzymes are
selective for planar molecules, which are carcinogens, as
substrates. The substrates are then oxygenated in confor-
mationally delayed positions that result in the formation
of highly reactive epoxides. These peptides that are not eas-
ily detoxified by glutathione transferase, epoxide hydrolase,
and other detoxification enzymes are cytosolic (steroid-like)
receptors. The AhR receptor [44] regulates peptides that
bond with carcinogens and other planar molecules, resulting
in the increased production of P450s, AhR protein, and
other enzymes through genomic depression. This change
also activates the protein kinase C cascade [45]. While car-
cinogenic chemicals are activated metabolically by P450
family 1 members, some small molecules, such as nitrosa-
mines, are activated by CYP2E1. The majority of xenobiotic
procarcinogens are characterized as highly hydrophobic. In
this respect, these procarcinogens act as substrates for the
enzymes CYP1A1, CYP1A2, and CYP1B1 [46]. In addition,
the CYP1A1 and CYP1B1 enzymes metabolize PAHs that
are exceptionally hydrophobic as well as polyhalogenated
aromatic hydrocarbons (PHAHs) [47] (Table 1). For effective
metabolism, at least two nearby unreplaced positions in the
aromatic ring of PHAHs are essential. Those PHAHs that
do not have this feature are metabolized very slowly, resulting
in a chemical half-life varying from a few weeks to months
and even years at times. The coplanar PHAHs and PAHs
that degrade slowly are effective inducers of CYP1 member
enzymes due to their strong attraction to the AhR [48].
AhR regulates the three CYP1 member genes, which in turn
are activated due to the binding of coplanar PHAHs and
PAHs. AhR can react with estrogen receptor-α [49], nuclear
factor κB (NF-κB) [50], and retinoblastoma protein 1 (RB1)
[51]. This in turn leads to gene transcription that participates
in growth, apoptosis, and the cell cycle. AhR can therefore be
considered a xenobiotic-metabolizing enzyme (XME) recep-
tor that promotes CYP1 member enzymes that metabolize

procarcinogens. Moreover, AhR may also promote environ-
mental carcinogenesis by changing cell-cycle functions,
including apoptosis, without relying on CYP-mediated
ROMs [34]. The CYP1 member enzymes metabolize an
endogenous ligand for the identified AhR [52].

2.1.1. P450s and 7,12-dimethylbenz[a]anthracene (DMBA).
The chemical 7,12-dimethylbenz[a]anthracene (DMBA),
which is commonly used as a model chemical carcinogen, is
a PAH. The compound has been applied in a rat mammary
tumor model [30] and is the most studied PAH apart from
benzo[a]pyrene (B(a)P). In vivo, CYP1B1, and not CYP1A1,
was shown to be the main enzyme responsible for the meta-
bolic activation of DMBA when exposed to carcinogenic
metabolites [53]. While 3,4 diol-DMBA, 7 1,2-epoxide-3,4-
diol-DMBA, and -OHM-12DMBA have all been proven to
show genotoxic effects, the latter was found to be the ultimate
carcinogen [54]. Substantial amounts of deoxyadenosine and
deoxyguanosine adducts have been shown to be induced by
the benzylic carbon of 1,2-epoxide-3,4-diol-DMBA [54]. In
some cases, researchers have found minor adducts with the
amino group of the 7-position of deoxyguanosine and deox-
ycytidine [55]. Some researchers believe that DMBA is a
more effective carcinogen than B(a)P. The latter was found
to commonly bind to guanine residues on DNA because
it is less effective in tumor initiation than hydrocarbon-
deoxyguanosine adducts [55]. Metabolites from DMBA
under the activation of CYP1B1 have been shown to play a
vital role in different tumors, where there are elevated levels
of CYP1B1 compared to levels of normal nearby tissues,
which include the breast, brain, ovary, colon, and lung [55]
(Figure 2). In addition to its activity toward exogenous com-
pounds, CYP1B1 is also responsible for the metabolism of
endogenous substrates such as estrogen into reactive metab-
olites, e.g., 4-hydroxyestradiol (Table 1). Estrogen affects the
carcinogenesis of endometrial and breast tissues by acting
both as an initiator and a proliferator.

2.1.2. P450s and nitrosamine 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK). Nitrosamine 4-(methylnitrosa-
mino)-1-(3-pyridyl)-1-butanone (NNK) is bioactivated in
human lung cancer by CYP2A13. In this respect, the enzyme
is more effective than CYP2A6. The Vmax/Km is 0.008 for
NNK methylene hydroxylation, which is thought to be a sig-
nificant step in ultimate carcinogen formation by CYP2A6.
By comparison, that for CYP2A13 is 0.36 [56]. This elevated
level of CYP2A13 bioactivation and the expression of
CYP2A13 in the human liver indicate that CYP2A13 could
play a major part in NNK activation, which is more effective
in CYP2A13 in vitro metabolism than CYP2A6 [57]. Many
different CYP2A subfamily members can effectively activate
several carcinogenic nitrosamines in vitro [58]. These P450s
play a significant role in NNK metabolic activation in vivo
in the human liver and mouse lung. Studies also suggest that
some P450 enzymes belonging to subfamilies play an impor-
tant role in the metabolism of another tobacco-specific nitro-
samine, N′-nitrosonornicotine, in both humans and rats
[59–62]. Approximately 1 to 10% of the total P450 content
in the human liver is composed of CYP2A6, which is a
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Table 1: P450s involved in the bioactivation of chemical carcinogens.

Types Carcinogens Compound Ref

CYP1A1
CYP1A2
CYP1B1

PAH, arylamine, heterocyclic amine, nitroarene, and
estrogen

Benzo[a]pyrene (B[a]P); 7,12-
dimethylbenz[a]anthracene (7,12-DMBA);

benz[a]anthracene (B[a]A); benzo[c]phenanthrene; 5-
methylchrysene; dibenzo[a,l]pyrene (DB[a,l]P); 3-
methylcholanthrene (3-MC); fluoranthene; 2-

Acetylaminofluorene; 2-amino-6-methyldipyrido[1,2-
a: 3′,2′-d]imidazole (Glu-P-1); 3-amino-1,4-
dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1); 2-
amino-1-methyl-6-phenylimidazo[4,5-b]pyridine

(PhIP); 17β-estradiol; estrone; 4-hydroxyestradiol; 1-
Nitropyrene; 2-nitropyrene; 6-nitrochrysene; 2-

aminofluorene; 2-aminoanthracene; 6-aminochrysene;
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ); 2-
amino-3,5-dimethylimidazo[4,5-f]quinoline (MeIQ)

[131–136]

CYP2A6

Mycotoxin, alkenylbenzene: occurs in a variety of
foods including essential oils of tarragon, sweet basil,

sweet fennel, tobacco-specific nitrosamine, and
nitrosamine

1, 2-Dibromoethane (ethylene dibromide); 1,3-
butadiene, 2,6-dichlorobenzonitrile (dichlobenil); 3-

(N-nitrosomethylamino) propiona aldehyde;
benzhydrol; butadiene monoxide (1,2-epoxy-3-butene,
methoxsalen); (8-methoxypsoralen, xanthotoxin), N-
nitrosomethylbutylamine; N-nitrosopiperidine; N-

nitrosopyrrolidine; p-benzoylphenol (4-
hydroxybenzophenone)

[134, 137–139]

CYP2A13 Nitrosamine

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone
(NNK); N-nitrosonornicotine (NNN); 3-(N-
nitrosomethylamino) propionaldehyde; 3-

methylindole (skatole); 3-N-nitrosoguvacoline; 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone
(NNK); bergapten, 5 methoxypsoralen; N-

nitrosopyrrolidine

[58, 140–142]

CYP3A4 Difuranocoumarin, mycotoxin
Aflatoxin B1; aflatoxinG1; sterigmatocystin;

dihydrodiol derivatives of PAHs
[143–146]

CYP2B6
Haloalkane, azoaromatic amine, tobacco-specific
nitrosamine, herbicide, chloroacetamide, PAH,

hydrocarbon, and alkyl benzene

1, 2-Dibromoethane (ethylene dibromide); 2, 2-
dichloro-1,1,1-trifluoroethane (HCFC-123); 3-

methoxy-4-aminoazobenzene; 4-vinyl-1-cyclohexene;
(S)- and (R)-; N, N′, N″-triethylene
thiophosphoramide (thioTEPA)

[29, 147–150]

CYP2C8
Oxazaphosporine: anticancer, nitrogen mustard

alkylating, tobacco-specific nitrosamine, nitrosamine,
aromatic hydrocarbons, alkyl benzene

Ifosfamide; 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone (NNK); chloroform (trichloromethane); N-

nitrosomethylpropylamine; styrene
[151–153]

CYP2C9

Aliphatic epoxide, metabolite, oxazaphosphorine:
anticancer, nitrogen mustard, alkylating,

phenylpropene, from Rhizoma acorigramine, and
nitrosamine

Butadiene monoxide (1, 2-epoxy-3-butene);
cyclophosphamide; ifosfamide; methyleugenol; N-

nitrosopyrrolidine
[134, 154–156]

CYP2D6

Nitrosamine, tobacco-specific nitrosamine,
difuranocoumarin; mycotoxin, produced by
Aspergillus species on food products, pyrido-

carbazole; antineoplastic, alkaloid, Apocynaceae plant
compound, topoisomerase II inhibitor and DNA

binding

3-(N-nitrosomethylamino) propionaldehyde; NNK;
NNAL; aflatoxin B1 (AFB1); ellipticine

[157–159]

CYP2E1

Haloalkane, diene halobenzene, nitrile, herbicide,
arylamine, and furanoterpene produced in sweet
potatoes infected with Fusarium solani; pulmonary
toxin, alkylating, organic solvents, alkylformamide,

nitrosamine, o-methoxyaniline, cyclohexane
derivative

1, 2-Dichloroethane (ethylene dichloride); 1,3-
butadiene; 1,4 and 2,3-dichlorobutane; 2,6-

dichlorobenzonitrile (dichlobenil); 2-aminofluorene
(2-AF); 4-ipomeanol; N, N-dimethylformamide
(DMF), N-nitrosoethylbutylamine; o-anisidine 2-

methoxyaniline; vinylcyclohexane

[160–164]
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particularly efficient coumarin 7-hydroxylase (19). CYP2A6
is the primary enzyme responsible for nicotine metabolism
in smokers, and the inactive metabolite in vivo is cotinine
[11, 63]. CYP2A13 has approximately 94% sequence simi-
larity to CYP2A6 and differs by just 32 amino acids [64].
Originally, CYP2A13 was cloned from the nasal mucosa of
humans. The functional enzyme participates in the metab-
olism of several CYP2A6 substrates, such as NNK, couma-
rin, and N,N-dimethylaniline. However, the efficiencies of
the two enzymes in affecting metabolism are significantly
different [65]. NNK is particularly considered important
for the formation of human lung cancer and is metabolized
more effectively to potentially carcinogenic intermediates

by CYP2A13 instead of CYP2A6. Nicotine metabolism by
the two enzymes differs with the metabolism of cotinine.
Despite the similarity in product distribution, the Km of nic-
otine 5′-oxidation by CYP2A6 is six times higher than that
for CYP2A13 [66]. The CYP2 family plays a pivotal role in
the activation and inactivation of precarcinogens. Both
genetic and environmental factors result in interindividual
differences in the actions driven by P450s.

3. Role of P450s in Cancer Metastasis

Metastasis is responsible for most malignant growth-related
fatalities, yet it remains the least understood aspect of cancer
biology. As metastasis study continues to evolve at a rapid
pace, the biological mechanisms underlying the spread and
metastatic output of malignant growth cells are beginning
to be elucidated [67]. The P450s show promising results in
the treatment of cancer due to varying epoxygenases, their
impact in cancer progression, and their various expression
patterns. EET therapy significantly increased the profiles of
migration, invasion, and prometastatic gene expression in a
range of cancers. P450 epoxygenases result in the conversion
of arachidonic acid into four regioisomeric epoxyeicosatrie-
noic acids (REA) [68]. These enzymes exert different biolog-
ical responses in different systems. Several studies found
overexpression of CYP2J2 epoxygenase in human cancer cell
lines and tissues and increased tumor growth due to EETs,
reduced apoptosis of cancer cells, and enhanced prolifera-
tion of carcinoma cells [69–71] (Figure 3). The overexpres-
sion of CYP2J2 reduces the endothelial cell adhesion
molecule expression induced by cytokines and prevents the
adhesion of leukocytes to vessel walls [70]. The effects
include suppression of IκB and NF-κB kinase, suggesting
anti-inflammatory effects of EETs that are independent of
the hyperpolarization of membranes. According to Ma
et al., EETs are involved in the upregulation of endothelial
nitric oxide synthase and the stimulation of the proliferation

Table 1: Continued.

Types Carcinogens Compound Ref

CYP2F1

Indole, alkylating, pulmonary toxin; present in higher
concentrations in mammalian digestive tract and coal
tar, furanoterpene produced in sweet potatoes infected
with Fusarium solani; pulmonary toxin, alkylating,

aromatic hydrocarbon, alkyl benzene

3-methylindole, skatole; 4-ipomeanol; styrene
(vinyl benzene)

[165–167]

CYP2W1 PAH, metabolite
Chrysene-1, 2-diol, dibenzo[a,l]pyrene-11,12-diol,

sterigmatocystin
[168]

CYP3A4

Nitroarene, triazole, heterocyclic amine, azoaromatic
amine, N-heterocyclic aromatic hydrocarbon,
dibenzocarbazole, estradiol derivative; estrogen,

contraceptive, nitrosamine, triphenylethyleneamine;
antiestrogen, estrogen receptor modulator

1-Aminobenzotriazole (1-ABT); 1-aminopyrene;
1-nitropyrene; 2-aminofluorene; 3,6-

dinitrobenzo[e]pyrene; 3-amino-1,4-dimethyl-5H-
pyrido[4,3-b]indole (Trp-P-1); 3-methoxy-4-
aminoazobenzene; 7H-dibenzo[c,g]carbazole;

17α-ethynylestradiol (ethi-nylestradiol 17α-); N-
nitrosodibutylamine (N,N-dibutylnitrosamine);

tamoxifen

[134, 149, 169]

CYP3A5
Antimitotic, epipodophyllotoxin, topoisomerase II
inhibitor, oxazaphosphorine; nitrogen mustard

alkylating

Etoposide (VP-16); ifosfamide; tobacco-specific
nitrosamine

[134, 149]

Polar metabolites 

Mutagenesis

CYPs

Environmental chemicals

Hormonal regulation Polymorphism

Figure 2: P450s in cancer formation.
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and angiogenesis of endothelial cells through the activa-
tion of the phosphatidylinositol 3-kinase (PI3K)/Akt and
mitogen-activated protein kinase (MAPK) signaling path-
ways [72]. Addition of synthetic CYP2J2 or EET overexpres-
sion protected endothelial cells against injury due to hypoxia-
reoxygenation in vitro and showed a fibrinolytic influence by
enhancing the expression and activity of the tissue plasmino-
gen activator (t-PA). Moreover, this treatment also prevents
dysfunction of postischemic myocardial activity by stimulat-
ing the MAPK pathway [70]. These findings show that EETs
derived from CYP2J2 play an important role in cardiovascu-
lar protection. Still, one recent study found potentially harm-
ful effects of CYP2J2 expression and biosynthesis of EET
[70]. CYP2J2 protein andmRNA levels were found to be high
in certain human cancer tissues and human-derived cancer
cell lines. However, they were not present in adjacent normal
tissues and noncancer cell lines [73]. Hence, a number of
specific CYP2J2 inhibitors have been developed, and their
efficacy in inhibiting tumor progression has been actively
studied. CYP2J2 inhibitors such as C26 (1-[4-(vinyl)phe-
nyl]-4-[4-(diphenyl-hydroxymethyl)-piperidinyl]-butanone
hydrochloride) caused a marked reduction in tumor prolifer-
ation and migration as well as promoted apoptosis in cancer
cells [74].

The addition of recombinant adeno-associated viral vec-
tor- (rAAV-) mediated delivery of CYP2J2, exogenous EETs,
or a selective 14,15-EET epoxygenase known as CYP102
F87V resulted in a high proliferation of cancer cells in vivo
and in vitro [75]. The addition of EET or epoxygenase over-
expression in neoplastic cell lines resulted in increased acti-
vation of the PI3K/Akt and MAPK pathways and increased
phosphorylation of the epidermal growth factor receptor
(EGFR). Carcinoma cell apoptosis was repressed by the
upregulation of the antiapoptotic proteins Bcl-2 and Bcl-xL
and downregulation of the proapoptotic protein Bax [76].
The results showed that the epoxygenase activity of P450s
plays an important role in the neoplastic phenotype promo-
tion as well as in the pathogenesis of different forms of
human cancers.

CYP ω-hydroxylases, which mainly consist of CYP4F
and CYP4A, promote the metabolism of arachidonic acid
and the subsequent conversion to biologically active eicosa-
noids, such as 20-hydroxyeicosatetraenoic acid (20-HETE),

which has different pathological and physiological functions
[77, 78]. This molecule was found to serve as an additional
messenger in the mitogenic-induced growth factor path-
way and as an effective mediator in angiogenesis of vessel
sprouting and vascular endothelial growth factor (VEGF). A
selective inhibitor of 20-HETE synthesis, N-hydroxy-N-(4-
butyl-2 methyl phenyl)-formamidine (HET0016), has been
found to prevent the angiogenic responses to VEGF, FGF,
EGF, and electrical stimulation in rats [79] [80] and inhibits
angiogenesis in the cornea that is stimulated by the prolifer-
ation of human U251 glioblastoma cells in vitro [81]. The
growth of renal adenocarcinoma in nude mice was inhibited
by an antagonist of 20-HETE called WIT002 [82]. Moreover,
the cell proliferation of U251 cells increased with the intro-
duction of CYP4A1 via infection in vitro [83, 84]. In contrast,
a stable 20-HETE agonist, WIT003, stimulated the cell prolif-
eration of endothelial cells and VEGF expression in vitro
[84]. CYP ω-hydroxylase affects tumor growth, metastasis,
and angiogenesis [78].

Signaling pathways, including MAPK and PI3K/Akt,
are considered important in invasion, proliferation, metas-
tasis, and angiogenesis [85, 86]. Recent studies have sug-
gested that CYP ω-hydroxylase-derived 20-HETE plays an
important role in the activation of PI3K/Akt and ERK1/2 in
endothelial cells by affecting cellular functions such as apo-
ptosis [87] and proliferation [88]. Moreover, in 251 human
gliomas, CYP4A1-20-HETE gene expression changed cell
growth through a mechanism that involves ERK1/2 activa-
tion. According to Yu et al., CYP4A11 overexpression can
result in an increase in phospho-Akt in A549 cells. Moreover,
the overexpression resulted in WIT002 or HET0016 inhibi-
tion of endogenous 20-HETE stimulation of PI3K/Akt and
ERK1/2. Furthermore, inhibitors of PI3K/Akt (wortmannin)
and ERK1/2 (U0126) suppressed WIT003-induced MMP-
9 and VEGF expression, which indicates that MMP-9 and
VEGF induction by CYP ω-hydroxylase involves the ERK1/2
and PI3K signaling pathways [78]. Hydroxylation of AA by
CYP4 enzymes such as CYP4F2, CYP4A11, and CYP4F3B
at the omega position results in the formation of 20-HETE.
This enzyme has been shown to have an effect on tumor
angiogenesis and progression and inflammatory processes
that are associated with metastasis and tumor growth [77, 89].

The role of CYP AA epoxygenase enzymes as either pas-
sengers or drivers of the carcinogenesis process is unknown
due to a lack of genetic evidence implicating the enzymes in
the natural history or the oncogenic transformation of spe-
cific tumor types. The evidence of CYP AA epoxygenase
enzymes in cancer comes from research involving genetic
analyses [90]. Primary tumor growth and metastasis are
enhanced by the promotion of CYP AA epoxygenase
enzymes as well as escape from dormancy [90]. Mammary
tumor engraftment is inhibited through the knockdown of
cancer cell intrinsic CYP3A4 [91]. The results derived
through genetic approaches show the supporting role of
CYP AA epoxygenase enzymes in the progression andmetas-
tasis of tumors, which can serve as an important strategy in
cancer therapy. This view is supported by knockout and
knockdown research on the tumor or the immediate micro-
environment that shows the role of P450s in the spread of

CYPs

EETs

Proliferation
migration

Proliferation
migration

V
EG

F

Leucocytes
CYPs
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Figure 3: P450s in metastasis and the EET pathways. Blue depicts
the crosstalk between the tumor epithelium, endothelial cells, and
lymphocytes. This figure was adapted from Edson and Rettie [89].
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multiple types of tumors [74, 92]. Targeted therapies have
shown restricted success in reducing the existing metastatic
development and enhancing survival when used as mono-
therapies or combination therapies. There are, however, still
minimal and contentious epidemiological data on this signif-
icant point, partially owing to the inherent problems in con-
ducting epidemiological surveys of cancer metastasis CYPs.
Nevertheless, future studies investigating the relationship
between P450s and metastasis will shed more light on this
very important aspect of cancer.

4. Role of P450s in Chemoprevention

Chemoprevention refers to the administration of a medi-
cation for the purpose of preventing disease. Cancer chemo-
prevention has long been acknowledged as a significant
prophylactic approach for reducing the health care system’s
burden of cancer. Chemoprevention of cancer includes the
use of one or more pharmacologically active agents to block,
suppress, deter, or reverse invasive cancer growth. Neverthe-
less, comparatively little research has been performed to
characterize the capacity of putative chemopreventive agents
to modulate the expression of P450s or to comprehend the
relationship between P450s and chemopreventive agents.
P450s accelerate the process of activation of compounds to
toxic products [44]. Moreover, they participate in many dif-
ferent functions, such as the oxidation of fatty acids and ste-
roid hormones [44]. The modulation of enzyme expression
can affect chemical toxicity, mutagenicity, and carcinogenic-
ity. An interesting application of cancer chemoprevention is
through the administration of a dietary nontoxic component
that helps inhibit or prevent neoplastic disease. The chemo-
preventive agents are regulated by AhR and are known to
be procarcinogenic PAHs. While the CYP1 family members
are expressed in extrahepatic tissues, CYP1B1 is different
due to it being overexpressed in different tumor types com-
pared to expression in normal tissues [93]. This finding has
attracted increased interest. Studies have found that this
enzyme affects tumorigenesis due to its ability to activate dif-
ferent carcinogens in the PAH chemical classes, aromatic
amines, heterocyclic amines, and nitropolycyclic hydrocar-
bons. In addition, recent studies have found a link between
CYP1B1 polymorphisms and a reduced or enhanced risk of
certain types of cancers [94, 95]. CYP1B1 and CYP1A1
may also affect the formation of advanced carcinoma and
affect enzymes involved in the metabolism of chemothera-
peutic agents that may help prevent tumor cytotoxicity
[74]. The most important role played by CYP1B1 is in the
metabolism of estradiol. The enzyme catalyzes the hydroxyl-
ation of estradiol mainly at the C-4 position. Moreover, C-
2 hydroxylation can occur mainly through CYP3A4 and
CYP1A2 [96, 97]. However, the preferred pathway outside
the liver is C-4 hydroxylation, which may play a part in
tumorigenesis induced by estrogen-related factors [98].
The reason for this is the strong ER agonist ability of 4-
hydroxyestradiol and the binding affinity for the estrogen
receptor that is approximately 1.5 times greater than that
of estradiol [99]. Another reason is the subsequent conver-
sion of 4-hydroxyestradiol to estradiol 3,4-quinone, which

has been shown to bind with DNA and results in the forma-
tion of unstable adducts that cause gene mutations [100].
Researchers studying the effects of CYP1B1 knockout as well
as CYP1A1 and CYP1A2 found that animals that lack these
genes did not suffer from any deficiencies and displayed nor-
mal growth. Moreover, the CYP1B1 knockout mice displayed
strong resistance to the formation of tumors induced by
DMBA [101]. The studies show proof of the potential safety
and efficacy of chemopreventive agents that inhibit the activ-
ity and expression of CYP1B1. The ability to induce CYP1
family expression by PAHs is illustrated by studies that show
high levels of CYP1B1 and CYP1A1 expression in urothelial
and lung tissue of smokers [79]. A practical chemopreventive
strategy is treatment with AhR antagonists. The activation
of different carcinogens that stimulate CYP1 expression
through AhR is possible in the presence of CYP1B1 and
CYP1A1 expressions.

4.1. Natural Compounds. Researchers have found many
different natural products showing promising results in this
respect. One recent study has shown that the flavonoid
kaempferol prevents agonist binding to AhR. Moreover,
researchers have found that the compound plays a role in
the complex induction and formation of CYP1A1 expression
[102, 103] (Figure 4). Another major discovery was that
kaempferol prevented the growth of immortalized lung epi-
thelial cells (BEAS-2B) caused by cigarette smoke condensate
in a soft agar colony assay. This study found that the com-
pound prevented AhR binding with an IC50 of 28 nM at a cel-
lular concentration of 10μM (~IC90) [102]. Other natural
compounds that were found to prevent CYP1 family expres-
sion include the stilbene phytoestrogen resveratrol and the
5,7-dimethoxyflavone that prevents CYP1A1 expression and
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Figure 4: P450s in chemoprevention.
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action. Many different compounds have been investigated
to assess their ability to inhibit the enzymatic activity of
CYP1B1 [35, 104]. Some of the molecules that were found
to have potent inhibitory effects include coumarins, resvera-
trol, stilbenes, and flavonoids. Different compounds that
inhibit the CYP1 family are provided in Figure 4. However,
it remains to be seen whether CYP1 inhibition results in che-
moprevention in vivo.

An alternative CYP1-based chemotherapy technique
involves the introduction of an inactive prodrug to a cyto-
toxic compound. Studies have found that resveratrol can be
metabolized to piceatannol through CYP1B1 within cancer-
ous cells [105]. Different synthetic drugs that are specifically
activated by CYP1 agents have been developed. One com-
pound that shows promising results is phortress, which is
a benzothiazole prodrug that has begun phase I clinical
trials [106]. The hydrophilic lysine-amide compound does
not undergo hydrolysis of the parent compound 5F203
except in the presence of cells [107]. This compound is then
absorbed by sensitive cells and acts as a potent agonist of
AhR, resulting in the induction of CYP1 family genes. Sub-
sequently, CYP1A1 metabolizes 5F203, resulting in the pro-
duction of reactive electrophilic species that cause cell death
and DNA damage. The drug has shown strong benefits in
preclinical trials both in vivo and in vitro against different
types of tumors [108]. Since only AhR-expressing cancer
cells are vulnerable to phortress, patients need to be prop-
erly screened to ensure that they will benefit from the drug.
Recently, phase I clinical trials of aminoflavone (5-amino-
2,3-fluorophenyl-6,8-difluoro-7-methyl-4H-1-benzopyran-4-
1) have been completed, which is believed to function in a sim-
ilar manner to 5F203. However, recent studies have shown
that aminoflavone requires sulfotransferase A1 (SULTA1)
expression for a cellular response [109].

This finding suggests that the activation of the aminofla-
vone may be complex, and the long-term effects of treating
patients with aminoflavone or phortress are unclear. As
mentioned earlier, induction of CYP1 family proteins and
the activation of AhR will likely lead to the development of
cancer and may do more harm in the long run. Nevertheless,
the developers of phortress have highlighted the fact that the
cell-specific activation of AhR by the drug is different than
that of other carcinogens, such as PAHs. Preclinical studies
have shown low toxicity levels, but further research is
required to prove the clinical effectiveness of aminoflavone
and phortress in cancer treatment [110]. An advantage of
using a prodrug that is specifically designed to activate
tumor-specific CYP1B1 is that it does not induce CYP1
enzymes. An example is DMU-135 (3,4-methylenedioxy-3′,
4′,5′-trimethoxy chalcone) that is converted within tumors
by CYP1B1 to form DMU-117, which is an effective nonse-
lective tyrosine kinase inhibitor and a possible COX inhibitor
[111]. Researchers have found that DMU-135 can act as a
chemopreventive agent to prevent the formation of gastroin-
testinal tumors in mice without toxicity. It is the first drug
that is specifically targeted for CYP1B1 activation [111].
Moreover, different CYP2 family members have been found
in extrahepatic tissue, of which, the notable ones discovered
by the Human Genome Project include CYP2R1, CYP2S1,

and CYP2U1 [112]. These enzymes can produce impor-
tant xenobiotic and endogenous metabolites. For instance,
CYP2S1 and CYP2R1 can be used in the metabolism of
ATRA and vitamin D hydroxylase, respectively [112]. How-
ever, the exact role of the enzymes in tumor progression is
not clear. CYP2W1 has been identified in tumor-specific
CYP24, particularly adrenal and gastric cancers [113]. More-
over, indole and arachidonic acid have recently been identi-
fied as potential substrates. Despite the lack of knowledge
on the enzyme functions, the tumor-specific enzyme actions
remain intriguing and require further research.

The roles of other P450 family members in vivo suggest
their potential use in chemopreventive therapies specifically
targeting P450 inhibition [114]. Selective P450 inhibitors,
such as methoxylated or hydroxylated flavonols and fla-
vones, methoxytrans-stilbenes, kaempferol, and berberine
and rutaecarpine alkaloid derivatives, also serve as promis-
ing chemopreventive agents for both estrogen-related and
environmental carcinogen-induced carcinogenesis to inhibit
the formation of tumors in cancerous cells. In cancer preven-
tion and treatment, targeting P450s with natural or synthetic
small molecules provides potential benefits. Since the crystal
structures are still to be determined for almost all CYPs, drug
design strategies depend on the knowledge of the substrate
structure and the mechanism of action of the enzyme. These
enzyme-targeting techniques include the following: (i)
designing enzyme-inhibiting molecules, (ii) the development
of enzyme-activated prodrugs, (iii) immuno-based therapies
targeting enzyme immune responses, and (iv) genetic ther-
apy strategies to express different P450s in cancer cells.

5. Role of P450s in Chemotherapy

Chemotherapy with cytotoxic antineoplastics remains an
important technique for the clinical treatment of patients
with malignant tumors. The most important site for P450
metabolism is the liver, where the enzymes are omnipresent.
Anticancer drugs are usually metabolized by a number of
parallel and/or sequential reactions after absorption in the
organism. Metabolism occurred in two distinct sequential
phases called “Phase I” and “Phase II,” although this order
is not exclusive (Phase I did not always accompany Phase
II; Phase II was not always followed by Phase I) [115].
P450s are key players within the phase I-dependent metabo-
lism and for the most part, catalyze the oxidations of drugs
[116]. CYP1, CYP2, and CYP3 family members are involved
in drug metabolism. P450s catalyze a number of different
reactions, including hydroxylation, epoxidation, dealkyla-
tion, and deamination, of which hydroxylation is likely the
most important. Phase II-dependent reactions make the
products suitable for excretion through the kidneys as inac-
tive polar products. With regard to anticancer agents, P450s
are involved not only in the detoxification of cytotoxic
products but also in the activation of drugs that make them
therapeutically active. P450s metabolize many anticancer
agents, shown in Table 2. Prodrugs are inactive agents that,
upon exposure to tumor tissues, are converted to active
cytotoxic drugs with high expression of activating enzymes.
This targeting strategy minimizes toxicity to normal tissues
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while increasing the tumor tissue delivery of the active
agent. Liver P450s metabolize cyclophosphamide, ifosfa-
mide, dacarbazine, procarbazine, tegafur, and thiotepa
[117]. Another example is 1,4-bis-([2-(dimethylamino-N-
oxide)ethyl]amino)5,8-dihydroxy anthracene-9,10-dione
(AQ4N), a bioreductive drug that requires CYP2S1 and
CYP2W1 activation in tumor tissues to be transformed into
an inhibitor of topoisomerase II [118].

The use of immunohistochemistry, western blot analysis,
and reverse transcriptase PCR has shown reliable expression
of CYP3A types in kidney cancer cells. This study suggested
that the expressed CYP3A may be involved in the develop-
ment of renal cancer and that the multidrug resistance found
in this cancer is caused by these types of CYP3A [119, 120].
CYP3A4 plays a major role in the metabolism of several anti-
cancer agents (taxanes, vinca-alkaloids, and new drugs such
as imatinib, gefitinib, and sorafenib). CYP3A4 metabolizes
docetaxel into hydroxylated derivatives that are inactive. A
high activity of CYP3A4 will result in the drug’s poor thera-
peutic outcome. Thus, a 49% decrease in docetaxel clearance

was observed in patients with cancer treated with docetaxel
in conjunction with the active CYP3A4 inhibitor ketocona-
zole [121]. Low CYP3A4 expression in breast tumors
improved the response to docetaxel. Likewise, hepatic
CYP3A4 activity assessed by the erythromycin breath test
and midazolam clearance predicted the clearance of doce-
taxel and showed lower toxicity in patients with the lowest
CYP3A4 activity. Unlike docetaxel, irinotecan is inactivated
by CYP3A4, and the induction of CYP3A4 results in a signif-
icant decrease in the development of the toxic metabolite of
this drug in patients receiving irinotecan. In addition, the
CYP3A4 phenotype is significantly associated with irinote-
can pharmacokinetics as measured by midazolam clearance.
A study recently indicated that the pregnane X-receptor
(PXR) pathway also includes irinotecan resistance in the
colon cancer cell line through the upregulation of drug-
metabolizing genes such as CYP3A4 [122–124].

The main expression pattern of CYP4Z1 renders it a
suitable candidate for cancer therapy. However, for pro-
drug therapy based on CYP4Z1 for the treatment of breast
cancer, lung cancer, ovarian cancer, and prostate cancer,
effective prodrugs must be identified. Previous studies have
used CYP enzymes to activate different anticancer pro-
drugs [125]. Most researchers have investigated oxazapho-
sphorines, including ifosfamide and cyclophosphamide
[126–128]. In clinical trials, CYP2B6-dependent activation
of cyclophosphamide has shown positive results [129, 130].
Presently, researchers are working on new mutants of
CYP2B6 to improve the activation of cyclophosphamide.
For instance, Haque and Pattanayak found a superior ability
of a triple mutant of CYP2B6 to fuse with NADPH cyto-
chrome P450 reductase that can help in converting cyclo-
phosphamide into its cytotoxic form [131].

Moreover, increasing the number of cancerous tissues
results in low P450 activity compared to that of the nearby
healthy tissues where the prodrugs are activated, resulting
in cytotoxicity. An important cancer research objective is to
develop therapeutic agents that specifically target tumor cells.
Studies have found that P450s provide therapeutic options
at higher levels in tumor cells compared to that in the sur-
rounding tissues due to activation of the prodrugs in the
cancer cells, which reduces side effects [20, 132]. As a result,
there are opportunities for enhanced tumor-specific endog-
enous expression of P450s and CYP-mediated gene therapy.
Most studies have extensively investigated CYP1B1 as
opposed to other P450 family members. The enzymes have
shown high expression, particularly in liver cells. CYP1B1
protein expression has been found in different tumors,
and the protein was not detected in normal tissues [133].
Many different agents, such as phortress and resveratrol,
are activated by CYP1B1 in preclinical studies. Moreover,
a CYP1B1 vaccine known as Zyc300 is presently in phase
I and II trials that aim to destroy cancer cells through T-
cell response induction [117, 134]. These strategies can be
initiated with other P450s that have been identified in
tumor cells, such as CYP2J2, CYP2W1, and CYP4Z1. This
requires the identification of an appropriate prodrug. How-
ever, additional research is required to ensure the success of
CYP-based cancer therapy.

Table 2: P450s involved in cancer drug metabolism.

Drugs CYPs Ref

Altretamine 2B [170]

Bexarotene 2C9, 3A4 [171]

Busulfan 3A4 [172]

Cisplatin 2E1, 3A4 [173]

Cyclophosphamide 2B6, 2C9, 3A4 [174]

Cytarabine 3A4 [175]

Dacarbazine 1A1, 1A2, 2E1 [176, 177]

Docetaxel 1B1, 3A4, 3A5 [176]

Doxorubicin 2D6, 3A4 [178]

Erlotinib 1A1, 1A2, 3A4 [179]

Etoposide 1A2, 2E1, 3A4, 3A5 [180]

Exemestane 3A4 [181]

Fulvestrant 3A4 [182]

Gefitinib 3A4 [183]

Idarubicin 2D6, 2C9 [184]

Ifosfamide
2A6, 2B1, 2B6, 2C9,
2C18, 2C19, 3A4, 3A5

[185]

Imatinib mesylate 1A2, 2C9, 2C19, 2D6, 3A4 [186]

Irinotecan 3A4, 3A5 [187]

Letrozole 2A6, 3A4 [188]

Paclitaxel 2C8, 3A4, 3A5 [189]

Tamoxifen
1A1, 1A2, 1B1, 2B6, 2C9,
2C19, 2D6, 2E1, 3A4, 3A5

[190]

Teniposide 3A4, 3A5 [180]

Thiotepa 2B1, 2C11 [191]

Topotecan 3A4 [192]

Toremifene 1A2, 3A4 [193]

Tretinoin 2C8, 2C9, 2E, 3A4 [194]

Vinblastine 3A4 [195]

Vincristine 3A4 [196]

Vinorelbine 3A4 [197]
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5.1. P450 Polymorphisms. Genetic polymorphisms of P450s
can affect the catalytic activity of the enzyme and have been
reported to be associated with different diseases and adverse
drug reactions in different populations. In terms of drug
metabolism, P450 polymorphism phenotypes vary from
ultra-fast to weak metabolizers. Of the 50 known P450 isoen-
zymes catalyzing drug metabolism, more than 20 P450 genes
are functionally polymorphic, such as CYP2A6, CYP2C9,
CYP2C19, CYP2D6, CYP1B1, and CYP1A2. The polymor-
phic P450s catalyze about 40% of the drug metabolism
[119, 135]. In addition, P450 polymorphisms were reported
to confer susceptibility to disease and disease protection or
reduced risk (Table 3). Inhibition of P450 enzymes by a
new chemical entity (NCE) may decrease the metabolism of
comedicated drugs. However, P450s were largely overlooked
in the development of cancer drugs until recently, recognized
only for their role in the chemotherapeutic metabolism of
Phase I. The first successful strategy in cancer therapy to tar-
get P450s was the production of active CYP19 (aromatase)
inhibitors for the treatment of breast cancer. Aromatase
inhibitors have entered a new era in hormone ablation
therapy for estrogen-dependent cancers, paving the way
for similar strategies to combat androgen-dependent prostate
cancer. Identification of the P450s involved in the inactiva-
tion of vitamin D3 and vitamin A anticancer metabolites
has also triggered the development of agents targeting these
enzymes. The discovery in cancer cells of the overexpres-
sion of exogenous metabolizing P450s, such as CYP1B1,
has increased interest in the creation of chemoprevention
inhibitors and prodrugs intended to be triggered by P450s
in cancer cells only [74].

Currently, decisions on which drugs to prescribe are
made for many disorders on a trial-and-error basis. Genet-
ically based screening methods would allow the tailoring
of drug therapy, drug selection, and dosing according to the
ability of an individual to metabolize a drug under the phar-
macogenomic paradigm. The fact that two genomes are

involved complicates cancer pharmacogenomics: the patient’s
germline genome and the tumor’s somatic genome. Chemo-
therapeutic drugs are highly sensitive to genetic background,
as they are generally unspecific drugs with narrow therapeu-
tic indexes that often result in severe or fatal toxicity.

5.1.1. Cyclophosphamide. Cyclophosphamide (CPA), a pro-
drug used in cancer therapy, is activated by CYP2C19,
CYP2C9, CYP3A4, and CYP2B6 to treat some autoimmune
disorders. CYP2C19∗2 and CYP2B6∗5 carriers have been
shown to have a significantly lower removal of CPA and
worse therapeutic performance. Also in the liver, CYP2B6
enzyme metabolizes ifosfamide, tamoxifen, procarbazine,
and thiotepa in the same way as it activates CPA [117].

5.1.2. Tamoxifen. Tamoxifen is a modulator of estrogen
receptors used in hormone receptor-positive breast cancers.
It has been suggested that CYP2D6, the active metabolizer
of tamoxifen, is necessary for the formation of endoxifen.
Several studies have shown that CYP2D6 PMs have
decreased relapse-free time and disease-free survival rate,
but they do not experience hot flashes of the same magni-
tude as patients with the wild-type allele. As a result of
enzyme inhibition (serotonin reuptake inhibitors, antide-
pressants, and other inhibitors of CYP2D6), a similar loss
of efficacy is observed [117].

5.1.3. Thalidomide. Thalidomide bioactivation depends
on CYP2C19 (5-hydroxythalidomide) metabolism. Another
pathway also exists that produces thalidomide arene oxide
and is mediated by CYP1A1 and CYP2E1. The response to
thalidomide and dexamethasone parallel treatment was
reported to be higher in CYP2C19 EMs than in PMs in mul-
tiple myeloma. The lower response rate observed in PMs may
be due to reduced angiogenesis inhibition activity. Notwith-
standing this evidence, the CYP2C19 polymorphism does
not have a major influence on the treatment outcome [136].

Table 3: Diseases associated with P450 polymorphism.

S. no. CYPs Diseases Gene polymorphism Country of population Ref

1 CYP1A2 Prostate cancer T3801C at 3′UTR Indian [198]

2 CYP7A1 Tuberculosis rs3808607 Moroccan [199]

3 CYP1A2 Cancers rs762551 Caucasians [200]

4 CYP17A1 Prostate cancer Wild General [201]

5 CYP24A1∗ Idiopathic infantile hypercalcemia
rs114368325
rs6068812

German, Russia,
Turkey

[202]

6 CYP8A1 A left main coronary artery disease C1117 Greece [203]

7 CYP19A1 Alzheimer disease rs3751592 Chinese [204]

8 CYP1B1 T2D rs1056827 Saudi Arabians [205]

9 CYP4A11 Hypertension
rs1126742
rs3890011

Chinese [206]

10 CYP1B1 Atherosclerosis Wild mice [207]

11 CYP2C9
Epistatic interactions to coronary heart disease

susceptibility
rs9332242 and
rs61886769

Russian [208]

12 CYP2J2 Ischemic stroke -50G/T Chinese [209]

13 CYP17 Gallbladder cancer /breast cancer rs743572 Indian/Chinese [127]
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5.1.4. Tegafur. Tegafur is a drug that is converted by CYP2A6
to 5-fluorouracil. The drug is weakly metabolized in patients
with CYP2A6∗4 or CYP2A6∗11. Since other P450s influence
tegafur metabolism (CYP3A4, CYP3A5, glutathione S-trans-
ferases), it is difficult to calculate the effective dose [137].

5.1.5. Imatinib. Imatinib mesylate (IM), a specific inhibitor of
the BCR-ABL tyrosine kinase, is a well-established first-line
treatment for chronic myeloid leukemia (CML). IM is uti-
lized for the most part by P450s in the liver, specifically the
CYP3A4 and CYP3A5 catalysts. Polymorphisms in these
genes can modify the protein action of IM and may influence
its reaction. Yuan et al. reported the effect of two single-
nucleotide polymorphisms (SNPs), namely, CYP3A5∗3
(6986A>G) and CYP3A4∗18 (878T>C), on IM treatment
reaction in patients with CML (n = 270; 139 IM resistant
and 131 IM responsive) [138].

6. Conclusion

P450s play a vital role in chemoprevention, carcinogenesis,
cancer therapy, and metastasis through regulation. As a
result, whether inhibition of P450s reduces the risk of cancer
depends on the cancer type, its etiology, and the treatment.
The literature review shows that much progress has been
made in understanding the role of drug-metabolizing P450s
in cancer treatment. The P450 family genes may play a role
in the formation of different types of cancer, as demonstrated
by their overexpression, which promotes carcinogenicity.
Certain P450 family members are upregulated in cancer,
making them potential targets for cancer treatment. Thus,
by providing P450-mediated metabolism at the tumor site
such as the site of anticancer drug action, individual P450s,
which are overexpressed in tumor cells, may represent excit-
ing and novel targets for cancer. In addition, patient-specific
therapeutic regimens, including prodrugs, reversible inhibi-
tors, and immunotherapy, can be customized to facilitate
the management of a variety of human tumors by recogniz-
ing the complement of functionally active P450s within the
tumor and nontumor tissues. However, whether the enzyme
activities need to be inhibited or enhanced depends on differ-
ent types of cancer and the important products that these
P450s produce. Recent accomplishments in the use of poly-
morphic C as drug targets in cancer therapy are promising
and could provide a new and effective alternative for future
cancer therapy.
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