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Abstract: Acute kidney injury (AKI) is a life-threatening condition characterized by a rapid and tran-
sient decrease in kidney function. AKI is part of an array of conditions collectively defined as acute
kidney diseases (AKD). In AKD, persistent kidney damage and dysfunction lead to chronic kidney
disease (CKD) over time. A variety of insults can trigger AKI; however, chemotherapy-associated
nephrotoxicity is increasingly recognized as a significant side effect of chemotherapy. New biomark-
ers are urgently needed to identify patients at high risk of developing chemotherapy-associated
nephrotoxicity and subsequent AKI. However, a lack of understanding of cellular mechanisms that
trigger chemotherapy-related nephrotoxicity has hindered the identification of effective biomarkers
to date. In this review, we aim to (1) describe the known and potential mechanisms related to
chemotherapy-induced AKI; (2) summarize the available biomarkers for early AKI detection, and
(3) raise awareness of chemotherapy-induced AKI.
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1. Introduction

Acute kidney injury (AKI) is a life-threatening condition with increasing incidence
worldwide [1]. It is characterized by a rapid and transient decrease in kidney function,
measured as an increase in serum creatinine (sCr) and a reduction in the glomerular
filtration rate (GFR) and urine output [1]. AKI is part of an assortment of conditions,
defined as acute kidney diseases (AKD) [1]. AKD can occur after an AKI event has
ended, but where the deterioration in kidney dysfunction and structural damage persist
or when kidney dysfunction evolves slowly without a rapid AKI onset [1]. AKD lasting
for >3 months is referred to as chronic kidney disease (CKD) [2]. Approximately 20%
to 50% of all patients admitted to the intensive care unit (ICU) develop AKI [3]. In the
context of cancer treatment, old and new chemotherapy drugs often cause chemotherapy-
associated nephrotoxicity [4,5]; accordingly, up to 17.5% of cancer patients develop AKI,
which negatively affects patient survival [6]. Additionally, long-term, these AKI events are
associated with the progression of CKD, cardiovascular complications, and mortality [7].

A common pathological feature of AKI is an injury to tubular epithelial cells (TEC), en-
dothelial damage, and accumulation of inflammatory cells [1]. However, the incomplete un-
derstanding of pathophysiology and molecular mechanisms associated with chemotherapy-
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related nephrotoxicity resulting in AKI has hampered the identification of effective biomark-
ers for patient stratification. As chemotherapy-related AKI may affect the bioavailability of
many chemotherapy drugs, potentially leading to suboptimal treatments, the identification
of biomarker profiles predictive of AKI severity and outcome is now more urgent than
ever. While routine diagnostic markers, such as sCr and urine output, measure the loss of
kidney function following an AKI, they do not identify the preceding pathophysiological
changes, such as tubular injury. Numerous urinary biomarkers are in use or have been
proposed as indicators of kidney injury [8]. Identifying patients at high risk of developing
AKI, together with an awareness of potential drug nephrotoxicity, early recognition, and
management of incipient AKI, are vital to reducing cases of established AKI. In this review,
we aim to (1) provide an overview of the mechanisms involved in chemotherapy-associated
AKI; (2) discuss the biomarkers currently available and propose additional biomarkers for
early AKI detection, and (3) raise awareness of chemotherapy-induced AKI and promote
collaboration between nephrologists, oncologists, and intensive care specialists for early
AKI recognition and effective oncologic patient management.

2. Epidemiology

According to incidence, prevalence, and mortality trends, the epidemiology of cancer
worldwide is dramatically changing [9,10]. Despite the impact of cancer overdiagnosis
in correctly estimating the actual impact of cancer on patient survival [11], cancer will
likely be the leading cause of death in the following decades [9,10]. Nevertheless, the
development of new cancer drugs continues to improve cancer survival rates in high-
income countries [11]. Chemotherapy nephrotoxicity is associated with significant kidney
manifestations, including AKI, progression to CKD, proteinuria, nephrotic syndrome, and
electrolyte disorders [9]. Thus, the interplay between cancer treatment and kidney health
is complex. While cancer patients are a population at high risk of developing AKI as a
result of their cancer treatment regimes, the physical and psychosocial effects associated
with cancer survivorship may make a subsequent CKD diagnosis a difficult health issue
to address [12].

In recent years, many initiatives have provided operative definitions of AKI, all
based on the measurement of sCr and urine output (Table 1). AKI can complicate disease
courses and is associated with increased mortality in cancer patients [6]. In a population-
based study of 163,071 patients undergoing systemic treatment for cancer in Ontario,
the overall cumulative incidence of AKI was 9.3% [13]. A similar study conducted in
China demonstrated an incidence of 7.5%, with a higher prevalence among hospitalized
patients [14]. The most extensive study to date, accounting for 1.2 million patients in
Denmark followed from 1999 to 2006, revealed a 1-year AKI risk of 17.5% [15]. Thus, risk
factors for AKI, AKD, and progression to CKD should be carefully assessed [6].

The number of cancer patients admitted to the ICU has gradually increased over the
last number of decades [16,17]. A recent multicenter, observational study showed that
15% of patients admitted to European ICUs have cancer, with solid tumors being more
common than hematological cancer (85% vs. 15%, respectively) [18]. AKI is a severe and
frequent complication during critical illness ranging from 54% [19] to 70% [20,21], and it is
particularly common in patients with hematological cancer or multiple myeloma [18,22].
Notably, in most cases, AKI is already present on admission to ICU rather than acquired
in ICU [21]. However, reports vary depending on the criteria used to define AKI [23].
Furthermore, diagnosis and staging of AKI in critically ill patients should consider that sCr
concentrations may be artificially low due to cachexia and muscle mass loss, although AKI
is already present.
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Table 1. Definitions.

Term Definition Available Classification Reference

Acute Kidney Injury (AKI)

Acute kidney injury (AKI) describes a sudden loss
of kidney function that is determined on the basis

of increased sCr levels (a marker of kidney
excretory function) and reduced urinary output

(oliguria) (a quantitative marker of urine
production) and is limited to a duration of 7 days.

RIFLE (2004)
AKIN (2007)

KDIGO (2012)

[1]
[24]
[25]
[26]

Acute Kidney Disease and
Disorders (AKD)

A variety of functional kidney conditions that can
range from mild and self-limiting to severe and

persistent. AKD persisting for >3 months is
referred to as CKD.

[1]

Nephrotoxicity The damage of kidneys by exogenous or
endogenous toxicants. [27]

Chronic Kidney Disease
(CKD)

CKD is a syndrome defined as persistent
alterations in kidney structure, function, or both

with implications for the health of the individual.
KDIGO (2013) [2]

[28]

sCr: serum Creatinine; RIFLE: Risk, Injury, Failure, Loss, and End-Stage Renal Disease; AKIN: Acute Kidney
Injury Network; KDIGO: Kidney Disease Improving Global Outcomes.

3. Risk Factors

Epidemiology studies have highlighted common risk factors for AKI, also traceable
in the general population, and specific risk factors which are tumor-related. In advanced
cancer, underlying CKD and diabetes are all associated with an increased risk of AKI [13],
together with urinary tract obstruction [14]. In addition, volume depletion, due to fluid loss
or confinement into the third space, a common condition in elderly patients, can be easily
traced as one of the most common risk factors for AKI [29]. Other drugs, when administered
concomitantly with certain cancer drugs, such as diuretics, angiotensin-converting enzyme
(ACE)-inhibitors, or proton-pump inhibitors, are associated with increased toxicity. Tumor-
specific risk factors are generally a hallmark of certain tumors [30,31]. AKI complicating
hematologic malignancies may be due to light chain cast nephropathy in multiple myeloma
or tumor lysis syndrome after the initiation of chemotherapy in patients with high-grade
lymphomas or leukemias [30,31]. Metastases to the kidney from solid tumors are not
uncommon; functional impairment of the kidneys generally requires metastases to both
kidneys. This condition occurs mainly with rapidly growing hematologic malignancies,
such as lymphoma or acute leukemia [32]. Thrombotic microangiopathy may be associated
with primary cancer or, more likely, with therapeutic regimens, such as gemcitabine or
vascular endothelial growth factor (VEGF) inhibitors (such as bevacizumab) [33]. Urinary
tract obstruction should be considered as a cause of AKI in cancer patients, especially those
with malignancies of the bladder, prostate, uterus, or cervix [34]. Intratubular obstruction
can be caused by crystals composed of uric acid, xanthine, hypoxanthine, or calcium
phosphate [35]. Of note, phosphate metabolism itself is dysregulated during AKI, and
hyperphosphatemia can be present as a result of reduced kidney excretion together with
increased fibroblast growth factor 23 (FGF-23) levels [36,37]. FGF-23 is a crucial modulator
of calcium and phosphate metabolism. In vitro, FGF-23 is overexpressed in osteoblast-like
cells exposed to chemotherapeutics [38], while it has been established that FGF-23 may be
upregulated in some cancers [39]. Together, this data indicates an interplay between FGF-23,
AKI, and chemotherapy administration that should be further investigated. Extrarenal
obstruction can be caused by a wide range of malignancies and may indicate metastatic
disease [40]. A diagnosis is usually established by imaging studies which typically show
hydronephrosis [41]. When dealing with oncology patients, tumor-specific risk factors,
together with common risk factors, significantly increase the risk of AKI. Indeed, these
patients should receive additional attention to reduce the burden of AKI and CKD.
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In critically ill patients with cancer, sepsis, metabolic disturbances (e.g., hypercalcemia
and hyperuricemia), and the nephrotoxic effects of anticancer and supportive therapies
are common triggers of AKI [18,42,43]. Older age (>65 years), female sex, and coexisting
disease processes, including CKD, diabetic kidney disease, and volume depletion (e.g., due
to vomiting or diarrhea), or renal hypoperfusion (e.g., due to cardiomyopathy, cirrhosis,
or the nephrotic syndrome), predispose these patients to potential AKI development [44].
The association between AKI and anticancer therapies seems particularly relevant in the
critical care setting [45]. Hyperthermic chemotherapy is a valuable strategy for patients
with carcinomatosis [46]. Most surgical patients treated with cytoreductive surgery and
hyperthermic intraperitoneal chemotherapy are admitted to the ICU and frequently de-
velop severe AKI [46,47]. Immune checkpoint inhibitors (ICPi), which is one of the most
frequently prescribed anticancer treatments nowadays [48], are associated with a unique
spectrum of immune-related adverse events affecting several organs, including the kid-
neys [49]. Direct renal toxicity of these drugs can have severe consequences and lead to
ICU admission.

Collectively, a better understanding of the mechanisms linked to chemotherapy-related
AKI could potentially help the identification of more specific and sensitive biomarkers.

4. Mechanisms and Clinical Manifestations

AKI can affect the different portions of the nephron, namely the tubules and the
glomeruli, as well as the interstitium and the vasculature [50]. Acute tubular necrosis
(ATN) results from direct injury to the tubules and is one of the common manifestations
of nephrotoxic AKI [50]. ATN is a dynamic process involving different forms of regulated
necrosis, resulting in synchronization of tubular cell death along the entire tubule [51,52].
Necrotic TEC release pro-inflammatory molecules that activate resident immune cells in
the interstitium, which, in turn, further promote tubular necrosis in a vicious circle [53].
Following AKI, functional recovery occurs via two main mechanisms: (1) clonal expansion
of a TEC subset (termed progenitor cells) endowed with regenerative ability to replace
lost TEC [54] and (2) polyploidization of differentiated TEC [54]. From an evolutionary
point of view, polyploidization appears to be most likely developed to sustain a temporary
functional recovery of the kidney that is not accompanied by a structural recovery (which
should be sustained by progenitor cells). When structural damage is prolonged, AKI may
progress to AKD [1].

As a comprehensive analysis of all the AKI mechanisms associated with cancer is
beyond the scope of this review, we will focus specifically on drugs that directly affect
the tubules. Cytotoxic chemotherapy, targeted agents, as well as ICPi account for several
cases of AKI in patients receiving those treatments. Nephrotoxicity is more frequently
observed with cytotoxic agents, likely due to their nonspecific mechanisms of action [44].
Many of the drug-related mechanisms of nephrotoxicity are not well-defined, making
it difficult to develop targeted strategies for preventing or minimizing their occurrence.
In addition, there is often a lack of standardization for dose adjustment in patients with
pre-existing kidney impairment [5]. The mechanisms of nephrotoxicity are summarized in
Figures 1 and 2, and Table 2 and described in the following sections.

Cytotoxic agents. There are many different classes of nephrotoxic agents employed for
cancer treatment, comprising but not limited to alkylating agents, antimetabolites, antimi-
crotubule agents, antibiotics, proteasome inhibitors, and platinum agents. Among these,
the most widely used (being prescribed in nearly 50% of all tumor chemotherapies [55])
is cisplatin, a platinum drug. Cisplatin nephrotoxicity may be associated with a protean
clinical manifestation [56]. Appropriately timed renal functional assessment may help
diagnose cisplatin-associated AKI, as exposure typically exerts a slow rise in sCr five to
seven days after administration [56]. Severe AKI requiring kidney replacement therapy
(KRT) is uncommon. Hypomagnesemia, a typical feature of cisplatin toxicity, is caused by
urinary magnesium wasting, and it is dose-related [57,58].
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Figure 1. Chemotherapy-induced nephrotoxicity. (A) Hematoxylin and Eosin staining shows tubu-
lar damage in a kidney biopsy of a patient following treatment with a cocktail of cisplatin, car-
boplatin, etoposide, cyclophosphamide, and vincristine. (B–D) Higher magnification of biopsy 
shown in (A). Black circles indicate distal tubular casts. White circles indicate luminal cellular de-
bris. * indicates proximal tubule injury. ° indicates regenerative nuclear atypia. Arrows indicate 
karyomegaly. Bars 100 µm. 

Immune checkpoint inhibitors (ICPi). Immune checkpoint inhibitors (ICPi) are a ma-
jor class of cancer drugs able to improve prognosis in several cancers. These humanized 
monoclonal antibodies target inhibitory receptors (CTLA-4, PD-1, LAG-3, TIM-3) and lig-
ands (PD-L1) expressed on T lymphocytes, antigen-presenting cells, and tumor cells, elic-
iting an anti-tumor response by stimulating the immune system [97–99]. Targeting check-
points of immune cell activation has been demonstrated to be the most effective approach 
for activating anti-tumor immune responses. The combination of CTLA-4 and PD-1 block-
ers increases the response rates in patients, and ipilimumab (anti-CTLA-4) plus 
nivolumab (anti-PD-1) in combination are particularly effective in different cancer types, 
such as those affecting the kidney [100]. 

However, patients treated with ICPi are also subject to “immune-related adverse 
events (IRAEs)”, which are common and can affect any organ, including lung, liver, skin, 
and kidney [101]. Recent data show differences in the IRAE characteristics caused by dif-
ferent ICPi, and organ-specific effects remain unexplained [102]. ICPi-induced AKI is be-
ing observed with increasing frequency in patients. In the largest retrospective study 
available, AKI occurred at a median time of 16 weeks (IQR 8–32) following ICPi initiation 
[49]. When a kidney biopsy was performed, the typical lesion associated with AKI was 
acute tubulointerstitial nephritis (ATIN) [49]. Thus, it is likely that nephrologists will be 
increasingly charged with diagnosing and managing AKI following ICPi administration 
[103]. Accordingly, an increasing number of case reports have described kidney compli-
cations and AKI associated with the use of ipilimumab and/or nivolumab [103,104]. The 
first reported cases of AKI linked to nivolumab were described in 2016 [105] and were 
associated with ATIN. This association raised the possibility that nivolumab therapy may 
release the suppression of T-cell immunity that normally permits renal tolerance to drugs 
known to be associated with ATIN [105,106]. In addition, PD-1 knockout mice were 
shown to spontaneously develop glomerulonephritis [107,108], suggesting that PD-1 in-
hibitor therapy may drive an autoimmune variant of interstitial nephritis. Though very 
little has been reported about AKI pathophysiology linked to nivolumab and ipilimumab, 
AKI appears as a delayed onset following the exposure to ICPi [103]. This is in stark con-
trast with cytotoxic-induced AKI, which is rather immediate. In addition, ICPi-induced 
AKI presents many features of autoimmune diseases rather than of direct drug-related 
nephrotoxicity, likely explaining the delayed onset of AKI in these patients. However, the 
underlying mechanisms of kidney injury are largely unknown (and excellently reviewed 
here [98]) and warrant further investigation. Nevertheless, a recent paper reported two 
AKI cases in patients with nivolumab treatment, characterized by the presence of kary-

Figure 1. Chemotherapy-induced nephrotoxicity. (A) Hematoxylin and Eosin staining shows tubular
damage in a kidney biopsy of a patient following treatment with a cocktail of cisplatin, carboplatin,
etoposide, cyclophosphamide, and vincristine. (B–D) Higher magnification of biopsy shown in (A).
Black circles indicate distal tubular casts. White circles indicate luminal cellular debris. * indicates
proximal tubule injury. ◦ indicates regenerative nuclear atypia. Arrows indicate karyomegaly. Bars
100 µm.
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Figure 2. Demonstrated and putative chemotherapy-induced nephrotoxicity mechanisms in tubular 
epithelial cells. Schematic representation of the various mechanisms through which the drugs re-
ported in this review cause nephrotoxicity. Dotted lines indicate putative mechanisms. ATN: Acute 
Tubular Necrosis; ATIN: Acute Tubulointerstitial Nephritis. 

Table 2. Chemotherapy induced-AKI, mechanisms of nephrotoxicity and associated biomarkers. 

Drug 
Class of 

Antineoplastic 
Drug 

Kidney Associated 
Clinical Features 

Mechanism of 
Nephrotoxicity 

Biomarkers References 

Cisplatin Platinum agents 
AKI 

Hypomagnesemia 

Oxidative stress and 
inflammation, 

DNA damage-induced 
apoptosis and 

polyploidy 

NAG 
NGAL 
KIM-1 

[56,130–133] 

Ifosfamide 
Alkylating 

agents 

AKI 
Nephrogenic diabetes 

insipidus 
Fanconi syndrome 

dRTA 

Oxidative stress, DNA 
damage, and 
karyomegalic 
nephropathy 

 [75,78,85–88] 

Vancomycin, 
Gentamicin, and 
Amphotericin B 

Anti-infectives 
drugs AKI 

Not well understood, 
DNA damage and 
oxidative stress on 

proximal tubular cells 

NAG 
NGAL, KIM-1 

[TIMP-2][IGFBP7] 

[89,132,134–
139] 

Erlotinib EGFR inhibitors 

AKI 
Nephrotic syndrome 

and proliferative 
glomerulonephritis 

Not completely 
understood, block of 

YAP-1 impairs kidney 
repair 

 [114,118,119] 

Nivolumab 
Immune 

checkpoint 
inhibitors 

AKI delayed onset 
Largely unknown, 

finding of TEC 
polyploidy 

 [103,109,110] 

Figure 2. Demonstrated and putative chemotherapy-induced nephrotoxicity mechanisms in tubular
epithelial cells. Schematic representation of the various mechanisms through which the drugs
reported in this review cause nephrotoxicity. Dotted lines indicate putative mechanisms. ATN: Acute
Tubular Necrosis; ATIN: Acute Tubulointerstitial Nephritis.

Cisplatin-induced nephrotoxicity is associated with oxidative stress and inflamma-
tion [59–61]; however, the precise mechanisms of action of the drug remain somewhat
unclear [59,62]. However, its major reported cytotoxic effect is mediated by its interaction
with DNA, which leads to DNA damage and apoptosis induction [63]. Terminally differen-
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tiated cells, such as TEC, must cope with the accumulation of damage over the course of a
lifespan [64]. Importantly, DNA damage triggered by cisplatin and the associated DNA
damage response (DDR) is an important pathogenic mechanism of AKI following cisplatin
treatment [65]. DDR activation may lead to cell cycle arrest [66–68] or, in the presence
of severe injury, cell death. However, not only cell cycle arrest but also polyploidy has
been recently shown to protect against DNA damage-induced cell death [64]. Cisplatin
treatment in humans and rodents is reported to cause karyomegaly in renal tubules [69–71],
which could indicate the presence of polyploid TEC. Indeed, renal tubule karyomegaly
does not develop immediately, instead requiring successive rounds of nuclear division to
increase the ploidy content to a recognizable size [72,73] and likely explaining why this
feature is frequently missed.

Another commonly used nephrotoxic agent is ifosfamide, an alkylating agent. Its
nephrotoxicity is particularly relevant considering that it is mostly observed in pediatric
patients [74,75]. Thirty percent of the children treated with ifosfamide will consequently
develop CKD [76]. Nevertheless, the reported prevalence of nephrotoxicity ranges from
15% to 60% [77,78]. Clinically, AKI associated with ifosfamide is characterized by tubular
dysfunction [75]. In fact, ifosfamide mainly affects the S3 segment of the proximal tubule
and/or the distal nephron resulting in Fanconi syndrome. This syndrome is character-
ized by inadequate reabsorption in the proximal renal tubules, with traceable glucosuria,
aminoaciduria, tubular proteinuria, decreased phosphate reabsorption, and type 1 (distal)
or type 2 (proximal) renal tubular acidosis, or even nephrogenic diabetes insipidus [75]. A
specific risk factor for ifosfamide nephrotoxicity is cumulative drug dose [79,80]. Two drugs
with antioxidants properties—mesna and N-acetylcysteine (NAC)—are currently used to
limit its toxic effects, although their efficacy has not been tested in clinical trials [74,77,79,81].
Considering the long life expectancy of children and young adults surviving cancer, drug-
related nephrotoxicity and its lasting consequences represent a crucial unmet problem
in medicine. Among the numerous side effects associated with its metabolites [82–84],
ifosfamide reacts with DNA molecules to form intra-and interstrand cross-links, causing
the DNA strand to break [85]. Interestingly, ifosfamide has also been associated with kary-
omegalic nephropathy, further suggesting an interesting association between DNA damage,
AKI, and increased ploidy [86–88]. Anti-infective drugs, such as vancomycin, gentamicin,
and amphotericin B, are also leading causes of drug-induced nephrotoxicity [89–91]. Their
mechanisms of action are not well understood, but their primary target is, in all cases,
the proximal tubular cells where they cause oxidative stress [89–91], a well-recognized
trigger of DNA damage [92]. Finally, one nephrotoxic manifestation of many cytotoxic
agents is rhabdomyolysis [93–95] which is known to cause nephrotoxic AKI [96]. Impor-
tantly, we have recently shown that rhabdomyolysis triggers TEC polyploidy in response
to damage [54].

Collectively, the presence of tubular karyomegaly and polyploidy in response to
AKI may play an important role in the pathogenesis of nephrotoxicity, at least for some
anti-cancer drugs.

Immune checkpoint inhibitors (ICPi). Immune checkpoint inhibitors (ICPi) are a major
class of cancer drugs able to improve prognosis in several cancers. These humanized
monoclonal antibodies target inhibitory receptors (CTLA-4, PD-1, LAG-3, TIM-3) and
ligands (PD-L1) expressed on T lymphocytes, antigen-presenting cells, and tumor cells,
eliciting an anti-tumor response by stimulating the immune system [97–99]. Targeting
checkpoints of immune cell activation has been demonstrated to be the most effective
approach for activating anti-tumor immune responses. The combination of CTLA-4 and
PD-1 blockers increases the response rates in patients, and ipilimumab (anti-CTLA-4) plus
nivolumab (anti-PD-1) in combination are particularly effective in different cancer types,
such as those affecting the kidney [100].

However, patients treated with ICPi are also subject to “immune-related adverse
events (IRAEs)”, which are common and can affect any organ, including lung, liver, skin,
and kidney [101]. Recent data show differences in the IRAE characteristics caused by
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different ICPi, and organ-specific effects remain unexplained [102]. ICPi-induced AKI is
being observed with increasing frequency in patients. In the largest retrospective study
available, AKI occurred at a median time of 16 weeks (IQR 8–32) following ICPi initia-
tion [49]. When a kidney biopsy was performed, the typical lesion associated with AKI
was acute tubulointerstitial nephritis (ATIN) [49]. Thus, it is likely that nephrologists
will be increasingly charged with diagnosing and managing AKI following ICPi admin-
istration [103]. Accordingly, an increasing number of case reports have described kidney
complications and AKI associated with the use of ipilimumab and/or nivolumab [103,104].
The first reported cases of AKI linked to nivolumab were described in 2016 [105] and were
associated with ATIN. This association raised the possibility that nivolumab therapy may
release the suppression of T-cell immunity that normally permits renal tolerance to drugs
known to be associated with ATIN [105,106]. In addition, PD-1 knockout mice were shown
to spontaneously develop glomerulonephritis [107,108], suggesting that PD-1 inhibitor
therapy may drive an autoimmune variant of interstitial nephritis. Though very little has
been reported about AKI pathophysiology linked to nivolumab and ipilimumab, AKI ap-
pears as a delayed onset following the exposure to ICPi [103]. This is in stark contrast with
cytotoxic-induced AKI, which is rather immediate. In addition, ICPi-induced AKI presents
many features of autoimmune diseases rather than of direct drug-related nephrotoxicity,
likely explaining the delayed onset of AKI in these patients. However, the underlying
mechanisms of kidney injury are largely unknown (and excellently reviewed here [98])
and warrant further investigation. Nevertheless, a recent paper reported two AKI cases in
patients with nivolumab treatment, characterized by the presence of karyomegalic TEC,
potentially indicating TEC polyploidy. Of note, most of the enlarged tubular epithelial cells
were positive for Ki-67, a cell cycle activation marker [109]. Ki-67 cannot distinguish cells
undergoing mitotic or alternative cell cycles, but rather it indicates cell cycle entry [109].
This may indicate that karyomegalic TEC are polyploid cells undergoing multiple rounds
of polyploidization [109,110].

Targeted agents. Molecular-targeted agents are compounds that target specific molecules
involved in the growth and spread of cancer cells [111]. In respect to cytotoxic agents, tar-
geted agents are thought to have fewer side effects and cause less harm to non-cancer cells.
Epidermal growth factor receptor inhibitors (EGFR inhibitors) are used extensively to treat
various cancers, such as non-small-cell lung cancer, breast, head and neck, and pancreatic
cancer [112]. Epidermal growth factor receptor (EGFR) is a transmembrane protein with
intrinsic tyrosine kinase activity that can be activated by several ligands, modulating cell
differentiation, proliferation, and survival through the EGFR–ERK and EGFR–PI3K–Akt
signaling pathways [113,114]. The blockade of EGFR may result in AKI, nephrotic syn-
drome, and proliferative glomerulonephritis [115,116]. The exact pathogenesis of EGFR
inhibitors-associated kidney-related disorders is unclear [112]. However, it should be noted
that EGFR is widely expressed in mammalian kidneys [117]. In this respect, functional
analysis performed in vivo showed that treatment with an EGFR tyrosine kinase inhibitor
(erlotinib, a commonly used anti-cancer agent [118]) delayed renal function recovery after
AKI [114]. In contrast, EGFR activation accelerated kidney repair [114]. Indeed, proximal
tubular EGFR knock-out (KO) mice showed persistent tubular cell damage in the weeks
after AKI compared to wild-type mice [114]. Interestingly, no difference was detected in
innate immune system activation and inflammatory cell infiltration [114]. This implies that
the delayed recovery rate of EGFR-KO mice is related to a direct effect on TEC rather than
a systemic effect. Recently, activation of the EGFR-PI3K-Akt pathway in response to AKI
was shown to activate Yes-associated protein (YAP1), promoting kidney repair [119]. YAP1
is the main effector of the highly conserved Hippo pathway [120]. Unlike other signaling
pathways, the Hippo pathway does not have dedicated receptors, but it is rather regulated
by a network of upstream components [120]. This pathway appears to work as a sensor for
tissue integrity, responding and adapting accordingly [120]. Importantly, YAP1 has been
reported to control polyploidization in the liver through Akt signaling [121]. In the liver,
YAP1 activation turns on Akt signaling, promoting S-Phase Kinase Associated Protein 2
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(SPK2) acetylation, resulting in cytoplasmic retention, leading to cell polyploidy [121]. In-
terestingly, loss of liver kinase B1 (LKB1) in mouse hepatocytes enhances EGFR activation,
which leads, in turn, to mitotic slippage and increased cell polyploidization [122]. Collec-
tively, the importance of polyploidization [54,123] and EGFR downstream activation of
YAP1 in response to AKI [114] may indicate that blocks of EGFR could profoundly affect the
endogenous repair potential of the kidney, especially when administered in combination
with cytotoxic agents that are notoriously nephrotoxic, exacerbating their damage.

In addition to EGFR inhibitors, targeted agents that have been shown to trigger AKI are
BRAF blockers [124,125], B-cell lymphoma-2 inhibitors [126], and BCR-ABL1 and receptor
tyrosine kinase inhibitor [127–129]. However, in most cases, the association remains vague
and requires thorough investigation.

Table 2. Chemotherapy induced-AKI, mechanisms of nephrotoxicity and associated biomarkers.

Drug
Class of

Antineoplastic
Drug

Kidney Associated
Clinical Features

Mechanism of
Nephrotoxicity Biomarkers References

Cisplatin Platinum agents AKI
Hypomagnesemia

Oxidative stress and
inflammation,

DNA
damage-induced

apoptosis and
polyploidy

NAG
NGAL
KIM-1

[56,130–133]

Ifosfamide Alkylating agents

AKI
Nephrogenic

diabetes insipidus
Fanconi syndrome

dRTA

Oxidative stress,
DNA damage, and

karyomegalic
nephropathy

[75,78,85–88]

Vancomycin,
Gentamicin, and
Amphotericin B

Anti-infectives
drugs AKI

Not well understood,
DNA damage and
oxidative stress on
proximal tubular

cells

NAG
NGAL, KIM-1

[TIMP-2][IGFBP7]
[89,132,134–139]

Erlotinib EGFR inhibitors

AKI
Nephrotic syndrome

and proliferative
glomerulonephritis

Not completely
understood, block of

YAP-1 impairs
kidney repair

[114,118,119]

Nivolumab
Immune

checkpoint
inhibitors

AKI delayed onset
Largely unknown,

finding of TEC
polyploidy

[103,109,110]

AKI: Acute Kidney Injury; IGFBP-7, Insulin-Like Growth Factor-Binding Protein 7; TIMP-2, Tissue Inhibitor
of Metalloproteinase 2; NAG: N-Acetyl-Beta-D-Glucosaminidase; NGAL: Neutrophil Gelatinase-Associated
Lipocalin; KIM-1: Kidney Injury Molecule-1; EGFR: Epithelial Growth Factor Receptor; TEC: Tubular Epithelial
Cells; dRTA: distal Renal Tubular Acidosis; YAP-1: Yes-Associated Protein 1.

5. Biomarker-Guided Diagnosis

The Acute Disease Quality Initiative (ADQI) group proposed an extended definition
of AKI, which includes AKI biomarkers classified as functional and damage biomarkers
according to the AKI aspects, which they recapitulate. SCr level and urine output are
two functional biomarkers widely employed in clinical practice, but they have several
limitations [140]. Indeed, in healthy patients, the sCr levels increase only if at least 50%
of the functional nephrons are lost, whereas during critical illness (i.e., in ICU patients),
many confounding factors likely play a role in creatinine decrease (i.e., cirrhosis, hyper-
bilirubinemia, fluid overload, elderly patients, muscle wasting), making eGFR based on
creatinine unreliable to correctly estimate kidney function [141,142]. These caveats limit
the ability of sCr measurements to diagnose early AKI. In addition, creatinine assessment
does not clarify to what extent subclinical AKI episodes contribute to shortening the kidney
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lifespan and CKD. Likewise, urine output can be influenced by hypovolaemia and the use
of diuretics, resulting in a relatively low specificity of this parameter [143]. Cystatin C is
a low molecular weight molecule produced by all epithelial cells. It is freely filtered by
the glomerular filtration barrier and completely reabsorbed by proximal TEC in healthy
individuals [144]. Therefore, it is detected in the urine only following tubular epithelial
injury. Unlike sCr, its measurement is not confounded by acute and chronic illness, changes
in diet, and decreased muscle mass, rendering it a better predictor of mortality compared
to the sCr-based eGFR calculations [142,145–148].

In contrast to functional biomarkers, damage-associated biomarkers are specific to
tubular injury and can potentially identify patients at higher risk of developing AKI. This
is particularly relevant in clinically silent cases or in subclinical AKI, where creatinine level
and urine output measurements are unreliable. In fact, early kidney damage does not
often cause a relevant change in urine output or sCr, missing the diagnostic criteria of AKI.
If the damage is severe or prolonged over time (i.e., progression to AKD), overcoming
the renal function reserve, a GFR reduction and a subsequent alteration of sCr and urine
output will be observed. However, kidney damage without any function loss also affects
outcomes [149,150]. Importantly, both functional impairment (sCr level elevation and/or
urine output decline) and the presence of damage biomarkers indicating structural damage
are associated with a marked mortality increase in specific clinical contexts, such as those
associated with critical illness [151–154]. Therefore, identifying patients at high risk of
chemotherapy-associated AKI development is a challenge, and damage biomarkers offer a
potential solution to guide clinicians in their therapeutic decisions to prevent AKI outcomes
(Table 2) [155].

Damage biomarkers. Nephrotoxins contribute to approximately 30% of AKI cases in
critically ill patients, and mismanagement from excessive nephrotoxic treatment coupled
with unnecessary exposure is often a contributing factor [156,157]. As the use of nephrotoxic
agents represents one of the few modifiable risk factors for AKI, clinicians must be able to
rapidly identify patients at high risk for drug-induced kidney injury.

Several biomarkers with a different anatomical origin, kinetics, function, and timing
after the insult have been identified and used for clinical and/or research purposes. These
molecules are usually produced after a parenchymal lesion and released in the urine due
to tubular reabsorption failure. Several neutrophil gelatinase-associated lipocalin (NGAL)
isoforms are released by the kidney (thick ascending limb and collecting ducts) and by
immune cells [158]. In healthy individuals, the concentration of NGAL in the urine is very
low, but it increases considerably after an insult, showing high sensitivity and specificity
for predicting AKI in patients with a previously normal kidney function [159,160], as
well as in patients with CKD [161,162]. Several in vivo studies evaluating the NGAL
response to known nephrotoxins, including aminoglycosides, amphotericin B, cisplatin,
paraquat poisoning, methotrexate, nonsteroidal anti-inflammatory drugs, and vancomycin,
are described [130–132,163,164].

NGAL measurement in cisplatin and amphotericin-associated AKI was effective in
the early detection of AKI, performing better than sCr, but it was not so evident in chronic
cisplatin-associated AKI [131,138].

Kidney Injury Molecule-1 (KIM-1) is a type 1 transmembrane glycoprotein that is
markedly upregulated in the injured proximal tubular epithelium after ischemic injury
or nephrotoxic exposure and shed into the tubular lumen [165]. KIM-1 is suggested to
be a more sensitive/specific biomarker for detecting amphotericin and cisplatin-induced
AKI [166]. Urinary KIM-1 and NGAL could efficiently discriminate patients with or
without vancomycin-associated AKI earlier than sCr, and their combination showed fair
discrimination compared with the individual biomarkers [137]. Further studies in patients
undergoing platinum chemotherapeutics, urinary levels of KIM-1, NGAL, and cystatin C
showed a statistically significant early increase after treatment initiation, preceding sCr rise,
in AKI patients [133,167]. Accordingly, a Canadian study showed the ability of KIM-1 and
NGAL to provide early AKI detection and their utility in identifying patients at risk of long-
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term AKI complications in a cohort of pediatric oncologic patients [130]. Following this, the
US Food and Drug Administration (FDA) approved KIM-1 as a nephrotoxic biomarker for
different drugs in use, resulting in several quantitative KIM-1 measurements having been
developed [168–170]. Liver-type Fatty Acid-Binding Protein (L-FABP) is mainly produced
by the liver but also by other organs, such as the kidney. L-FABP can be detected in the
urine predicting AKI in patients after cardiac surgery or in critically ill patients, apparently
better than NGAL [171,172]. Further studies demonstrated an additional benefit of using
biomarkers (NGAL, KIM-1, L-FABP) in conjunction with the functional criteria of sCr and
urine output, as their combination improves the prediction of worse outcomes [155]. Other
biomarkers are represented by the lysosomal enzyme N-acetyl-b-D-glucosaminidase (NAG)
and the cytosolic protein lactate dehydrogenase (LDH) [173,174]. The relationship between
NAG and drug-induced kidney disease has been evaluated in several studies [135,163,175],
focusing mainly on aminoglycoside and cisplatin use, demonstrating that higher NAG
levels exhibited a relationship with nephrotoxicity during therapy with aminoglycosides
and with a methotrexate and cisplatin combination [134–136]. In a proof-of-concept study,
damage urinary biomarkers (KIM-1, NGAL, and NAG) provided an early identification of
aminoglycoside-related proximal tubule renal toxicity, enabling treatment adjustment and
the identification of infants at risk of long-term kidney impairment [163].

Other biomarkers of nephrotoxicity include gamma-glutamyl transpeptidase (GGT),
Glutathione S-transferase (GST), and alanine aminopeptidase (AAP). GGT and NAG pre-
dicted AKI in critical care patients, especially in the ICU setting [176], and urinary concen-
trations of NAG increased in mice exposed to gentamicin or lithium [136,177]. Recently,
urinary dickkopf-3 (DKK3), a stress-induced tubular epithelial-derived profibrotic gly-
coprotein, has been shown to predict postoperative AKI and provide information about
ongoing tubulointerstitial fibrosis and short-term eGFR loss [177–179]. The RUBY study
demonstrated that elevated urinary CCL14 predicts persistent AKI in a large heterogeneous
cohort of critically ill patients with severe AKI [180]. However, there is still no evidence of
the potential application of DKK3 and CCL14 in the context of chemotherapy-induced AKI.

Cell cycle arrest biomarkers. Unbiased screening for urinary biomarkers revealed that
cell cycle arrest markers were among the top candidates capable of predicting subsequent
AKI [181]. Cell cycle arrest of kidney TEC is involved in the pathogenesis of AKI [182]. As
G1 cell cycle arrest due to cell stress is one of the first events during AKI, metalloproteinase
inhibitor 2 (TIMP2) and insulin-like growth factor-binding protein 7 (IGFBP7) are detectable
in the urine very early during AKI development [181,183]. In the Sapphire study [184],
combined TIMP2 and IGFBP7 measurement demonstrated an excellent ability to predict
moderate to severe AKI, and it was superior to all the other existing AKI markers, consider-
ably improving patient risk stratification [185,186]. The FDA subsequently approved a test
incorporating this marker combination (termed Nephro-Check) for clinical use. Several
trials have shown that urinary TIMP2 and IGFBP7 levels predict AKI development, kidney
recovery, and patient mortality [181,183,187,188]. The PrevAKI trial was the first study to
investigate TIMP2 and IGFBP7 in diagnosing AKI associated with cardiac surgery [183,189].
Biomarker level ([TIMP-2]·[IGFBP7] (0.3 ng/mL)2/1000) and time point of measurement
(4 h after cardiopulmonary bypass) resulted in a successful predictive performance of those
patients at high risk of AKI development. A similar biomarker-guided intervention was
applied to prevent AKI after major surgery in the BigPAK trial [190]. The development of
moderate as well as severe AKI, the incidence of sCr increase, ICU, and hospitalization
length were all significantly reduced in patients whose biomarker levels were within the
range of 0.3–2.0 (ng/mL)2/1000. This suggests that patients with higher biomarker levels
may have suffered an extended period of kidney stress, resulting in a progression to AKI
and AKD. Early biomarker-based prediction of AKI followed by implementation of KDIGO
(Kidney Disease: Improving Global Outcomes) care bundle reduced AKI severity [190].

Based on the Nephro-Check test results, in both PrevAKI and BigPAK studies, pa-
tients with a higher risk of AKI had benefited from the decision to avoid nephrotoxic
treatment [189,190]. Thus, it is conceivable that implementing a biomarker-based approach
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with the detection of the high-risk population might be beneficial for preventing AKI. These
biomarkers can also be used to predict adverse long-term outcomes because their early
measurement in the setting of critical illness may identify patients with AKI at increased
risk of death or KRT in the following months [187]. Moreover, the best results can be
achieved by combining different biomarkers. High KIM-1, NGAL, and [TIMP-2]·[IGFBP7]
values identified patients with vancomycin-associated AKI earlier than sCr [137,139]. A
drug combination that has gained recent attention for an additive risk of nephrotoxicity
is vancomycin plus piperacillin–tazobactam. In order to establish whether kidney injury
associated with this combination is a valid clinical concern, [TIMP-2]·[IGFBP7] have been
employed. Patients treated with the combination therapy showed higher levels of [TIMP-
2]·[IGFBP7] in comparison to those treated with vancomycin monotherapy, associated with
increased long-term adverse outcomes [191]. Collectively, this evidence suggests the benefit
of damage biomarker measurement in identifying nephrotoxic AKI early (Figure 3). Practi-
cal considerations for the implementation of these biomarkers for predicting and detecting
chemotherapy-induced kidney injury need to be evaluated. In particular, a better under-
standing of the appropriate concentration for each biomarker for each nephrotoxic drug or
drug class that increases the risk for drug-induced kidney injury needs to be developed.
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Figure 3. Biomarkers’ detection in AKI, AKD, and CKD. Among the currently used biomarkers,
only a few of them are detected early during AKI progression, before a rise in the serum creatinine
(sCr) is present. These markers indicate early tubular injury or subclinical acute kidney injury
(AKI). AKI itself is recognized by both functional and damage biomarkers, whereas the stages
of AKI are defined by the extent of kidney function impairment represented by sCr rise. AKI
accompanied by prolonged tubular damage is defined as acute kidney disease (AKD). When the
injury is extended and irreversible, and kidney function cannot be restored, it leads to chronic
kidney disease (CKD). Abbreviations: Cys-C, cystatin C; IGFBP-7; insulin-like growth factor-binding
protein 7; TIMP-2; metalloproteinase inhibitor 2; GST: Glutathione S-transferase; NAG: N-Acetyl-
Beta-D-Glucosaminidase; NGAL: Neutrophil Gelatinase-Associated Lipocalin; KIM-1: Kidney Injury
Molecule-1; L-FABP: Liver-type Fatty Acid-Binding Protein.
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6. Management

General measures. Given that no specific evidence is available to suggest that AKI
in cancer patients should be managed differently from other causes of AKI, strategies
based on KDIGO are appropriate for risk- and stage-based prevention and management of
AKI [140]. Cancer patients are particularly at risk for infection and sepsis [18,192]. Thus,
early detection and management of sepsis, including source control of the infection (e.g.,
removal of tunneled central venous catheter systems) and optimized antibiotic use based
on the pharmacokinetics and pharmacodynamics changes observed in AKI are essential,
particularly in patients with neutropenia [18,193]. A review of patients’ charts to ascertain
the cumulative exposure to chemo- and immunotherapeutic agents and other medications
is important to assess the risk of nephrotoxicity and other less common therapy-associated
injuries (e.g., thrombotic microangiopathy, tubulointerstitial nephritis, glomerular diseases,
and intratubular obstruction from medications) must also be considered [44]. Notably, the
risk of nephrotoxicity increases from cumulative exposure to chemotherapeutic agents and
other medications [194,195]. The risk of AKI increases with the number of nephrotoxic
drugs used, and all potentially nephrotoxic agents that can be stopped should be discon-
tinued [146,196]. Indispensable agents should only be used as long as needed and only at
required doses. Careful monitoring of drug concentrations is also mandatory (for example,
vancomycin) [44].

Patients with chemotherapy-induced AKI may present with symptoms and signs
resulting directly from diminished kidney function. These typically include edema, hy-
pertension, decreased urine output, or anuria in severe AKI [1]. However, many patients
do not show any symptoms, and the only sign of diminished kidney function may be an
increase in creatinine detected by laboratory tests without an overt AKI [1]; otherwise signs
and symptoms are indistinguishable from AKI from other etiologies. SCr remains the only
laboratory value used in operative definitions for AKI and the biomarker most used in
clinical practice. All subsequent evaluations are directed at determining the underlying
cause of AKI to achieve prompt and adequate management. For all patients, the timing
of onset often suggests the underlying etiology, albeit sCr concentration should be mea-
sured frequently, a goal hardly achievable unless the patient is admitted to the hospital.
Careful attention should be given to volume status to avoid hypovolemia, as patients may
initially present with relative volume depletion due to fever and gastrointestinal losses as
volume resuscitation is rarely performed [197]. Volume management and hemodynamic
monitoring are also required at all stages of AKI. Avoiding hyperglycemia is also essential
because the filtered glucose increases tubular reabsorption workload and oxidative stress,
a process that sensitizes the kidney tubule to injury [198]. Implementation of the ‘KDIGO
bundle’—consisting of optimizing volume status and hemodynamics, avoiding nephro-
toxic drugs, and preventing hyperglycemia in patients at high risk of AKI as identified by
biomarkers—can prevent AKI [189].

Kidney replacement therapies. When the severity of AKI necessitates KRT, the jugular
veins should be considered as the preferred insertion sites for dialysis catheters. The
catheter exit site and anchoring remain visible, and these sites confer a lower risk of infec-
tion and thrombosis [199]. Initiation and continuation of dialysis in the cancer patient with
AKI should be based on the general clinical condition and overall life expectancy and the
personal patient expectations on quality of life after eventual recovery [200]. Hypophos-
phatemia is common in malnourished cancer patients and those on prolonged continuous
KRT and may need to be corrected with supplements to prevent hypophosphatemia-
associated complications [201]. Intradialytic seizures may occur in cancer patients on
maintenance anticonvulsant therapy due to dialytic removal of the drug, and higher post-
dialysis doses may be required to maintain therapeutic serum concentration [202]. Cancer
patients are at risk of malnutrition due to various factors, such as prolonged immobi-
lization, catabolic changes, and reduced food intake. Therefore, the current consensus
recommendations for the nutritional management of critically ill patients with cancer
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should be followed [203]. Finally, kidney transplantation is not a valid KRT in the critically
ill patient perspective.

AKI to CKD transition. Limiting progression from AKI and AKD to CKD is a crucial is-
sue in chemotherapy-exposed patients [204]. Cancer is strictly linked to AKI and CKD, and
the presence of CKD markedly reduces cancer patients’ survival [205–207]. Patients with
risk factors for CKD (i.e., diabetes, hypertension, obesity, low nephron endowment, and
many others) on the verge of receiving chemotherapeutics should be trained adequately
about possible CKD onset and progression [2]. All the risk factors for CKD mentioned above
should be tightly controlled whenever possible: patients should implement a healthy diet
and physical activity, and anemia, high blood pressure, dyslipidemia, and diabetes should
be pharmacologically controlled when conservative measures prove to be insufficient [2].
It would be advisable to stop medications that may increase the risk for nephrotoxicity,
namely non-steroidal anti-inflammatory drugs, whenever clinically feasible [189]. Expo-
sure to iodinated contrast should be limited, too [189]. Concerning cancer patients, all
lifestyle modifications and new drugs implementation should always be collectively dis-
cussed with patients and oncologists. In this setting, nephron overload, the structural
adaptations that promote accelerated loss of kidney epithelia in nephrons challenged by
hemodynamic and metabolic overload, represents a typical driver of CKD progression
and a therapeutic target [208]. Currently, the renin–angiotensin–aldosterone system and
SGLT2 (Sodium–glucose Cotransporter-2) inhibitors represent the most effective drugs to
slow CKD progression [209–211]. Importantly, there is no evidence to date linking SGLT2
inhibitors and an augmented risk of cancer [212].

Future directions. Improvement in AKI diagnosis and treatment remains a significant
unmet medical need. Given AKI is a global health problem, there is an urgent need to
train health workers to identify patients at significant risk of kidney disease development
and subsequent progression to AKD or CKD. An active and effective proposal should
span from health-system surveillance methods to clinical interventions. This should be
done by: (1) promoting a stronger collaboration between nephrologists, intensive care
specialists, and oncologists; (2) preventing or at least limiting drug-associated AKI through
nephrotoxin stewardship, and (3) implementing novel biomarkers aimed at a proper patient
classification [213] (Figure 4). The ideal biomarker “for” AKI should be (1) sensitive, it
should work as an early predictor of AKI and then be altered following injury in a period
of minutes or hours; (2) AKI specific by providing clues regarding the underlying etiology;
(3) serve as a prognostic factor; (4) predict the need for KRT; (5) be cost-effective and
highly reproducible.

Hence, it is essential to use the best available and novel biomarkers to recognize initial
AKI phases and apply protective measures and risk mitigation to avoid worsening of the
condition. Finally, even when AKI has fully developed, identifying patients who might
progress to AKD or even CKD is important [214]. In these patients, specific biomarkers
may help plan the allocation of resources.
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7. Conclusions

The true incidence of AKI-associated nephrotoxicity is unknown, and little progress
has been made in its treatment and prevention. This is likely due to a significant gap in
our knowledge of kidney response mechanisms to AKI. We recently demonstrated that
polyploidy of TEC represents a previously unrecognized mechanism of response to kidney
damage. These polyploid TEC were found arrested in G1 [54,215], suggesting an intriguing
parallel with the Nephro-Check assay that correlates damage biomarkers of cell cycle arrest
with the likelihood of developing AKI. Identifying novel response mechanisms may help
advance and implement kidney injury markers to improve AKI diagnosis. Increasing
evidence suggests that a biomarker-based approach could be promising for identifying
patients at high risk of developing AKI. This is essential to prevent and ameliorate the
occurrence of AKI and chemotherapy associated-AKI and to assist in the early management
of patients with chemotherapy-associated-AKI. Despite the rapid evolution of research in
this field, the diagnostic performance of these renal biomarkers has demonstrated a number
of limitations and highlighted substantial gaps in our knowledge, which likely reflect
the absence of accepted standard criteria [140,216]. Some damage biomarkers perform
differently based on the patient population studied, the presence of pre-existing CKD,
and whether a clinical risk model for high-risk individuals was used before applying
the biomarkers. Thus, the existing evidence for using biomarkers to monitor the effects
of medications and cope with their management has yet to consider the complex list of
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confounders that could affect their diagnostic performance. Accordingly, recommendations
from the 23rd ADQI consensus conference suggest that combining AKI definitions based
on sCr and urinary output with kidney injury biomarkers would improve the precision of
AKI course prognostication [146].

In conclusion, we have only begun to understand the potential advantages of inte-
grating damage biomarkers into daily clinical practice, and future studies are required to
appreciate the impact on patient care correctly. Further research is needed to clarify whether
detecting damage biomarkers without any changes in urine output or sCr is associated
with worsened kidney and patient outcomes.
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