
ORIGINAL RESEARCH
published: 01 December 2021

doi: 10.3389/fmed.2021.698851

Frontiers in Medicine | www.frontiersin.org 1 December 2021 | Volume 8 | Article 698851

Edited by:

Mario Ulises Pérez-Zepeda,

Dalhousie University, Canada

Reviewed by:

Zhuoer Lin,

Yale University, United States

Yanbing Zeng,

Xiamen University, China

*Correspondence:

Zuyun Liu

zuyunliu@zju.edu.cn;

zuyun.liu@outlook.com

Chenkai Wu

chenkai.wu@dukekunshan.edu.cn

Specialty section:

This article was submitted to

Geriatric Medicine,

a section of the journal

Frontiers in Medicine

Received: 22 April 2021

Accepted: 28 October 2021

Published: 01 December 2021

Citation:

Cao X, Yang G, Jin X, He L, Li X,

Zheng Z, Liu Z and Wu C (2021) A

Machine Learning-Based Aging

Measure Among Middle-Aged and

Older Chinese Adults: The China

Health and Retirement Longitudinal

Study. Front. Med. 8:698851.

doi: 10.3389/fmed.2021.698851

A Machine Learning-Based Aging
Measure Among Middle-Aged and
Older Chinese Adults: The China
Health and Retirement Longitudinal
Study
Xingqi Cao 1, Guanglai Yang 2, Xurui Jin 2,3, Liu He 1, Xueqin Li 1, Zhoutao Zheng 1,

Zuyun Liu 1* and Chenkai Wu 2*

1Department of Big Data in Health Science, School of Public Health and Center for Clinical Big Data and Analytics, Second

Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 2Global Health Research Center, Duke Kunshan

University, Kunshan, China, 3MindRank AI ltd., Hangzhou, China

Objective: Biological age (BA) has been accepted as a more accurate proxy of aging

than chronological age (CA). This study aimed to use machine learning (ML) algorithms

to estimate BA in the Chinese population.

Materials and methods: We used data from 9,771 middle-aged and older Chinese

adults (≥45 years) in the 2011/2012 wave of the China Health and Retirement

Longitudinal Study and followed until 2018. We used several ML algorithms (e.g.,

Gradient Boosting Regressor, Random Forest, CatBoost Regressor, and Support Vector

Machine) to develop new measures of biological aging (ML-BAs) based on physiological

biomarkers. R-squared value and mean absolute error (MAE) were used to determine the

optimal performance of these ML-BAs. We used logistic regression models to examine

the associations of the best ML-BA and a conventional aging measure—Klemera and

Doubal method-BA (KDM-BA) we previously developed—with physical disability and

mortality, respectively.

Results: The Gradient Boosting Regression model performed the best, resulting in

an ML-BA with an R-squared value of 0.270 and an MAE of 6.519. This ML-BA

was significantly associated with disability in basic activities of daily living, instrumental

activities of daily living, lower extremity mobility, and upper extremity mobility, and

mortality, with odds ratios ranging from 1 to 7% (per 1-year increment in ML-BA, all

P < 0.001), independent of CA. These associations were generally comparable to that

of KDM-BA.

Conclusion: This study provides a valid ML-based measure of biological aging

for middle-aged and older Chinese adults. These findings support the application

of ML in geroscience research and may help facilitate preventive and geroprotector

intervention studies.
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INTRODUCTION

Aging is a complex, inevitable, and multifactorial process,
characterized by functional deterioration, physiological damage,
and multiple age-related diseases (1). One key question to
address aging-related issues is how to precisely quantify aging,
with accumulating evidence supporting the utility of biological
age (BA) in predicting age-related outcomes and differentiating
individual health status (2–5). To be more specific, one study
on 2,844 Chinese Singaporeans developed BA with the Klemera
and Doubal method (KDM) and found that BA is better than
chronological age (CA) for predicting life span (mortality) and
healthspan (frailty) (2). BA has therefore been accepted as a more
accurate proxy of aging than CA.

Biological age (BA) is generally referred to as a single
latent variable that integrated multiple biomarkers relevant
to health (6). Various statistical methods have been used to
approximate BA, such as the multiple linear regression method
(7), the principal component analysis (8), Hochschild’s method
(9), and KDM (10). KDM has been suggested as the optimal
method for BA estimation (11). Although traditional methods
have been demonstrated to perform well in predicting adverse
aging outcomes (7–10), they may encounter obstacles when
dealing with complex, multidimensional data. Among such
multidimensional data, there are complex interactions among
the features such as the interaction between vitamin D and
albumin on mortality (12), and most of the current models
were developed based on regression methods. The researcher
needs to manually input the predefined interactions. Missing
those complex interactions in the regression model may result
in an inaccurate prediction of outcomes. Machine learning (ML)
offers tremendous opportunities for researchers to address these
issues (1, 13). In the prediction model developed by machine
learning methods, the model can automatically identify those
interactive relationship from the data and if it is unnecessary to
specify interactions. Accordingly, ML methods help to figure out
complicated relations among the biomarkers and generate more
accurate predictionmodels. Also, theMLmethods can reduce the
loss of biological information such as the complex interactions
(1). However, the application of ML in the development of aging
measures has not been studied thoroughly (2, 14–17). Most of
these studies were conducted among adults in Europe and the
US (14–16) and ML seems to not provide more accurate aging
measures than conventional methods in one study with eight
biomarker features in men and 10 features in women (2). The
small number of features may be one potential limitation for such
methods. More studies are required to validate the application
values of ML in other populations and with more features.

Abbreviations: BA, biological age; BADL, basic activities of daily living; BMI, body

mass index; CA, chronological age; CHARLS, the China Health and Retirement

Longitudinal Study; CHNS, the China Health andNutrition Survey; CI, confidence

interval; CLHLS, the Chinese Longitudinal Healthy Longevity Survey; IADL,

instrumental activities of daily living; KDM, the Klemera and Doubal method;

KDM-BA, the Klemera and Doubal method based biological age; MAE, mean

absolute error; ML, machine learning; ML-BA, the machine learning based

biological age; OR, odds ratio; SD, standard deviation; SHAP, SHapley Additive

exPlanations.

China is facing rapid population aging, which brings
formidable challenges to policymakers and caregivers. In 2019,
the Chinese population accounted for 18% of the world
population, with 164.5 million adults aged 65 and over and 26
million adults aged 80 and over (18). Developing aging measures
for the Chinese population is of great significance to solve
aging-related issues in this large country, such as facilitating
the early identification of adults at risk. To date, a few relevant
studies have been conducted in the Chinese population (5,
8, 19–23). Most of them used the multiple linear regression
method (19, 23) or the principal component analysis method
(8, 20, 22). We have previously provided a step forward, i.e.,
developing a valid physiological biomarker-based aging measure
using KDM (hereafter referred to as KDM-BA) (5). As the
KDM measurement included limited biomarkers, we considered
building the ML-based aging measurement with more features
among the Chinese population and evaluating how it behaves
relative to the most recent KDM-BA we developed.

Therefore, this study aimed to apply several ML algorithms
(e.g., Gradient Boosting Regressor, Random Forest, CatBoost
Regressor, and Support Vector Machine) to develop new aging
measures (hereafter referred to as ML-BAs). We then examined
the associations of the best ML-BA and KDM-BA with physical
disability and mortality during the follow-up period. We used
data from the China Health and Retirement Longitudinal Study
(CHARLS), a nationally representative survey.

MATERIALS AND METHODS

Study Population
Data were from CHARLS, a nationally representative
longitudinal survey of middle-aged and older adults (≥45 years)
in China. The details of the study design and comprehensive
assessments have been described elsewhere (24). In brief,
CHARLS used a multistage sampling strategy covering 28
provinces, 150 counties/districts, and 450 villages/urban
communities across the country. Adults aged 45 years and older
were first recruited in 2011/2012, and completed three follow-up
visits biennially up to 2017/2018. Ethical approval for collecting
data on human subjects was received from the institutional
review board at Peking University. Written informed consent
was obtained from all the participants. The oldest-old population
(over 85 years) was highly vulnerable to non-communicable
diseases and socially disadvantaged (25). In our study, there
were only 54 oldest-old participants among those who provided
blood samples. Due to the small number of the oldest-old
and the differences that existed between the oldest-old and
the younger-old, we excluded those aged older than 85 years.
Out of the 11,847 participants enrolled in the baseline survey
(2011/2012) and provided blood samples, we excluded those
aged <45 years or older than 85 years (N = 1,820), with missing
data on covariates (N = 256), leaving the analytic sample of 9,771
adults aged 45–85 years. We then assembled various analytic
samples for different outcomes due to missingness on each
outcome (Figure 1).

Frontiers in Medicine | www.frontiersin.org 2 December 2021 | Volume 8 | Article 698851

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cao et al. A Machine Learning-Based Aging Measure

FIGURE 1 | Flow chart of the analytic sample. CHARLS, the China Health and Retirement Longitudinal Study; BADL, basic activities of daily living; IADL, instrumental

activities of daily living.

Biomarker Selection and BA Calculation
ML-BA Calculation

Candidate biomarkers were considered based on knowledge
about their role in the aging process, application in previous
aging studies, and data availability. A total of 16 blood biomarkers
(i.e., total cholesterol, triglyceride, glycated hemoglobin, urea,
creatinine, high-sensitivity C-reactive protein, platelet count,
white blood cell count, mean corpuscular volume, glucose,
high-density lipoprotein, low-density lipoprotein, hemoglobin,
cystatin, uric acid, and hematocrit) were measured in the
2011/2012 wave of CHARLS (24), plus systolic and diastolic
blood pressure, and pulse, resulting in 19 candidate biomarkers
for the initial consideration in this study. We first imputed the
missing data with the mean and normalized data using a min-
max scalar, because data imputation and normalization were the
necessary steps in the process of ML (26, 27). Imputing missing
values contributed to the improved predictive power regardless
of the conditions of missingness (26). Training models with
normalized data usually helped to enhance performance; thus
data normalization was an essential step in ML as well (27).
Then, we trained models with these 19 candidate biomarkers
using 10-fold cross-validations to obtain the R-squared value
and the mean absolute error (MAE). We trained these models
using default parameters that have been pre-defined by python
package providers, to avoid randomness in the process of
personnel adjustment. Almost all classic ML methods that can
perform regression analysis were considered in our work. The
top seven performers included Gradient Boosting Regressor,
Light Gradient Boosting Machine, CatBoost Regressor, Random
Forest, Extra Trees Regressor, Support Vector Machine, and

AdaBoost Regressor. The final ML-BA in the unit of years
was computed.

KDM-BA Calculation

Following the procedures we previously described (5, 28, 29), the
19 candidate biomarkers above were considered. Some sets of
biomarkers were highly correlated, such as systolic and diastolic
blood pressure. According to Klemera and Doubal (10), and
considering the use of biomarkers in clinical settings and their
property, we kept one for each set in the biomarkers list. We then
selected eight biomarkers that showed an absolute age correlation
>0.1. The final list included total cholesterol, triglyceride,
glycated hemoglobin, urea, creatinine, high-sensitivity C-reactive
protein, platelet count, and systolic blood pressure, representing
various domains of the physical function: cardiac-metabolic
function (total cholesterol, triglyceride, glycated hemoglobin,
and systolic blood pressure), kidney function (urea, creatinine),
and immune function (high-sensitivity C-reactive protein, and
platelet count). The log transformations of non-normally
distributed biomarkers (e.g., high-sensitivity C-reactive protein)
were performed prior to the calculation of KDM-BA. Then, the
KDM takes information from them number of regression lines of
the CA regressed on the m biomarkers (m = eight in this study)
briefly. The final product is the KDM-BA in the unit of years.

Physical Disability
The physical function status of the basic activities of daily living
(BADL) was assessed based on six daily activities, including
eating, dressing, transferring, using the toilet, bathing, and
continence (30). The participants were asked if they needed
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assistance with each of the activities. We categorized the
participants as having BADL disability if they had incontinence
problems or needed assistance in performing at least one of the
other five activities (eating, dressing, transferring, toileting, and
bathing) (31). The physical function status of the instrumental
activities of daily living (IADL) was assessed by five instrumental
activities, including cleaning the house, managing money, taking
medications, shopping for groceries, and preparing a hot meal
(32). We categorized participants as having IADL disability
if they needed assistance in performing at least one of the
five instrumental activities (31). Mobility function was divided
into the function of upper extremities and lower extremities.
The mobility function of the upper extremity was assessed by
three activities, including extending arms up, lifting 10 jin (i.e.,
5 kg), and picking up a small coin. The mobility function of
the lower extremity was assessed by four activities, including
walking 100m, climbing several flights of stairs, getting up
from a chair, and stooping or kneeling or crouching. We
categorized participants as having mobility disability if they
needed assistance in performing at least one activity (33). The
functional status was assessed at baseline, 2013 wave, and 2015
wave. Since the time of developing disability during the follow-
up period was not available, we constructed a binary outcome to
denote the occurrence of disability within the 4-year follow-up
since baseline.

Mortality
In CHARLS, the death information was collected from the exit
interviews in the 2013, 2015, and 2018 waves. However, in the
2015 and 2018 waves, the exact date of death was not available.
Therefore, in this study, we constructed a binary variable to
denote the occurrence of death within the 6-year follow-up since
baseline, as we did before (33).

Covariates
All covariates were obtained at baseline. The sociodemographic
variables including age, sex, educational level, marital status, and
residence were collected from the self-reported questionnaire.
The educational level was defined as no school, primary school,
middle school, and high school or above. The marital status
was defined as currently married and others (e.g., separated,
divorced, widowed). The residence was defined as urban and
rural. Health behaviors including smoking, alcohol drinking,
and body mass index (BMI) (kg/m2) were collected through
the structured home interview. Smoking status was defined
as current smoker and non-smoker. Alcohol drinking status
was defined as current drinker and non-drinker. The BMI was
calculated as weight in kilograms divided by height in meters
squared. We categorized participants as underweight (BMI <

18.5 kg/m2), normal (18.5 ≤ BMI < 24.0 kg/m2), overweight
(24.0 ≤ BMI < 28.0 kg/m2), and obese (BMI ≥ 28 kg/m2).
The disease count was determined by counting 10 self-reported
chronic diseases, including hypertension, diabetes or high blood
sugar, cancer or malignant tumor, chronic lung disease, heart
problems, stroke, kidney disease, stomach or other digestive
diseases, arthritis or rheumatism, and asthma. We then divided

participants into four groups—no disease, one disease, two
diseases, and three or more diseases.

Statistical Analyses
We used 10-fold cross-validations to train ML-BA with a 90%
training dataset and validate it with a 10% testing dataset.
We compared different ML algorithms based on the R-squared
value and the MAE. Finally, we selected the Gradient Boosting
Regression model to compute the best ML-BA in the unit of
years in the total population. To estimate the relative importance
of biomarkers for the two aging measures, we calculated the
SHapley Additive exPlanations (SHAP) value and the R-squared
value of the biomarkers for ML-BA and KDM-BA, respectively.

The baseline characteristics of the study population were
presented as means ± SD for the continuous variables or
numbers (percentages) for the categorical variables. To examine
the associations of the two aging measures (i.e., ML-BA and
KDM-BA) with 4-year physical disability incidence and 6-year
mortality risk, we used logistic regression models. Odds ratios
(ORs) and corresponding 95% confidence intervals (CIs) were
documented. Two models were used in our study. Model 1 was
a crude model, whereas model 2 was adjusted for CA.

All statistical analyses were performed using SAS version 9.4
(SAS Institute, Cary, NC, USA), Stata version 15 (Stata Corp,
College Station, Texas, USA), and Python version 3.8.3. P < 0.05
(two-tailed) was considered statistically significant.

RESULTS

The basic characteristics of the study population are presented in
Table 1. The mean CA of the study population was 59.1 (SD =

9.2) years. Of the 9,771 middle-aged and older adults, ∼44.6%
were aged ≥ 60 years, 53.5% were women. The mean CAs of
men and women was 59.8 (SD = 9.1) years and 58.5 (SD = 9.2)
years, respectively.

Characteristics of ML-BA
We considered Gradient Boosting Regressor, Light Gradient
Boosting Machine, CatBoost Regressor, Random Forest, Extra
Trees Regressor, Support Vector Machine, and AdaBoost
Regressor in our study. The R-squared value of models ranged
from 0.217 to 0.270, and the MAE of the models ranged from
6.619 to 6.877 (Table 2). Among them, the Gradient Boosting
Regressormodel performed best with the highest R-squared value
of 0.270 and the lowest MAE of 6.519. Hence, we computed
ML-BA using the Gradient Boosting Regression model with
19 biomarkers.

In the total study population, theML-BA ranged from 43 to 82
years, with a mean of 59.4 (SD = 5.8) years. In men, the ML-BA
ranged from 47 to 82 years, with a mean of 60.0 (SD= 5.8) years.
In women, the ML-BA ranged from 43 to 81 years, with a mean
of 58.8 (SD = 5.8) years. As shown in Figure 2, ML-BA and CA
were highly correlated (cor= 0.75).

Frontiers in Medicine | www.frontiersin.org 4 December 2021 | Volume 8 | Article 698851

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cao et al. A Machine Learning-Based Aging Measure

TABLE 1 | Baseline characteristics of the study population.

Total Male Female

(N = 9,771) (N = 4,545) (N = 5,226)

Age, years 59.1 ± 9.2 59.8 ± 9.1 58.5 ± 9.2

<60 years 5,414 (55.4) 2,361 (52.0) 3,053 (58.4)

≥60 years 4,357 (44.6) 2,184 (48.1) 2,173 (41.6)

ML-BA 59.4 (5.8) 60.0 (5.8) 58.8 (5.8)

KDM-BA 57.0 (9.9) 58.2 (9.4) 56.1 (10.3)

Sex, female 5,226 (53.5) – –

Residence, rural 6,366 (65.2) 3,005 (66.1) 3,361 (64.3)

Education

No schooling 2,882 (29.5) 601 (13.2) 2,281 (43.7)

Primary school 4,018 (41.1) 2,182 (48.0) 1,836 (35.1)

Middle school 1,923 (19.7) 1,160 (25.5) 763 (14.6)

High school or more 948 (9.7) 602 (13.3) 346 (6.6)

Marital status

Currently married 8,156 (83.5) 3,984 (87.7) 4,172 (79.8)

Others 1,615 (16.5) 561 (12.3) 1,054 (20.2)

Smoking status

Non-smoker 6,797 (69.6) 1,897 (41.7) 4,900 (93.8)

Smoker 2,974 (30.4) 2,648 (58.3) 326 (6.24)

Alcohol consumption

Non-drinker 5,973 (61.1) 1,522 (33.5) 4,451 (85.2)

Drinker 3,798 (38.9) 3,023 (66.5) 775 (14.8)

BMI (kg/m2 ) 23.5 ± 3.9 23.0 ± 3.6 24.0 ± 4.1

BMI category*

Underweight 650 (6.8) 315 (7.1) 335 (6.5)

Normal 4,990 (52.0) 2,627 (58.8) 2,363 (46.1)

Overweight 2,828 (29.5) 1,149 (25.7) 1,679 (32.7)

Obese 1,130 (11.8) 377 (8.4) 753 (14.7)

Disease counts

0 2,938 (30.1) 1,469 (32.3) 1,469 (28.1)

1 3,110 (31.8) 1,482 (32.6) 1,628 (31.2)

2 2,132 (21.8) 943 (20.8) 1,189 (22.8)

3 1,591 (16.3) 651 (14.3) 940 (18.0)

ML-BA, Machine Learning method-biological age; KDM-BA, Klemera and Doubal

method-biological age; BMI, body mass index. The continuous variables and

categorical variables were expressed as mean ± standard deviation, and number

(percentage), respectively.
*BMI was calculated as weight in kilograms divided by height in meters squared.

Underweight was defined as BMI < 18.5 kg/m2; normal was defined as 18.5 ≤ BMI

< 24.0 kg/m2; overweight was defined as 24.0 ≤ BMI < 28.0 kg/m2; and obese was

defined as BMI ≥ 28 kg/m2.

The Importance of Biomarkers for ML-BA
and KDM-BA
As suggested in Supplementary Figure 1, cystatin, systolic
blood pressure, diastolic blood pressure, mean corpuscular
volume, hemoglobin, and urea were the top six important
biomarkers for ML-BA. Interestingly, systolic blood pressure
and urea were also the top important biomarkers for KDM-BA
(Supplementary Table 1). Similarly, triglyceride, platelet count,
and creatinine were the least important biomarkers for both
ML-BA and KDM-BA.

TABLE 2 | MAE, MSE, RMSE, and R-squared value of machine learning models.

Model MAE MSE RMSE R-squared

value

Gradient boosting regressor 6.519 64.127 8.001 0.270

Light gradient boosting machine 6.532 64.875 8.049 0.261

CatBoost regressor 6.527 65.121 8.063 0.258

Random forest 6.557 65.126 8.065 0.258

Extra trees regressor 6.576 65.330 8.075 0.256

Support vector machine 6.655 68.141 8.248 0.224

AdaBoost regressor 6.877 68.804 8.289 0.217

MAE, Mean Absolute Error; MSE, Mean Square Error; RMSE, Root Mean Square Error.

Associations of ML-BA and KDM-BA With
a Physical Disability
As shown in Table 3, both ML-BA and KDM-BA were
significantly associated with 4-year physical disability in the full
sample. In the crude model, each 1-year increment in ML-BA
increased the odds of disability in BADL, IADL, lower extremity
mobility, and upper extremity mobility by 6% (OR = 1.06, 95%
CI = 1.05, 1.07), 6% (OR = 1.06, 95% CI = 1.05, 1.07), 4% (OR
= 1.04, 95% CI= 1.03, 1.05), and 7% (OR= 1.07, 95% CI= 1.06,
1.08), respectively. The strength of these associations was slightly
stronger compared with that of KDM-BA. For example, each
1-year increment in KDM-BA increased the odds of disability
in the upper extremity mobility by 4% (OR = 1.04, 95% CI =
1.03, 1.05). Further subgroups analyses by sex did not change the
results substantially.

Table 4 shows the associations of ML-BA and KDM-BAwith a
physical disability when adjusting for CA in the full sample. ML-
BAwas still significantly associated with all functional disabilities,
with ORs ranging from 1.01 to 1.02. Significant association of
KDM-BA with disability in BADL was observed, with OR of 1.01
(95 % CI= 1.00, 1.03).

Associations of ML-BA and KDM-BA With
Mortality
Table 3 presents the associations ofML-BA and KDM-BAwith 6-
year mortality in full sample and subgroups by sex. Both ML-BA
and KDM-BA were positively associated with mortality risk. The
results of the association between KDM-BA and mortality were
previously reported (5). In the full sample, each 1-year increment
in ML-BA and KDM-BA increased the risk of mortality risk by
16% (OR= 1.16, 95%CI= 1.14, 1.17) and 10% (OR= 1.104, 95%
CI = 1.096, 1.113), respectively. When stratified by sex, the ORs
of ML-BA for mortality risk ranged from 1.14 to 1.17, consistent
with that in the full sample (OR = 1.16). Similar results were
found for KDM-BA.

After adjusting for CA, both ML-BA and KDM-BA were
significantly associated with 6-year mortality risk, although
the strength of the associations was attenuated. Each 1-year
increment in ML-BA and KDM-BA increased the risk of
mortality by 7% (OR = 1.07, 95% CI = 1.05, 1.09) and 5% (OR
= 1.05, 95% CI = 1.04, 1.07), respectively (Table 4). The results
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FIGURE 2 | Correlations of chronological age with machine learning method-biological age and Klemera and Doubal method-biological age. CA, chronological age;

ML-BA, Machine Learning method-biological age; KDM-BA, Klemera and Doubal method-biological age. (A) and (B) show the correlation between CA and the two

measures (ML-BA and KDM-BA), respectively.

TABLE 3 | Unadjusted associations of CA, ML-BA, or KDM-BA with disability and mortality in the full sample and sex subgroup.

BADL disability IADL disability Lower extremity Upper extremity Mortality

mobility disability

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

No. of events/No. of participants 1,860/7,797 1,935/7,490 2,380/4,375 1,947/7,698 882/9,771

Total CA only 1.048 (1.042, 1.054) 1.045 (1.039, 1.051) 1.03 (1.02, 1.04) 1.05 (1.04, 1.06) 1.11 (1.10, 1.12)

ML-BA only 1.06 (1.05, 1.07) 1.06 (1.05, 1.07) 1.04 (1.03, 1.05) 1.07 (1.06, 1.08) 1.16 (1.14, 1.17)

KDM_BA only 1.043 (1.037, 1.048) 1.037 (1.031, 1.043) 1.024 (1.017, 1.031) 1.04 (1.03, 1.05) 1.104 (1.096, 1.113)

Male CA only 1.06 (1.05, 1.07) 1.06 (1.05, 1.07) 1.04 (1.03, 1.05) 1.05 (1.04, 1.04) 1.10 (1.09, 1.12)

ML-BA only 1.07 (1.06,1.09) 1.08 (1.07,1.10) 1.06 (1.05, 1.07) 1.08 (1.06,1.09) 1.14 (1.13, 1.16)

KDM-BA only 1.06 (1.05, 1.07) 1.05 (1.04, 1.06) 1.04 (1.03,1.05) 1.05 (1.04, 1.06) 1.10 (1.09, 1.11)

Female CA only 1.046 (1.038, 1.054) 1.043 (1.035, 1.051) 1.03 (1.02,1.04) 1.055 (1.047, 1.064) 1.13 (1.11, 1.14)

ML-BA only 1.06 (1.05, 1.08) 1.06 (1.05, 1.07) 1.04 (1.02,1.05) 1.08 (1.06, 1.09) 1.17 (1.15, 1.19)

KDM-BA only 1.04 (1.03, 1.05) 1.036 (1.029, 1.044) 1.03 (1.02, 1.04) 1.045 (1.037, 1.052) 1.11 (1.10, 1.12)

CA, chronological age; ML-BA, Machine Learning method-biological age; KDM-BA, Klemera and Doubal method-biological age; BADL, basic activities of daily living; IADL, instrumental

activities of daily living; OR, odds ratio; CI: confidence interval.

Participants with prevalent disability in BADL/IADL/lower extremity mobility/upper extremity mobility were excluded for analyses of BADL/IADL/lower extremity mobility/upper extremity

mobility, respectively.

suggested that they capture something above and beyond what
can be explained by CA alone when predicting mortality.

DISCUSSION

In this study, we successfully developed an aging measure using
the Gradient Boosting Regression model in a sample of middle-
aged and older Chinese adults. We found that this ML-BA
was predictive of physical disability and mortality during the

follow-up period, and these associations were independent of CA.
The results were better than that of KDM-BA, supporting the
development of ML-BA. This ML-BA may serve as a proxy of life
span in geroscience research and help with the risk stratification
in the general Chinese older adults.

To date, several studies have shown that BA calculated
using ML has the predictive ability for mortality risk in
populations from different countries, such as the US (15,
17), Italy (34), and Singapore (2). Because of differences in
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TABLE 4 | Risk estimates of physical disability and mortality predicted by ML-BA and KDM-BA adjusting for CA.

Model Variable BADL disability IADL disability Lower extremity Upper extremity Mortality

mobility disability mobility disability

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

No. of events/No. of participants 1,860/7,797 1,935/7,490 2,380/4,375 1,947/7,698 882/9,771

CA+ ML-BA CA 1.04 (1.03, 1.05) 1.04 (1.03, 1.05) 1.02 (1.01, 1.03) 1.04 (1.03, 1.05) 1.08 (1.06, 1.09)

ML-BA 1.01 (1.00, 1.03) 1.02 (1.00, 1.03) 1.02 (1.00, 1.03) 1.02 (1.01, 1.03) 1.07 (1.05, 1.09)

CA+ KDM-BA CA 1.04 (1.02, 1.05) 1.04 (1.03, 1.06) 1.03 (1.01, 1.04) 1.05 (1.03, 1.06) 1.06 (1.05, 1.08)

KDM-BA 1.01 (1.00, 1.03) 1.00 (0.99, 1.01) 1.00 (0.99, 1.02) 1.00 (0.99, 1.01) 1.05 (1.04, 1.07)

CA, chronological age; ML-BA, machine learning method-biological age; KDM-BA, Klemera and Doubal method-biological age; BADL, basic activities of daily living; IADL, instrumental

activities of daily living; OR, odds ratio; CI: confidence interval.

Participants with prevalent disability in BADL/IADL/lower extremity mobility/upper extremity mobility were excluded for analyses of BADL/IADL/lower extremity mobility/upper extremity

mobility, respectively.

genetic and socio-environmental factors, the findings may not be
generalizable to various populations in other countries, such as
the Chinese population, a rapidly increasing segment worldwide.
To the best of our knowledge, no studies have been performed
to develop BAs using ML and evaluate the associations of ML-
BAs with adverse outcomes in the Chinese population. We filled
up this gap in this study. More importantly, we demonstrated
that the best ML-BA performed just as well as KDM-BA, which
has been regarded as the best biological aging measure (28). The
findings support that ML could be used to develop measures of
biological aging. Moreover, both ML-BA and KDM-BA could be
developed across various populations separately, and they may
capture something underlying the aging process.

It should be noted that the strength of the associations of
the best ML-BA with physical disability and mortality is slightly
stronger than that for KDM-BA. The ML-BA in our study
was computed based on 19 biomarkers, while the KDM-BA
was computed based on only eight of the 19 biomarkers. The
remaining 11 biomarkers included diastolic blood pressure,
pulse, white blood cell count, mean corpuscular volume,
glucose, high-density lipoprotein, low-density lipoprotein,
hemoglobin, cystatin, uric acid, and hematocrit, which have been
demonstrated to be associated with aging (35–39). Hence, we
assume that the better performance of ML-BA may be due to the
more information covered by ML-BA than that by KMD-BA.
The ML-BA was developed without prior assumptions and was
not dependent on intermediate results from multiple linear
regression models (40), allowing ML-BA to be easily verified. In
general, ML-BA may therefore provide a useful tool to identify
individual risks for adverse outcomes.

The stable associations of ML-BA and KDM-BA with physical
disability and mortality risk can be interpreted by looking
into the biological biomarkers used to develop the two aging
measures. The aging process is subclinical, characterized by
various types of biological degradations. So, it is proposed to
estimate aging based on cellular and molecular hallmarks (41).
In our study, the biomarkers used for ML-BA and KDM-
BA computation represent different but important domains
of physiological function or systems: immune system (e.g.,
high-sensitivity C-reactive protein, platelet count, and white

blood cell), cardiac-metabolic system (e.g., Total cholesterol,
systolic blood pressure, and low-density lipoprotein), and kidney
system (e.g., urea, creatinine, cystatin, and uric acid). First, the
immune system is a homeostatic system that helps to maintain
the function of the organisms, and age-related changes in
immune function have been demonstrated to affect longevity
(42). Due to infectious diseases, older adults usually have an
increased risk of morbidity and mortality (43), emphasizing
the importance of maintaining the function of the immune
system during the aging process. Second, since the incidence of
heart disease increases sharply with age, it has been postulated
that aging and cardiovascular disease are interrelated (44)
and may share common pathology (45). During the normal
aging process, the cardiac-metabolic function is impaired with
the increase of age (44), contributing to adverse age-related
outcomes. Finally, evidence has suggested that even in the
absence of comorbidities, the kidney may experience significant
age-related changes in structure and function (46). This implies
that the deterioration of kidney function may be one of the
important phenotypes of the aging process. The aging measures
we developed in the current study integrated various biomarkers
of immune function, cardiac-metabolic function, and kidney
function; therefore, they could reflect the aging process through
multiple physiological systems and work well in predicting
physical disability and mortality.

From the perspective of the application, both ML-BA and
KDM-BA could be considered since they had satisfactory
predictive performance in this study. The choice of methods
is largely dependent on sample size, distribution, and data
availability. ML is more non-parametric and modeling-based,
while KDM is more parametric and theory-based. Non-
parametric methods do not require assumptions about sample
size and data distribution (47, 48), and thus, are flexible.
Therefore, ML-BA is a good choice if the shape of the distribution
was not suited for parametric methods. On the contrary, KDM-
BA would be efficient in a sound dataset.

In this study, the large sample size of the nationwide
prospective cohort study provided us with the opportunity to
develop aging measures by ML and explore its associations
with adverse health outcomes in middle-aged and older
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Chinese adults. Nevertheless, limitations in this study should
be acknowledged. First, the relatively short follow-up period
(i.e., up to 6 years) of the CHARLS has impeded us to
explore the long-term effect of aging measures on the outcomes.
Longitudinal studies with long-term follow-up are needed to
confirm the associations. Second, we did not have data on
the exact timing of physical disability incidence and death.
Therefore, we cannot evaluate the impact of BAs on survival
time and we used the 2-year mortality as an alternative.
Third, we did not have data on the incidence of chronic
diseases (e.g., diabetes, heart disease, and stroke), impeding us
to evaluate the associations of biological aging with chronic
diseases. Fourth, it would be useful to validate the predictive
performance of ML-BA in another dataset. However, there are
only a few large aging cohort studies in China, such as the
Chinese Longitudinal Healthy Longevity Survey (CLHLS), the
China Health and Nutrition Survey (CHNS), and the CHARLS,
which was used in our work. The CLHLS and CHNS do not
have all the biomarkers used in our work, we were unable to
validate this ML-BA in this regard. Finally, the utility of this
ML-BA needs to be further validated as it needs more input
information. However, with the further development of medical
informatization, more individual-level data will be available and
this method will be the workflow for building the BA with
more information.

In summary, this study provides a valid ML-based measure
of biological aging for middle-aged and older Chinese
adults. We further demonstrated that this ML-BA was
associated with physical disability incidence and mortality.
These associations were comparable with that of KDM-
BA, a valid physiological biomarker-based aging measure
we have previously developed. The findings support the
application of ML in geroscience research and promote further
understanding of the aging process. Together with KDM-
BA, these aging measures could serve as a proxy of life span
and help with the risk stratification in the general Chinese
older adults.
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