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Abstract

Biological applications, from genomics to ecology, deal with graphs that represents the structure of interactions. Analyzing
such data requires searching for subgraphs in collections of graphs. This task is computationally expensive. Even though
multicore architectures, from commodity computers to more advanced symmetric multiprocessing (SMP), offer scalable
computing power, currently published software implementations for indexing and graph matching are fundamentally
sequential. As a consequence, such software implementations (i) do not fully exploit available parallel computing power
and (ii) they do not scale with respect to the size of graphs in the database. We present GRAPES, software for parallel
searching on databases of large biological graphs. GRAPES implements a parallel version of well-established graph
searching algorithms, and introduces new strategies which naturally lead to a faster parallel searching system especially for
large graphs. GRAPES decomposes graphs into subcomponents that can be efficiently searched in parallel. We show the
performance of GRAPES on representative biological datasets containing antiviral chemical compounds, DNA, RNA,
proteins, protein contact maps and protein interactions networks.
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Introduction

Biological sequences will always play an important role in

biology, because they provide the representation of a fundamental

level of biological variability and constitute ‘‘evolution’s mile-

stones’’ [1]. However, technological advances have led to the

inference and validation of structured interaction networks

involving genes, drugs, proteins and even species. An important

task in cheminformatics, pharmacogenomics and bioinformatics is

to deal with such structured network data. A core job behind

complex analysis is to find all the occurrences of given

substructures in large collections of data. This is required for

example in (i) network querying [2–5] to find structural motifs and

to establish their functional relevance or their conservation among

species, (ii) in drug analysis to find novel bioactive chemical

compounds [6,7], and (iii) in understanding protein dynamics to

identify and querying structural classification of protein complexes

[8].

The networks consist of vertices as basic elements (i.e., atoms,

genes, and so on) and edges describe their relationships. All cited

applications build on the basic problem of searching a database of

graphs for a particular subgraph.

Formally, graph database searching is defined as follows. Let

D~ fG1, . . . ,Gmg be a database of connected graphs. A graph Gi

is a triple (Vi,Ei,Li). Vi~fvjg,j~1, . . . ,n is the set of vertices in

Gi. Ei ~ f(vj ,vk)g, j,i~1, . . . ,n, is the set of edges connecting

vertices in Vi. We consider edges to be undirected. The degree of a

vertex vj is the number of edges connected to it. Each vertex may

have a label, representing information from the application

domain.

Let U be the set of all possible labels. Let M : V?U be the

function that maps vertices to labels. Let Li~fM(vi), for all

vi [Vig(U be the set of labels of Gi. For each graph in the

database, each vertex has a unique identifier, but different vertices

may have the same label. Figure 1 shows an example of a database

of graphs and a query. In this case U~fA,B,Cg coincides with

L1, L2, L3 and L4. Examples of mapping may be M(v0)~C in G1

and M(v0)~B in G2.

Two graphs G1 ~ (V1,E1,L1) and G2~(V2,E2,L2) are isomor-

phic if and only if there exists a bijective function I : V1?V2

mapping each vertex of G1 to a vertex of G2 such that (u,v)[E1 if

and only if (I(u),I(v))[E2 and vice versa. We must respect also the

compatibility of the labels of each mapped items, such that

Vv[V1 M(v)~M(I(v)).

A subgraph isomorphism (hereafter, also called subgraph matching

or matching) of Q~(Vq,Eq,Lq) in G(V ,E,L) is an injective

function I : Vq?V such that (u,v)[Eq if and only if (I(u),I(v))[E
and M(u)~M(I(u)) and M(v)~M(I(v)). Note that, there may

be an edge (u’,v’)[E without any corresponding edge in Eq. Given

a set of graphs D~fG1,G2,::,Gmg and a graph Q, called query,
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the problem consists of identifying the graphs in D containing Q as

a subgraph together with all the locations, called occurrences, of Q
in those graphs. This problem is called graph sub-isomorphism and the

complexity of all existing exact approaches is exponential. In

Figure 1, colored vertices and thick edges highlight the subgraph

isomorphisms of Q in the set of graphs.

Much research has been done to try to reduce the search space

by filtering away those graphs that do not contain the query. This

is achieved by indexing the graphs in D in order to reduce the

required number of subgraph isomorphism tests. Because graphs

are queried much more often than they change, indexes are

constructed once by extracting structural features of graphs in a

preprocessing phase. Features are then stored in a global index.

Later, given a query graph, the query features are computed and

matched against those stored in the index [9]. Graphs having the

features of the query are candidate to contain the query. The set of

candidates is then examined by a subgraph isomorphism

algorithm and all the resulting matches are reported. The time

spent searching on these graphs is exponential in the graph size.

Heuristic (sub)graph-to-graph matching techniques [10,11] are

used to solve this exponential step. Other tools based on the

identification of discriminant characteristics of graphs [12,13] are

used.

Almost all solutions build the index on subgraphs (i.e., paths

[14–16], trees [17,18], graphs [19]) of size not larger than ten

vertices to save on time and space.

The memory footprint and the time spent for building the index

may be prohibitive even when applied to small subgraphs

encouraging the use of compression heuristics. SING [15] stores

paths of vertex identifiers in its index as well as the label of the first

node in each path. GraphGrepSX [16] stores the paths in an

efficient data structure called trie which compacts common parts

of features.

Other systems use data mining techniques, which have been

applied to store only non-redundant frequent subgraphs (i.e., a

subgraph is redundant when it filters as much as its subgraphs)

[18–20]. GraphFind [21] uses paths instead of subgraphs but

reduces the number of indexed paths by using low-support data

mining techniques such as Min-Hashing [22]. In spite of these

heuristic techniques, index construction remains an expensive step.

The topology of the features affects both construction time and

query effectiveness. TreePi [17] pioneered the use of trees as

features. The authors describe a linear-time algorithm for

computing the canonical labeling of a tree. They experimentally

show that tree features capture topological structures well.

Therefore, using trees may result in a good compromise between

construction efficiency of query filtering effectiveness. As shown by

the authors, a unique center can be defined for a tree.

Consequently the distance (shortest path) between pairs of features

in a graph can be computed. TreePi uses an additional pruning

rule based on distances between features to improve the quality of

the match. Tree+d [23] uses as features both trees and a restricted

class of small graphs to improve the filtering performance. A most

recent contribution in the literature which uses trees is CT-index

[24]. In particular it hashes the indexed features which are a

combination of trees and cycles. Trees and cycles are represented

by their canonical form and mapped into the fingerprint by the

hashing function. The loss of information caused by the use of

hash-key fingerprints seems to be justifiable by the compact size of

the indexing as long as the amount of false positive does not

increase significantly due to collisions. The matching algorithm is

driven by a fixed ordering of the query vertices. The vertex

sequence is built looking for connectivity and using a priority

based on label frequencies respect to the whole graphs database.

Unfortunately, as for graphs, enumerating all trees of bounded size

still produces a large number of features.

Therefore, while the above approaches have good performance

on medium-small size graphs, they are not suitable when the size

and density of graphs increase. Some approaches have been

proposed to deal with very large graphs [25]. In such cases, the

massive data sets are decomposed and distributed onto cluster-

based architectures. Nevertheless, the time overhead of the

distributed computational model is high compared to the overhead

on a symmetric multiprocessor (SMP) architecture.

In any parallel setting, multiple instances of the state of the art

searching software can be run on the CPU cores, each one on a

disjoint database graphs. These do not work when the database

consists of a single large graph (as is often the case with biological

networks). In addition, the parallel search may be imbalanced

even on databases of many graphs, due to the differences among

graph sizes and densities.

This paper presents GRAPES, a parallel algorithm for

biological graph searching on multicore architectures. GRAPES

is a parallelized version of the index-based sequential searching

algorithms proposed in [15,16]. It introduces new algorithmic

strategies tailored to parallelism. The main characteristics of

GRAPES when compared to [15,16] in Table 1, are the following:

N Each single graph of the database is indexed in parallel by n

threads, where n is the number of processing units. Each index

construction is independent and dynamically distributed to the

threads. This guarantees load balancing and minimal syn-

chronization overhead, regardless of the number, size and

density of the database graphs.

N GRAPES uses paths of bounded length as features, and Trie

structures to represent them. Path prefix sharing in tries

reduces data redundancy thus achieving a more compact

representation of the index. The index also stores the number

of occurrences of the features and their locations.

N GRAPES implements a filtering phase, which consists of the

trie comparison of all query graph features against the pre-

computed global trie of the database.

N The matching phase applies the well established graph

isomorphism algorithm proposed in [10], with the exception

that only suitable subgraphs within candidate graphs (i.e., that

pass the filtering phase) are analyzed. This runs in parallel both

within each subgraph and among subgraphs thanks to the

indexes built in the first phase.

The experimental results show that GRAPES efficiently exploits

the computing power of the multicore architectures by guaran-

teeing scalability and load balancing. The experimental results also

show that GRAPES provides better performance than sequential

solutions run in parallel on databases of graphs, and provides fast

searching results even on databases of graphs that would be

intractable by applying sequential searching algorithms.

The paper is organized as follows. Section presents GRAPES in

detail. Section presents the experimental results while Section is

devoted to concluding remarks.

Methods

Software Overview
GRAPES implements a parallel search algorithm for databases

of large graphs targeting multicore architectures. It consists of the

following three phases (see Figure 2):

GRAPES: Parallel Searching on Biological Graphs
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N Building phase. Given a database of graphs, the building phase

constructs an index called a global trie. The global trie consists

of the set of substructures (paths of length up to a fixed value

called lp), hereafter called features, of the database graphs, as

described in Section.

N Filtering phase. Given a query, GRAPES builds an index of the

query (TrieQ) and compares that index to the features of the

graphs. It discards graphs that do not contain the query

features. In the remaining graphs, which are called candidate

graphs, it filters those parts (subgraphs) that are not present in

the query graph. This step may disconnect the candidate

graphs by decomposing them into a set of connected

components, hereafter called candidate connected components, as

described in Section.

N Matching phase. A subgraph matching algorithm (i.e., [10]) is

run to find all the occurrences of the query in each connected

component in parallel, as described in Section.

Building Phase: Extracts the Features and Constructs a
Trie Index

This phase builds a trie index of the whole database. The index

is built in parallel by the n threads run on the CPU cores. For each

graph, GRAPES groups the vertices in lists, all the vertices in the

same list have the same label (see Figure 2). The lists are

dynamically distributed to the threads. Each thread instantiates a

partial index (triei), which stores all feature, i.e. all paths of labels,

information starting from the vertices of the assigned list. Each

partial index is built independently and asynchronously. A thread

that collects all the information of the assigned list proceeds with a

further list related to the same graph or even to another graph.

This guarantees load balancing on the CPU cores regardless of the

number, size, and density of the database graphs.

For each vertex vi, the thread stores all label paths starting from

vi, (M(vi),M(vj),:::,M(vk)) containing up to lp vertices. Recalling

that different vertices may have the same label, the thread records

the number of time each feature (which is a topological pattern,

here a sequence, of labels) appears in the graph and the

identification (vi) of the first vertex of the paths. For example,

the feature (C,C,A) of length two in graph G2 of Figure 1 occurs 5

times (see Figure 3 to locate the feature indexed in the trie). The

paths mapped to it are

(v0,v5,v3),(v0,v5,v2),(v5,v0,v2),(v5,v0,v1),(v5,v0,v3). The identifica-

tions of the first vertices of such paths are v0 and v5.

After it completes its collection phase, each thread stores all

label path features in the partial trie. Each node of the trie tree of

height k is a path of labels (M(vi),M(vj),:::,M(vk)), of length k.

The height of the trie is lp. All the descendants of a node share a

common prefix of the feature associated with that node. Each

node in the trie links to (i) the list of graphs Gi containing the

feature associated with that node, (ii) the number of times the

Figure 1. Graph database and query. The database is composed by four graphs G1 , G2 , G3 and G4. Q is the query. The occurrences of Q in the
graphs are shown by colored vertices and bold edges.
doi:10.1371/journal.pone.0076911.g001

GRAPES: Parallel Searching on Biological Graphs
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feature occurs in each Gi (that is the number of paths (vi,vj ,:::,vk)
mapped to (M(vi),M(vj),:::,M(vk)) in each Gi), and (iii) the

starting vertices vi of each such path.

Then, all the tries partially built by each thread are merged into

the final global trie (this is done sequentially since it is very short

and fast). For example, Figure 3 depicts the global trie of a

database composed of a single graph. Let’s G2 of Figure 1 be such

a graph. The features are paths of length two (lp = 2). Note that the

root is virtual (does not correspond to any vertex). All paths in the

trie (starting from nodes at level 1 to the leaves) are features in G2.

All nodes link to a list of information as described before (the figure

shows the result for only some nodes). Figure 4 depicts the list of

information for the third node in path (B,A,A) for all graphs in

Figure 1.

Filtering Phase: Reduce the Search Space
The filtering phase consists of two steps: (i) filter away those

graphs that cannot have a match with the query graph (i.e.,

candidate generation) and (ii) filter away the portions of potentially

matching graphs that have no chance of matching the query graph

(i.e., candidate decomposition into connected components).

1. Given a query Q, GRAPES extracts all features from Q. Note

that features in Q are paths up to length lp, the same length

value used to construct the index for the graphs of the

databases. All features are stored in a trie (TrieQ).

2. GRAPES matches the trie of the query Q against the global trie.

The algorithm discards those graphs that either have a feature

with an occurrence number less than the occurrence number of

the query or do not contain some features of the query graph.

For example in Figure 1, G2 is discarded because the feature

(B,A,A) appears once in G2 and twice in the query.

3. For each vertex u of the query graph Q and a potentially

matching vertex vj in graph Gi, any feature starting from u

should also start from vj . Otherwise vj cannot be a match.

GRAPES achieves this by looking at the tries of the starting

vertices vi of the occurrences of features in the graphs. Thus,

for the paths in the trie of Q matching paths in the trie of D,

and for all of those starting from the same vertex u in Q, all

occurrences of the matching features in those graphs Gi must

also start from the same vertex vj . Otherwise, Gi cannot match

Q starting at vj . Figure 1 depicts such a case, in which G4

contains (B,A,A) twice as does the query. However, in the

query the paths start from a single node, i.e. v2, whereas, in G4,

the two paths start from two vertices, i.e. v4 and v6.

4. GRAPES retrieves from the trie the identities of the starting

vertices of the paths in the data graphs that match the query

features. The net effect is that GRAPES extracts all maximally

connected components in the graphs involving only possible

vertices. This is done in parallel by dynamically assigning each

candidate graph to threads for guaranteeing load balancing.

For example, when searching for Q in the database of Figure 1,

GRAPES reduces the search space by returning only the

connected components depicted in Figure 5.

This approach is particularly helpful when the graphs in the

database are very large. Because the filtering step decomposes the

graphs with respect to the query, large graphs become a set of

smaller components, greatly reducing the load on the exponential

matching phase as well as enabling that phase to be parallelized.

Parallel operation (for index creation, index searching, and

heuristic subgraph isomorphism) and the decomposition of graphs

into small connected components are the main reasons GRAPES

is so fast.

Matching Phase: Finds All Occurrences of the Query in
the Graphs in the Database

GRAPES runs multiple instances (i.e., one for each thread) of

the combinatorial subgraph isomorphism algorithm VF2 [10] on

the connected components resulting from the filtering phase.

VF2 is a combinatorial search algorithm which induces a search

tree by branching states. It uses a set of topological feasibility rules

and a semantic feasibility rule, based on label comparison, to

prune the search space. At each state if any rule fails, the algorithm

backtracks to the previous step of the match computation.

The size and the density of the generated connected compo-

nents may be different. As a consequence, distributing each

connected component as a whole for matching to each thread may

cause load imbalance. On the other hand, many instances of the

matching algorithm on the same connected component likely lead

to redundant visits in the same search space.

GRAPES applies a heuristic to select (i) the number of searching

instances to be run in parallel on a single connected component at

a time, and (ii) the starting nodes for the searching instances of

each connected component. The heuristic relies on the lists of

matchable vertices that have been extracted for each vertex of the

query during the filtering phase (see step 3 of Section). There is

one list of matchable vertices per connected component. Longer

lists are processed first, because one instance of the matching

algorithm can be run in parallel starting from each node of the list.

Availability and Requirements
Project name: GRAPES

Project home page: http://ferrolab.dmi.unict.it/grapes.html,

https://code.google.com/p/grapessmp

Table 1. GRAPES vs GraphGrepSX and SING.

GRAPES GraphGrepSX SING Description

TRIE indexing x x Compact indexing. Efficiency on indexing and filtering

x x

Path indexing x x x Lighter than subgraphs or trees

Store path node x x More filtering power

Parallel Indexing
and Matching

x Necessary for biological data size and density

Connected components x Load balancing onto CPU cores

List of the new GRAPES components together with the components of GRAPES taken from GraphGrepSX [16] and SING [15].
doi:10.1371/journal.pone.0076911.t001

GRAPES: Parallel Searching on Biological Graphs
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Figure 2. Schema of GRAPES.
doi:10.1371/journal.pone.0076911.g002
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Operating system(s): Unix/Linux x86/x86-64

Programming language: C++
Other requirements: GRAPES runs in parallel on shared

memory multi-core architectures

License: GRAPES is distributed under the MIT license.

Results and Discussion

GRAPES has been tested on four databases of biological

graphs:

N AIDS, the standard database of the Antiviral Screen Dataset

[26] of the topological structures of 40,000 molecules. Graphs

in the dataset have 62 unique labels in total. The average

number of vertices per graph is 44.98 with a standard

deviation of 21.68. The average (resp. standard deviation)

degree per vertex is 4.17 (resp. 2.28) and the average (resp.

standard deviation) number of labels is 4.36 (resp. 0.86). They

are small sparse graphs whose maximum size is 245.

N PDBS, a database of 600 graphs representing DNA, RNA and

proteins having up to 16,431 vertices and 33,562 edges [27].

The dataset has been converted to graphs by using the Ball

conversion library available at www.ball-project.org/; original

structures can be downloaded from www.fli-leibniz.de/

ImgLibPDB/pages/entry_list-all.html. As reported in [27],

Figure 3. The trie data structure used as indexing in GRAPES. The index for the graph G2 of Figure 1. A trie stores all features of length 2 of
G2 . Each node is associated to a feature, that is the path in the trie up to this node. For each node in the trie, a list of information such as the number
of times the feature appears in G2 (equally the number of paths in G2 mapped to it) and the identifications of the first nodes of such paths is stored.
doi:10.1371/journal.pone.0076911.g003

Figure 4. The information stored in a node of a GRAPES index (trie) for graphs of Figure 1. Each node in the trie links to (i) the list of
graphs Gi containing the feature associated with that node, (ii) the number of times the feature occurs in each Gi, and (iii) the starting vertices vi of
each such path.
doi:10.1371/journal.pone.0076911.g004

GRAPES: Parallel Searching on Biological Graphs
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the PDBS dataset contains echoviruses and decay-accelerating

factor (DAF). The dataset contains a total of 10 unique labels

with an average of 6.37 and a standard deviation of 2.15 per

protein. The average degree per vertex is 4.27 with a standard

deviation of 2.02. The average number of vertices (resp. edges)

is 2,939 (resp. 6,127) with a standard deviation of 3,214 (resp.

6,522).

N PCM, the protein contact maps dataset is taken from CMView

[28]. It comes from 200 contact maps of the amino acids of the

domains of the proteins having up to 883 nodes and 18,832

edges. Since they represent relationships among amino acids,

the number of vertices in the contact maps is relatively small

(corresponding to the length of the proteins). The average

number of vertices (resp. edges) is 376 (resp. 8,679) with a

standard deviation of 186.6 (resp. 3,814). The average degree

per vertex is 44.78 with a standard deviation of 17.47. The

average number of labels per contact map and the standard

deviation are 18.86 and 3.48, respectively.

N PPI, a database of 20 protein interaction networks. The

networks belong to 5 species: Caenorhabditis elegans, Drosophila

melanogaster, Mus musculus, Saccaromyces cerevisiae and Homo sapiens.

For each species, we generated four networks from the original

ones, by selecting the edges having accurateness greater than

0.4, 0.5, 0.6, and 0.7. The networks are annotated using Gene

Ontology annotations [29]. We run the Cytoscape plugin

Mosaic [30], which assigns colors to the vertices of the

networks depending on their most relevant GO terms. The

networks have up to 10,186 nodes (average 4,942.9 and

standard deviation 2,648) and 179,348 edges (average 53,333

and standard deviation 51,387). The average degree per vertex

is 18.46 with a standard deviation of 42.12. The average

number of labels per graph and the standard deviation are

28.45 and 9.5, respectively.

The queries for the AIDS database are entire compounds

randomly chosen from the database of size 8, 16 and 32 edges. For

the datasets PDBS and PCM, the queries have the same size but

they have been generated from the original graphs in the following

way. Starting from an edge of the graph, choose a random

neighboring edge. In general, choose any edge that neighbors any

edge of the growing graph. The process is repeated until the

chosen number of edges is reached. Since queries are substructures

chosen randomly from the databases, the queries reflect the

average degree and label distribution of the biological data. For

the PPI dataset, since relevant queries are often small graphs (e.g.,

feed forward loops), we used queries of size 4 and 8. Results are

given as the average performance obtained by running from one to

one hundred queries.

Experiments have been conducted on a SMP machine

662.8 GHz Intel Xeon with Debian 5.0686 O.S. GRAPES has

been implemented in C++ and compiled with gcc-4.4.

We compare GRAPES with available software implementing

sequential graph searching algorithms based on indexing such as

SING [15], GraphGrepSX (GGSX) [16], and the most recent

CT-index [24]. We also report the results obtained by running

VF2 [10], which does not use indexing. We do not report

comparisons with gIndex [19], GCoding [13] and CTree [12]

since SING either outperforms them or gives closely comparable

performance (we refer to [15] for details of such comparisons). The

results (building time, matching time and building+matching time)

Figure 5. Filtering in GRAPES. The graphs in Figure 1 are reduced to the following components after filtering. CC1 and CC2 derive from G1 and
CC3 from G3 . This reduction of search space makes GRAPES fast and suitable to parallelization. The combinatorial subgraph isomorphism algorithm
(applied in the Matching phase) will be run only on these components.
doi:10.1371/journal.pone.0076911.g005

GRAPES: Parallel Searching on Biological Graphs
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are presented as the average time of 100 queries, run one at the

time. For each query, we set the system to wait 8 hours for the

searching results. When we state that a tool does not run on a

dataset, we mean that the tool did not terminate (within 8 hours) in

almost all tested queries. SING runs out of time on PDBS, PCM

and PPI, while CT-index runs out of time on PCM and PPI.

Details on the number of graphs containing the queries, the

number of subgraphs isomorphisms and the number of connected

components are given in Table S1 in the File S1. Figures 6, 7, 8,

and 9 report the obtained results on AIDS, PDBS, PCM and PPI,

respectively. Each figure reports the number of the building and

matching time and the performance of GRAPES and VF2 for the

runs of multiple queries (i.e., from one to one hundred queries).

For a fair comparison, we also run multiple instances (six) of the

state of the art algorithms on different graphs of the databases.

We report the average time and the corresponding standard

deviations obtained on the tested queries. The filtering time, which

is negligible for all the tested graphs, is included in the matching

time. The number of candidates graphs and memory consumption

of the compared tools are reported Figures S1–S4 in the File S1.

On all tested databases (Figures 6, 7, 8, 9), considering the

building plus matching time, GRAPES is faster than VF2 even

when only one query is run. Therefore, even though indexing is a

time-consuming step, it clearly speeds up the matching time.

Parallelism is critical to this success. In Figures 6 and 9, when using

only one thread, the index-based tools do not outperform VF2

when a single query is run. The index-based tools outperform VF2

when we compare the performance of GRAPES and VF2

(building plus matching time, see multiquery running graphs in

Figures 6, 7, 8, 9) on one hundred queries using six threads for

GRAPES and six instances of VF2 over the databases. These

results show that indexing induces efficiency when the index is

constructed once and re-used for multiquery. Parallelism and our

particular index strategy give substantial improvements over

index-less systems such as VF2, with increasing benefits the more

queries there are.

On the AIDS dataset (Figure 6), GRAPES is faster than SING

and CT-index and comparable to GGSX. We run CT-Index

using the size of features (i.e., 8) suggested by the CT-index

authors on the same dataset (LP8 means trees of depth 6 or cycles

of 8 edges).

GRAPES has a particular advantage compared to other

indexing-based graph searching or subgraph isomorphism algo-

rithms on more complex structured graph databases. For example,

on the PDBS (Figure 7) and PCM (Figure 8) datasets, GRAPES is

much faster than GGSX and CT-Index. We run CT-Index using

also small size features (LP4), to evaluate a possible matching and

building speedup. However, since CT-Index in PCM (Figure 8)

dataset has a very high building time, GRAPES and GGSX

outperformed it in the total time. For this reason, its matching time

is not reported in the plot.

GRAPES is faster than GGSX also in PPI (Figure 9) dataset. In

the PDBS (Figure 7), PCM (Figure 8), and PPI (Figure 9) datasets,

GRAPES is much faster than VF2 even on a single query (building

plus matching time).

GRAPES is faster than the compared tools in all datasets also

when queries are not present in the datasets (see Figures S6–S9 in

the File S1).

Figure 6. Experimental results on the AIDS database. It shows building, matching and total (building+macthing) time of the compared tools.
The AIDS dataset contains a large number of small, simply structured graphs. Here, querying is not an expensive task. Comparisons show that GRAPES
outperforms the other tools by using 1 thread. Parallelism due to the simple structure of data does not help. However, indexing induces efficiency
when the index is built once and re-used for multiquery. Indeed, GRAPES results faster than non-indexing based methods such as VF2 by running two
o more queries (see Multiquery running plot, run on 6 threads).
doi:10.1371/journal.pone.0076911.g006
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Figure 7. Experimental results on the PDBS database. It shows building, matching and total (building+macthing) time of the compared tools.
Comparisons show that GRAPES outperforms the other tools by using 1 or 6 threads. However, parallelism helps to decrease the computation costs.
We found that indexing induces efficiency when the index is built once and re-used for multiquery. Indeed, GRAPES results faster than non-indexing
based methods such as VF2 by running one or more queries (see Multiquery running plot, run on 6 threads).
doi:10.1371/journal.pone.0076911.g007

Figure 8. Experimental results on the PCM database. It shows building, matching and total (building+macthing) time of the compared tools.
Comparisons show that GRAPES outperforms the other tools by using 1 or 6 threads. However, parallelism helps to decrease the computation costs.
We found that indexing induces efficiency when the index is built once and re-used for multiquery. Indeed, GRAPES results faster than non-indexing
based methods such as VF2 by running one or more queries (see Multiquery running plot, run on 6 threads).
doi:10.1371/journal.pone.0076911.g008
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We conclude that the parallelism of GRAPES yields load

balancing, scalability, and efficiency on all databases (see Figure S5

in the File S1). The index-based approach implemented in

GRAPES is well-suited to biological data particularly when data

has complex structure and queries are time consuming. Further,

GRAPES performance is better than multiple instances of

sequential graph-search tools of the literature.

Conclusions

GRAPES is a parallel graph searching algorithm that achieves

the best performance of any algorithm on large data coming from

applications such as pharmacogenomics and biology. Its advan-

tage is the strongest for large graphs as opposed to databases of

many small graphs. GRAPES is based on the following

algorithmic strategies:

1. Indexing occurs in parallel on vertices, so there is parallelism

even if the entire database consists of a single graph. Further,

the indexing for different nodes can operate independently and

asynchronously.

2. GRAPES uses the indexing system to partition large graphs

into connected components, thus substantially reducing the

effort when the exponential phase arises. This makes GRAPES

suitable for applications on large biological graphs such as

protein interaction networks.

3. To compress the resulting path-based indexes, GRAPES uses

tries. In doing so, GRAPES reduces the space and time needed

for the construction of large database indexes.

We have demonstrated that GRAPES improves performance

compared with state of art algorithms by a factor of up 12, and

offers parallel scaling with a factor varying from 1.72 to 5.34 on

the biologically representative datasets containing antiviral chem-

ical compounds, DNA, RNA, proteins, protein contact maps and

protein interactions networks.

Supporting Information

File S1 Details on GRAPES performances. It shows for the

compared tools memory consumption as well as the number of

candidate graphs, connected components found in various setting

and the performance of the tools when the queries have no

matches.

(PDF)

File S2 GRAPES user manual.

(PDF)
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Figure 9. Experimental results on the PPI database. It shows building, matching and total (building+macthing) time of the compared tools.
Comparisons show that GRAPES outperforms the other tools by using 1 or 6 threads. However, parallelism helps to decrease the computation costs.
We found that indexing induces efficiency when the index is built once and re-used for multiquery. Indeed, GRAPES results faster than non-indexing
based methods such as VF2 by running one or more queries (see Multiquery running plot, run on 6 threads).
doi:10.1371/journal.pone.0076911.g009
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