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Abstract: Ischemic cardiomyopathy (ICM), characterized by pre-existing myocardial infarction or
severe coronary artery disease, is the major cause of heart failure (HF). Identification of novel
transcriptional regulators in ischemic HF can provide important biomarkers for developing new
diagnostic and therapeutic strategies. In this study, we used four RNA-seq datasets from four different
studies, including 41 ICM and 42 non-failing control (NF) samples of human left ventricle tissues, to
perform the first RNA-seq meta-analysis in the field of clinical ICM, in order to identify important
transcriptional regulators and their targeted genes involved in ICM. Our meta-analysis identified
911 differentially expressed genes (DEGs) with 582 downregulated and 329 upregulated. Interestingly,
54 new DEGs were detected only by meta-analysis but not in individual datasets. Upstream regulator
analysis through Ingenuity Pathway Analysis (IPA) identified three key transcriptional regulators.
TBX5 was identified as the only inhibited regulator (z-score = −2.89). F2R and SFRP4 were identified
as the activated regulators (z-scores = 2.56 and 2.00, respectively). Multiple downstream genes
regulated by TBX5, F2R, and SFRP4 were involved in ICM-related diseases such as HF and arrhythmia.
Overall, our study is the first to perform an RNA-seq meta-analysis for clinical ICM and provides
robust candidate genes, including three key transcriptional regulators, for future diagnostic and
therapeutic applications in ischemic heart failure.

Keywords: ischemic cardiomyopathy; heart failure; transcriptional regulators; meta-analysis;
RNA-seq

1. Introduction

Heart failure (HF), leading to considerable mortality and health care costs, is a critical
health problem, especially among the people aged ≥65, around the world [1]. Characterized by
pre-existing myocardial infarction, hibernating myocardium or severe coronary artery disease, ischemic
cardiomyopathy (ICM) accounted for more than 60% of systolic HF cases in industrialized countries [2].
Mild or severe repeated injuries to left ventricle are common in patients with ICM, resulting in cardiac
remodeling, chronic myocardial dysfunction and eventual HF [3].

Dysregulated transcriptional hubs, such as transcription factors, non-coding RNAs and chromatin
regulators, and their downstream gene expression signatures are representative of genomic mechanisms
underlying disease processes. Therefore, detecting such genomic signatures aids in the development
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of new diagnostic and therapeutic approaches. A few such independent studies have reported unique
gene expression signatures eventually leading to cardiovascular diseases such as HF [4–7].

RNA-seq studies play an important role in understanding transcriptional regulation of
cardiovascular diseases [8]. Since different sample and data processing strategies among different
RNA-seq studies could generate contradicting results, meta-analysis has been widely used to overcome
inconsistent findings among different studies [9,10]. In this study, we used four RNA-seq datasets from
four different RNA-seq studies, including 41 ICM and 42 non-failing control (NF) samples of human
left ventricle tissues, to perform the first RNA-seq meta-analysis for identifying key transcriptional
regulators involved in clinical ICM.

2. Results

2.1. RNA-Seq Datasets

Four RNA-seq datasets (GSE116250 [11], GSE120852 [12], GSE46224 [13] and GSE48166 [14]),
including 41 ICM and 42 NF samples, were included and analyzed in this study (Table 1). The
information of each dataset was summarized in Table 1.

Table 1. GEO datasets used for meta-analysis.

Study Dataset Platform Sample Size Tissue

Study_1 GSE116250 [11] Illumina HiSeq 2500 13 ICM
14 NF left ventricle

Study_2 GSE120852 [12] Illumina HiSeq 2500 5 ICM
5 NF left ventricle

Study_3 GSE46224 [13] Illumina HiSeq 2000 8 ICM
8 NF left ventricle

Study_4 GSE48166 [14] Illumina Genome
Analyzer II

15 ICM
15 NF left ventricle

2.2. Differentially Expressed Genes

Expression levels of 58,884 coding and non-coding genes based on Homo_sapiens.GRCh38.96.gtf
were quantified in this study. Nine hundred and eleven (911) differentially expressed genes
(DEGs), including 582 downregulated and 329 upregulated genes, were identified in meta-analysis
(Supplementary Table S1). The top 50 DEGs ordered by p-value are presented in Table 2. The number
of common DEGs among the meta-analysis and the analyses of four individual studies are presented
using Venn diagram (Figure 1A). A considerable number of DEGs were not consistent among different
RNA-seq studies in terms of statistical significance (Figure 1A). Interestingly, 54 new DEGs were
identified in the meta-analysis but not in the individual datasets (Figure 1A, Table 3). No common
genes were identified as statistically significant among the meta-analysis and all four individual
analyses (Figure 1A). However, a heatmap of all meta-analysis identified DEGs showed consistent
patterns of up- or down-regulated DEGs among the samples across different studies (Figure 1B).
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Table 2. Top 50 DEGs identified in meta-analysis.

Ensembl_ID Gene_Symbol Adj_P 1 Average_Log2FC 2 Effect 3

ENSG00000008311 AASS 0 −1.03 Down
ENSG00000075413 MARK3 0 −0.88 Down
ENSG00000076351 SLC46A1 0 0.48 Up
ENSG00000100196 KDELR3 0 0.72 Up
ENSG00000103415 HMOX2 0 −0.81 Down
ENSG00000105894 PTN 0 1.47 Up
ENSG00000106809 OGN 0 2.26 Up
ENSG00000106819 ASPN 0 1.99 Up
ENSG00000106823 ECM2 0 1.17 Up
ENSG00000118194 TNNT2 0 −0.55 Down
ENSG00000122034 GTF3A 0 −0.54 Down
ENSG00000123689 G0S2 0 −1.57 Down
ENSG00000126106 TMEM53 0 −0.58 Down
ENSG00000129250 KIF1C 0 −0.56 Down
ENSG00000130528 HRC 0 −0.58 Down
ENSG00000139329 LUM 0 1.81 Up
ENSG00000140416 TPM1 0 −0.53 Down
ENSG00000141905 NFIC 0 −0.57 Down
ENSG00000145934 TENM2 0 −0.67 Down
ENSG00000156219 ART3 0 −1.31 Down
ENSG00000161970 RPL26 0 −0.76 Down
ENSG00000175084 DES 0 −0.80 Down
ENSG00000176293 ZNF135 0 0.51 Up
ENSG00000179526 SHARPIN 0 −0.34 Down
ENSG00000197256 KANK2 0 −0.57 Down
ENSG00000197616 MYH6 0 −2.59 Down
ENSG00000198542 ITGBL1 0 1.69 Up
ENSG00000198624 CCDC69 0 −0.87 Down
ENSG00000210127 MT-TA 0 −1.66 Down
ENSG00000233098 CCDC144NL-AS1 0 1.17 Up
ENSG00000140319 SRP14 6.91 ×10−14 −0.53 Down
ENSG00000197586 ENTPD6 6.91 × 10−14 −0.77 Down
ENSG00000267280 TBX2-AS1 6.91 × 10−14 0.83 Up
ENSG00000152086 TUBA3E 1.33 × 10−13 −1.99 Down
ENSG00000170448 NFXL1 1.33 × 10−13 −1.84 Down
ENSG00000165124 SVEP1 1.89 × 10−13 1.24 Up
ENSG00000152580 IGSF10 2.46 × 10−13 1.54 Up
ENSG00000143603 KCNN3 3.04 × 10−13 1.43 Up
ENSG00000187837 HIST1H1C 3.60 × 10−13 −0.89 Down
ENSG00000075886 TUBA3D 4.15 × 10−13 −1.60 Down
ENSG00000189060 H1F0 8.87 × 10−13 −0.80 Down
ENSG00000134247 PTGFRN 2.21 × 10−12 0.93 Up
ENSG00000116690 PRG4 3.94 × 10−12 0.84 Up
ENSG00000160392 C19orf47 4.61 × 10−12 −0.95 Down
ENSG00000129009 ISLR 7.14 × 10−12 1.49 Up
ENSG00000129116 PALLD 8.77 × 10−12 −0.72 Down
ENSG00000173991 TCAP 1.11 × 10−11 −0.55 Down
ENSG00000104879 CKM 1.27 × 10−11 −0.79 Down
ENSG00000108298 RPL19 1.66 × 10−11 −0.54 Down
ENSG00000142748 FCN3 1.75 × 10−11 −1.59 Down

1: FDR-adjusted p-value, Adj_P = 0 indicates that the FDR-adjusted p-value was very small and rounded down to 0;
2: Average of log2FC from individual studies, FC: fold-change; 3: “Up” or “Down” indicates whether the gene was
upregulated or downregulated.
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Table 3. DEGs identified only by meta-analysis.

Ensembl_ID Gene_Symbol Adj_P 1 Average_Log2FC 2 Effect 3

ENSG00000171517 LPAR3 8.64 × 10−4 −1.16 Down
ENSG00000178607 ERN1 2.24× 10−3 0.88 Up
ENSG00000048707 VPS13D 3.17 × 10−3 −0.60 Down
ENSG00000179604 CDC42EP4 3.18 × 10−3 −0.66 Down
ENSG00000072832 CRMP1 3.42 × 10−3 0.75 Up
ENSG00000162458 FBLIM1 6.49 × 10−3 −0.79 Down
ENSG00000178307 TMEM11 6.86 × 10−3 −0.49 Down
ENSG00000166278 C2 7.49 × 10−3 1.02 Up
ENSG00000228526 MIR34AHG 8.17 × 10−3 0.97 Up
ENSG00000184007 PTP4A2 8.29 × 10−3 −0.40 Down
ENSG00000160818 GPATCH4 8.45 × 10−3 −0.48 Down
ENSG00000100949 RABGGTA 8.63 × 10−3 −0.38 Down
ENSG00000255248 MIR100HG 9.29 × 10−3 0.35 Up
ENSG00000165028 NIPSNAP3B 9.48 × 10−3 −0.52 Down
ENSG00000133678 TMEM254 9.98 × 10−3 0.63 Up
ENSG00000128272 ATF4 1.02 × 10−2 −0.55 Down
ENSG00000103342 GSPT1 1.13 × 10−2 −0.33 Down
ENSG00000163866 SMIM12 1.27 × 10−2 −0.46 Down
ENSG00000198355 PIM3 1.29 × 10−2 −0.61 Down
ENSG00000163399 ATP1A1 1.32 × 10−2 −0.47 Down
ENSG00000160862 AZGP1 1.33 × 10−2 −0.85 Down
ENSG00000180758 GPR157 1.42 × 10−2 −0.73 Down
ENSG00000115461 IGFBP5 1.53 × 10−2 0.48 Up
ENSG00000037280 FLT4 1.76 × 10−2 0.48 Up
ENSG00000135272 MDFIC 1.78 × 10−2 0.69 Up
ENSG00000131781 FMO5 1.83 × 10−2 −0.73 Down
ENSG00000184887 BTBD6 1.93 × 10−2 −0.53 Down
ENSG00000142494 SLC47A1 2.39 × 10−2 0.58 Up
ENSG00000113811 SELENOK 2.63 × 10−2 −0.34 Down
ENSG00000186567 CEACAM19 2.63 × 10−2 −0.60 Down
ENSG00000100767 PAPLN 2.66 × 10−2 0.97 Up
ENSG00000159674 SPON2 2.85 × 10−2 0.62 Up
ENSG00000169155 ZBTB43 2.95 × 10−2 −0.40 Down
ENSG00000103034 NDRG4 3.09 × 10−2 −0.34 Down
ENSG00000106034 CPED1 3.11 × 10−2 0.37 Up
ENSG00000179262 RAD23A 3.28 × 10−2 −0.32 Down
ENSG00000169718 DUS1L 3.31 × 10−2 −0.37 Down
ENSG00000107736 CDH23 3.35 × 10−2 0.71 Up
ENSG00000108883 EFTUD2 3.43 × 10−2 −0.26 Down
ENSG00000139990 DCAF5 3.45 × 10−2 −0.34 Down
ENSG00000019995 ZRANB1 3.49 × 10−2 −0.24 Down
ENSG00000160877 NACC1 3.49 × 10−2 −0.50 Down
ENSG00000175602 CCDC85B 3.51 × 10−2 0.56 Up
ENSG00000143869 GDF7 3.65 × 10−2 0.76 Up
ENSG00000182287 AP1S2 3.90 × 10−2 −0.34 Down
ENSG00000114670 NEK11 3.94 × 10−2 0.77 Up
ENSG00000197977 ELOVL2 3.96 × 10−2 −0.71 Down
ENSG00000170004 CHD3 4.20 × 10−2 0.48 Up
ENSG00000168615 ADAM9 4.38 × 10−2 −0.39 Down
ENSG00000118762 PKD2 4.42 × 10−2 0.32 Up
ENSG00000078061 ARAF 4.54 × 10−2 −0.27 Down
ENSG00000113140 SPARC 4.57 × 10−2 0.49 Up
ENSG00000144645 OSBPL10 4.62 × 10−2 0.85 Up
ENSG00000003096 KLHL13 4.99 × 10−2 0.83 Up

1: FDR-adjusted p-value; 2: Average of log2FC from individual studies, FC: fold-change; 3: “Up” or “Down”
indicates whether the gene was upregulated or downregulated.
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2.3. Toxicity Pathway Analysis

The IPA-Tox analysis identified 232 significant toxicity pathways (p-value < 0.05). Activation
z-score > 2 was considered as significantly activated. Only two pathways, arrhythmia (z-score = 2.81)
and failure of heart (z-score = 2.41), were marked with significant activation status. Interactions of these
two pathways with their associated DEGs are shown in Figure 2A,B. To identify shared DEGs between
these two pathways, an integrated network was generated (Figure 2C). Seventeen genes out of 62 DEGs
were shared between the two pathways and interestingly, most of them were downregulated in the
ICM group (Figure 2C, Table 4). Among the common DEGs between failure of heart and arrhythmia,
DES and TNNT2 were among the top 50 DEGs (Figure 2C, Table 2). ATP1A1 was among the DEGs that
were identified only in meta-analysis but not in the four individual datasets (Figure 2C, Table 3).
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Figure 2. Interactions of significantly activated toxicity pathways with their associated DEGs.
(A) arrhythmia; (B) failure of heart; (C) integrated toxicity pathways. For example, in Figure 2A, the
gene TBX5 was downregulated as indicated by the green color and the downregulation of TBX5 further
promoted (indicated by the orange dash line) the activation of arrhythmia, as indicated by the orange
color. For other indicators, please refer to the Prediction Legend.
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Table 4. Shared DEGs between arrhythmia and failure of heart.

Ensembl_ID Gene_Symbol Average_Log2FC 1 Effect 2

ENSG00000120907 ADRA1A −0.67 Down
ENSG00000163399 ATP1A1 −0.47 Down
ENSG00000174437 ATP2A2 −0.74 Down
ENSG00000007402 CACNA2D2 0.59 UP
ENSG00000175084 DES −0.80 Down
ENSG00000126218 F10 0.54 Up
ENSG00000152642 GPD1L −0.75 Down
ENSG00000171385 KCND3 −0.91 Down
ENSG00000055118 KCNH2 −0.84 Down
ENSG00000187486 KCNJ11 −1.03 Down
ENSG00000134571 MYBPC3 −0.55 Down
ENSG00000092054 MYH7 −0.45 Down
ENSG00000175206 NPPA 1.86 UP
ENSG00000104368 PLAT 0.64 Up
ENSG00000183873 SCN5A −0.54 Down
ENSG00000118194 TNNT2 −0.55 Down
ENSG00000155657 TTN −0.66 Down
1: Average of log2FC from individual studies, FC: fold-change; 2: “Up” or “Down” indicates whether the gene was
upregulated or downregulated.

2.4. Canonical Pathway Analysis

Among 122 significant canonical pathways identified by IPA (p-value < 0.05), only four pathways
had absolute z-scores more than 2.0 and were marked as significantly inhibited in the ICM group
(Figure 3). The DEGs involved in these pathways were summarized in Supplementary Table S2.
Among these DEGs, ATP1A1 was involved in the Superpathway of Inositol Phosphate Compounds
and also contributed to both heart failure and arrhythmia (Supplementary Table S2, Figure 2C).
ACTC1 and TGFBR2 contributing to arrhythmia were also involved in EIF2 Signaling Pathway and
Senescence Pathway, respectively (Figure 2A, Supplementary Table S2). MTOR, EP300 and PPP3CC in
the Senescence Pathway were also involved in failure of heart (Figure 2B, Supplementary Table S2).
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2.5. Upstream Regulator Analysis

IPA upstream regulator analysis identified 61 significant upstream regulators (p-value < 0.05) that
were 38 downregulated and 23 upregulated in the ICM group, respectively (Supplementary Table
S3). Among those upstream regulators, only TBX5 was marked as a significantly inhibited regulator
(z-score = −2.89); only F2R and SFRP4 were significantly activated regulators (z-scores = 2.56 and
2.00, respectively) (Supplementary Table S3). Figure 4 summarized the targeted genes by these three
upstream regulators.
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Integrating the results of the TBX5-targeted genes and the DEGs in toxicity pathways, we found
that the dysregulation of TBX5-targeted genes, TNNT2, NPPA, TTN, ATP2A2, DES and SCN5A,
contributed to the development of heart failure and arrhythmia (Figures 2C and 4A). NKX2-5, HSPB7
and BCL2L1 were also involved in failure of heart (Figures 2B and 4A). TBX5-targeted genes, MYH6,
ACTC1 and TPM1, were involved in arrhythmia (Figures 2A and 4A). Moreover, ACTC1 in EIF2
Signaling Pathway was also regulated by TBX5. Among TBX5-targeted genes, MYH6, TNNT2, ECM2,
TPM1 and DES, were found in the top 50 DEGs list (Table 2). The network of TBX5, its targeted
genes and the corresponding cardiac disorders via IPA regulator effects analysis further indicated an
important role of TBX5 in the development of HF-related dysfunctions and diseases (Figure 5). Inhibited
TBX5 caused dysregulation of several genes such as BCL2L1, HSPB7, NPPA, SCN5A, NKX2-5, TNNT2,
ATP2A2, TTN and DES, which are involved in the activation of heart failure (Figure 5). Inhibited TBX5
also contributed to other cardiac dysfunctions including degeneration of heart (increased), cardiac
contractility (decreased), contractility of muscle (decreased) and function of cardiac muscle (decreased)
(Figure 5).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 15 
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Figure 4. Inhibited/activated upstream regulators and their targeted genes. (A) TBX5; (B) F2R;
(C) SFRP4; (D) An integrated network of TBX5, F2R and SFRP4. All the targeted genes were
differentially expressed based on the meta-analysis. For example, the activation of F2R leads to the
overexpression (indicated by the orange arrow line) of CASP4 (indicated by the red color). For other
indicators, please refer to the Prediction Legend.

F2R, as the activated upstream regulator, upregulated PLAT, which was involved in heart failure
and arrhythmia (Figures 2C and 4B). Increased CCN2, regulated by F2R, contributed to failure of heart
(Figures 2B and 4B). Dysregulated MMP2, DSP and TGM2 were involved in arrhythmia (Figures 2A and
4B). SFRP4, as the other activated upstream regulator, inhibited TNNT2 and MYH7, which contributed
to the development of heart failure and arrhythmia (Figures 2C and 4C). Upregulation of SFRP4 also
inhibited the expression of NKX2-5 and MYH6 (Figure 4C). NKX2-5 and MYH6 were involved in failure
of heart and arrhythmia, respectively (Figure 2).
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Interestingly, an integrated network of the three upstream regulators and their targeted genes
showed that MYH6, NKX2-5 and TNNT2 were regulated by both TBX5 and SFRP4 (Figure 4D). CCND1
was also regulated by both SFRP4 and F2R (Figure 4D). As mentioned above, some of these regulated
genes were involved in failure of heart and/or arrhythmia (Figure 2C), indicating that the three key
upstream regulators are common hubs regulating the downstream genes importantly contributing to
HF-related cardiac disorders.

3. Discussion

In this study, we performed the first RNA-seq meta-analysis in the field of clinical ICM using four
RNA-seq studies to profile gene expression signatures and identify key transcriptional regulators. We
applied a consistent bioinformatics pipeline for processing the raw RNA-seq data (FASTQ files) of all
four individual datasets to prevent methodological inconsistences in terms of data processing and
bioinformatics pipelines among original studies. Our meta-analysis identified a total of 911 differentially
expressed genes including 582 downregulated and 329 upregulated genes (Supplementary Table S1).

Among the top 50 significant DEGs (Table 2), several genes, such as OGN and RPL26, were
previously reported to be dysregulated in ICM patients [15,16]. Upregulation of OGN, osteoglycin, has
been reported to play a role in collagen maturation and deposition in mouse myocardial infarction
tissue [15]. Increased circulating OGN has also been observed in ischemic HF patients experiencing
myocardial infarction compared to patients with non-ischemic HF and thus it has been proposed as a
biomarker for ischemic HF with pre-existing myocardial infarction [15]. Moreover, upregulation of
RPL26, ribosomal protein L26, has also been observed in patient with ischemic HF [16]. Abnormal
expressions of DES and PTN were also reported in dilated cardiomyopathy (DCM) [17,18]. Interestingly,
genetic variants in several genes of the top 50 DEGs were reported to be associated with ICM and
other heart diseases. For example, genetic variants of PALLD (palladin, cytoskeletal associated protein),
important for organizing actin cytoskeleton, have been reported to be associated with myocardial
infarction [19,20]. Genetic variants of MYH6, TNNT2 and TPM1, have been found to be associated
with hypoplastic left heart, cardiac hypertrophy and DCM, respectively [21–23].

Meta-analysis is a more sensitive and reliable approach to identify novel robust DEGs due to its
greater power to detect differential expression [9]. Fifty-four new DEGs were discovered through our
meta-analysis and they were not detected by analyzing the individual datasets. Most of these genes
have not been reported prior as related to ICM. However, some of these DEGs have been found to
be associated with HF-related diseases. For example, CRMP1 has been demonstrated as a potential
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candidate for left-sided congenital heart disease [24]. Lower expression of ATP1A1 has been reported
in end-stage HF [25]. Consistently, our IPA pathway analysis showed that ATP1A1 was involved in
heart failure (Figure 2B). Abnormal expressions of AZGP1 in chronic HF [26] and MDFIC in DCM have
been previously reported [27]. Moreover, genetic mutation in PKD2 has been reported in idiopathic
DCM [28]. Further research is needed to investigate pathophysiological mechanisms of these newly
identified genes in our meta-analysis.

ACE2, SP100, CITED2, CEBPD, BCL3, CREB, SMARCA4, NCAM1 and SFRP4 have been previously
reported as transcriptional regulators in heart failure [29–34]. Although CITED2, CREB5 (belongs to
CREB family), CREB3L1 (belongs to CREB family), SMARCA4, NCAM1 and SFRP4 were significant
DEGs in our dataset (Supplementary Table S1), only SFRP4 was identified as the significantly activated
transcriptional regulator based on significant activation z-score (absolute z-score > 2.0) from our
IPA analysis (Figure 4). Upstream regulator analysis also identified two additional transcriptional
regulators, TBX5 and F2R (Figure 4). TBX5, a member of the T-box transcription factor family, was the
top inhibited regulator. It has been previously reported that malfunction of TBX5 could lead to several
cardiovascular diseases during embryonic development and also during adulthood [35]. In our study,
inhibition of TBX5 was shown to dysregulate several genes such as DES, NKX2-5, ACTC1, MYH6,
ATP2A2 and HSPB7, which further contributed to ICM-related diseases such as failure of heart and
degeneration of heart (Figure 5). Cardiac muscle functions including cardiac contractility, contractility
of muscle and function of cardiac muscles were also shown to be influenced due to inhibition of TBX5
(Figure 5). Consistent with our finding, TBX5 along with MEF2C has been reported to activate the
expression of MYH6, which is considered as the building block of cardiomyocytes and plays a crucial
role in heart development and function [36]. Moreover, DES expression has also been reported to
be regulated by TBX5 [37] and a decreased number of DES-positive myocytes has been found in
ischemic heart failure and was associated with reduced cardiac function [38]. Our study also found
that dysregulated TBX5 could inhibit the expression of ATP2A2 (Figure 5), an ATPase enzyme that
plays an important role in muscle contraction and relaxation, and decreased ATP2A2 has also been
observed during human end-stage heart failure [39,40]. TBX5-regulated NKX2-5 is involved in heart
formation and development and dysregulated NKX2-5 could lead to heart failure and sudden cardiac
death [37,41]. Therefore, our results demonstrate a strong association of TBX5 with heart diseases and
further propose its important transcriptional regulatory role in the development of ICM for future
mechanistic studies.

F2R and SFRP4 were identified as significantly activated upstream regulators mediating multiple
HF-related genes (Figures 2 and 4). SFRP4, secreted frizzled-related protein 4, is a member of the SFRPs
family, functioning as soluble modulators in Wnt signaling [20]. Increased SFRP4 has been reported
in patients with coronary heart disease and DCM [34,42]. Several SFRP4-targeted genes, such as
MYH6, MYH7, TNNT2 and NKX2-5, contributed to different types of heart diseases [22,41,43,44]. F2R,
coagulation factor II receptor, is a member of the G-protein coupled receptor family and it is important
for regulating the thrombotic response [20]. Genetics variants in F2R have been reported to influence
the risk of myocardial infarction and coronary heart disease [45,46]. In our study, activation of F2R was
indicated to cause overexpression of several genes, including CCN2, CCND1, CDH11, CASP4, EGR1,
MMP2 and PLAT, in the ICM group (Figure 4B). Activation of SFRP4 and F2R also upregulated CCND1
(Figure 4D), which was involved in EIF2 Signaling and Senescence Pathways (Supplementary Table S2).
CCND1 (Cyclin D1) has been reported to promote cardiomyocyte division in vivo and regulate cardiac
function responding to heart failure in a rat myocardial infarction model [47]. Besides TBX5, our
study identified F2R and SFRP4 as two important activated transcriptional regulators involved in the
development of ICM-related cardiac dysfunctions.

In conclusion, our study, which is the first RNA-seq meta-analysis in the field of clinical ICM,
identified multiple novel dysregulated genes and three key transcriptional regulators involved
in the development of ischemic cardiomyopathy and its associated cardiovascular diseases. The
three transcriptional regulators could be further examined as potential biomarkers for simultaneous
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regulation of multiple ICM-involved genes to develop novel diagnostic and therapeutic strategies in
ischemic heart failure.

4. Materials and Methods

Table 1 summarizes four RNA-seq studies of ICM using tissue samples from human left ventricle,
found in NCBI GEO [48] database (https://www.ncbi.nlm.nih.gov/geo/). Further, we did not include
the datasets if they were not collected using the Illumina sequencing platform or they were collected in
patients with any treatment of a specific drug or medically implanted device. The clinical information
of ICM patients and their controls has been described in Study_1 [49], Study_2 [50], Study_3 [51] and
Study_4 [14]. RNA-seq analyses of these four individual studies were previously published [49,50,52,53],
thus all four individual datasets have been validated for our current meta-analysis. Detailed information
of the data processing and bioinformatics analysis has been described in our recently published
paper [32] and is shown in Figure 6. Briefly, FASTQ files were downloaded from the European
Nucleotide Archive website (https://www.ebi.ac.uk/ena). Quality control for raw reads and trimmed
reads was performed using FastQC [54]. Adaptors and low-quality bases (Phred quality score < 10)
were filtered using Cutadapt [55]. A pipeline of HISAT2 [56], Samtools [57] and HTSeq-count [58] was
used for aligning the trimmed reads to the human reference genome (GRCh38) and quantifying gene
expression. Only uniquely mapped reads were used for expression quantification.
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DESeq2 [59] was used to perform differential expression analysis. Genes with low read counts
were filtered with default parameters in DESeq2. Quantitative meta-analysis was performed through
Fisher’s combined probability test [60] using metaRNASeq [9]. Raw p-values were adjusted by the
Benjamini–Hochberg false discovery rate (FDR) method and the adjusted p-values less than 0.05 were
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considered as statistically significant. Only DEGs with consistent expression directions among the four
individual studies were included in the final DEGs list.

To identify enriched canonical pathways, toxicity functions (IPA-Tox) and upstream transcriptional
regulators, the Ingenuity Pathway Analysis software (IPA, Qiagen, Redwood City, CA, USA) [61] was
used to analyze DEGs identified by meta-analysis. VennDiagram [62] in R was used to generate a Venn
diagram of common DEGs among the meta-analysis and individual studies. A heatmap of the DEGs
identified by meta-analysis was generated using the heatmap.2 function from the gplots package in
R [63]. The compute-intensive tasks were performed using Ohio Supercomputer Center [64].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/10/
3472/s1, Table S1: A complete list of differential expressed genes identified in meta-analysis; Table S2: Significant
canonical pathways with absolute z-score > 2.0 and their involved genes; Table S3: Differentially expressed
upstream regulators and their targeted genes.
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