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The farnesoid X receptor (FXR) and C/EBP homologous protein (CHOP) have

critical functions in hepatic lipid metabolism. Here, we aimed to explore a

potential relationship between FXR and CHOP. We fed wild-type (WT) and

FXR KO mice a MCD diet (model of steatohepatitis) and found that Chop

mRNA expression is upregulated in WT but not FXR KO mice. The absence of

FXR aggravates hepatic inflammation after MCD feeding. In HepG2 cells, we

found that Chop expression is regulated in a FXR/Retinoid X receptor (RXR)-

dependent manner. We identified a FXR/RXR-binding site in the human

CHOP promoter, demonstrating a highly conserved regulatory pathway. Our

study shows that FXR/RXR regulates Chop expression in a mouse model of

steatohepatitis, providing novel insights into pathogenesis of this disorder.
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Nonalcoholic fatty liver disease (NAFLD) is the hep-

atic manifestation of the metabolic syndrome and is

the most common liver disease in the Western coun-

tries. More than 40% of the general population and

75% of obese individuals suffer from NAFLD [1,2].

Adipocytes have the capacity to store excess free fatty

acid (FA) as triglycerides (TG) [3], while nonadipose

tissue cells such as hepatocytes have very limited

capacity to store excess lipids. If the cellular FA

buffering capacity is reached (or exceeded), the

increased amount of free FAs (FFA) can become cyto-

toxic in a series of events called lipotoxicity [4,5].

Therefore, the balance between FA synthesis, TG for-

mation, and secretion is the pivotal key for proper

lipid homeostasis. The nuclear bile acid (BA) receptor

farnesoid X receptor (FXR) has a central role in the

control of hepatic BA, lipid and glucose metabolism

[6] as well as inflammation [7,8]. As such, FXR nega-

tively regulates de novo lipogenesis and subsequently

TG formation by suppressing the lipogenic master reg-

ulator Srebp1c [9]. Interestingly, C/EBP homologous

protein (CHOP) also represses (via the transcription

factor C/ebpa) metabolic genes involved in hepatic

lipid metabolism such as de novo lipogenesis and FAs

oxidation [10]. Mice with targeted disruption of the

Chop gene are more susceptible to (fatty) liver injury

reflected by increased steatosis, inflammation and

fibrosis development after high-fat diet feeding [11],

suggesting a potential role of CHOP in NAFLD devel-

opment and progression towards more severe stages of

disease such as nonalcoholic steatohepatitis (NASH).

However, whether there is a relationship between FXR
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and CHOP in counteracting development from simple

steatosis to steatohepatitis needs to be determined.

Therefore, we aimed to explore a potential regulatory

link between FXR and CHOP.

Material and methods

Animal experiments and diet

Age-matched C57BL/6 WT and FXR KO mice were kindly

provided by Dr. FJ Gonzalez and housed with a 12 : 12 h

light/dark cycle with water and a methionine choline-defi-

cient (MCD) diet for 5 weeks. Experimental protocols were

approved by the local Animal Care and Use Committee

according to criteria outlined in the Guide for the Care and

Use of Laboratory Animals prepared by US National

Academy of Sciences (National Institutes of Health publi-

cation 86e23, revised 1985). Control and MCD diet was

obtained from SAFE diets (Scientific Animal Food & Engi-

neering, Strasbourg, France).

Cell culture experiments

HepG2 cells (LGC standard, Wesel, Germany) were grown in

Dulbecco’s modified Eagle medium (DMEM) supplemented

with 10% fetal calf serum, 1% streptomycin/penicillin, sodium

pyruvate, glutamine, and nonessential amino acids (PAA) at

37 °C in a humidified 5% CO2 atmosphere. The medium was

changed every 48 h. HepG2 cells were treated with low

(5 mM) and high levels (25 mM) of glucose with or without

chenodeoxycholic acid (CDCA) (Sigma-Aldrich, Vienna, Aus-

tria) as well as with or without 9-cis retinoic acid at the indi-

cated concentrations for 12 h in the absence of serum.

Routine serum biochemistry

Blood was collected at harvesting and centrifuged for

20 min at 300 g. Serum was stored at �80 °C until analy-

sis. Assays for alanine aminotransferase, alkaline phos-

phatase, cholesterol and triglycerides were routinely

measured, whereas serum bile acid (BA) concentration was

determined by using Bile Acid Kit (Ecoline S+ from DiaSys

Diagnostic Systems GmbH, Holzheim, Germany) on a

cobas analyser (Roche Diagnostics, Mannheim, Germany).

Lipoprotein subfractions were determined by quantitative

agarose gel electrophoresis (Helena Biosciences, Gateshead,

UK). Glucose levels were assessed with an ACCU-Check

Active analyzer (Roche, Mannheim Germany).

Hepatic triglyceride analysis

Total lipids were extracted from frozen liver tissue

(100 mg) homogenates with chloroform/methanol/glacial

acetic acid (66 : 33 : 1, v/v), and phase separation was

achieved by the addition of water. Dried lipids were redis-

solved in 1% (v/v) Triton X-100, and TG content was mea-

sured using the reagent for quantitative TG measurement

(DiaSys, Holzheim, Germany).

Histology

The H&E staining as well as F4/80 immunohistochemistry

(IHC) was assessed as described previously [12].

Messenger RNA analysis and Polymerase Chain

Reaction (PCR)

RNA isolation, complementary DNA synthesis, and real-

time PCR were performed as described previously [13]. All

data were normalized to 36b4 or 18sRNA. Oligonucleotide

sequences are available upon request.

Chromatin immunoprecipitation

Chromatin immunoprecipitation kit was achieved from

Epigentek Group Inc. (D-69120 Heidelberg, Germany) and

used according to the manufacturer’s instructions.

For immunoprecipitation Antibodies for farnesoid X

receptor (FXR) (sc-1204; Santa Cruz Biotechnology,INC.)

and retinoic X receptor alpha (RXRa) (sc-553; Santa Cruz

biotechnology;D-69115 Heidelberg, Germany) were used.

Statistical analysis

Animal studies were evaluated using SPSS V.18.0. Statisti-

cal analysis was performed using Kruskal–Wallis followed

by Mann–Whitney test. Data are reported as means of four

to six animals per group �SD. A P value ≤0.05 was consid-

ered significant.

Results

MCD feeding induces steatosis independent of

FXR

C57BL/6 WT and FXR KO mice were subjected to

MCD feeding for 5 weeks as a model of steatohepatitis.

A drop in body weight was seen in mice fed MCD diet,

independent of the genotype (Fig. S1). Serum levels of

liver transaminases (ALT and AST) as well as alkaline

phosphatase (AP) and bile acids (BAs) were increased by

MCD feeding, independent of the genotype (Fig. 1A).

Total cholesterol as well as free fatty acid (FFA) levels

were reduced by MCD diet with a more pronounced

reduction in WT mice (Fig. 1A). Serum glucose levels

were decreased to the same extent in both WT and FXR

KOmice upon dietary challenge (Fig. 1A).
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The H&E staining demonstrated MCD-induced

steatosis reflected by increased amounts of hepatic lipid

droplets in both WT as well as FXR KO mice following

MCD feeding (Fig. 1B). In line, biochemical quantifica-

tion of hepatic TGs revealed no significant differences

between WT and FXR KO MCD-fed mice (Fig. 1C).

This observation is underlined by similar reductions of

peroxisome proliferator-activated protein alpha (Ppara)
and acyl CoA oxidase (Acox) mRNA expression as indi-

cators of impaired b oxidation in WT and FXR KO

MCD-fed mice (Fig. S2A). Similarely, de novo lipogene-

sis was repressed under MCD feeding to similar degrees

in WT and FXR KO mice as demonstrated by reduced

mRNA expression levels of sterol response element-

binding protein 1 c (Srebp1c) and its downstream target

fatty acid synthase (FasN) (Fig. S2B). Decreased

de novo lipogenesis in the MCD-fed animals may also

explain the relatively minor degree of evident steatosis

development in these mice.

Absence of FXR aggravates inflammation due to

MCD feeding

Since in addition to steatosis, inflammation is a key

hallmark of steatohepatitis, we next investigated

inflammatory parameters such as tumor necrosis factor

alpha (Tnfa), F4/80, monocyte chemotactic protein 1

(Mcp1) and interleukin 1b (IL1b). Notably, mRNA

expression levels of all markers were increased in FXR

KO mice after MCD feeding to a higher degree than

in WT mice. Mcp1 and IL1b levels were already signif-

icantly increased in WT mice under MCD feeding.

(Fig. 2A). In line, F4/80 IHC showed increased num-

bers of F4/80 positive cells in MCD fed WT and (to a

higher extent in) FXR KO mice (Fig. 2B).

FXR is not involved in the development of ER

stress and/or apoptosis under MCD feeding

Since inflammation is an important trigger for endo-

plasmatic reticulum (ER) stress and/or apoptosis we

analyzed mRNA expression of key markers of ER

stress (glucose-regulated protein 78—Grp78, ER DNA

J domain-containing protein 4—ErDj4, Chop) and

apoptosis (Bcl2-associated agonist of cell death—Bad,

Chop). Interestingly, expression levels of Grp78,

ErDj4, and Bad did not differ between MCD fed ani-

mals and control mice, whereas Chop was higher

expressed in WT MCD-fed mice in comparison to

FXR KO MCD mice and WT Ctrl mice (Fig. 3).
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Fig. 1. Increased liver injury due to MCD feeding. (A) WT and FXR KO mice fed a MCD diet for 5 weeks showed increased serum levels of

AST, AP, ALT, and bile acids. Total cholesterol and glucose levels were decreased in the presence of MCD independent of the genotype.

Serum TG levels were decreased in MCD fed WT mice and not affected in challenged FXR KO mice compared with the corresponding

control groups. a indicates a significant difference from untreated WT mice (Ctrl); b indicates a significant difference from untreated FXR KO

mice; c indicates a significant difference from treated FXR KO mice; P < 0.05. (B) H&E stainings reflect increased steatosis after MCD

feeding in both, WT and FXR KO mice. (C) Quantitation of hepatic TGs revealed no difference between MCD-fed WT and FXR KO mice.

(N = 4 mice per group).
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Bile acids and low glucose coordinately regulate

Chop mRNA expression in HepG2 cells via FXR

and RXR

To mimic the in vivo situation in mice under MCD

diet, exhibiting low levels of glucose and high levels of

BAs, HepG2 cells were treated with low and (high)

dose of glucose and chenodeoxycholic acid (CDCA).

This in vitro model system was used to understand

whether and how BA-activated FXR regulate CHOP

expression. Interestingly, CHOP mRNA levels were

increased by CDCA incubation in normal glucose con-

centrations (5 mM), an effect which was lost at high

glucose concentrations (25 mM) (Fig. 4A).

Farnesoid X receptor is known to form either

monomer or heterodimer retinoid X receptor alpha

(RXRa). To determine whether FXR acts as a hetero-

dimer, we incubated HepG2 cells with the highly speci-

fic RXRa agonist 9-cis retinoic acid (9-cisRA). As

shown in Fig. 4B, RXRa activation under normal glu-

cose levels (5 mM) clearly increased Chop mRNA

expression; this effect was even stronger in the pres-

ence of CDCA (Fig. 4B). In line, C/ebpa expression

was reduced under RXRa-activated conditions

(Fig. 4B). Together, these data support the concept

that FXR and RXR are required to regulate Chop

expression in normal glucose conditions. Next, to

determine whether FXR regulates Chop expression at

the transcriptional level, we pretreated cells with Acti-

nomycin D (ActD), a polymerase inhibitor, and then

incubated in normal glucose condition with CDCA.

As shown in Figure 4C, ActD massively reduced Chop
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Fig. 2. Absence of FXR results in aggravation of hepatic inflammation. (A) Real-time PCR was used to assess mRNA levels of inflammatory

markers F4/80, Tnfa, Mcp1, and IL1b. Expression levels of inflammatory markers were increased by MCD feeding in WT and FXR KO mice

(but to a bigger extent in FXR KO mice). a indicates a significant difference from untreated WT mice (Ctrl); b indicates a significant

difference from untreated FXR KO mice; c indicates a significant difference from treated FXR KO mice; P < 0.05. (B) F4/80

immunohistochemistry showed increased number of F4/80-positive cells in FXR KO mice compared WT mice under MCD feeding.
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induction mediated by CDCA, suggesting that FXR

regulates Chop expression mainly at the transcriptional

level.

In order to understand whether FXR directly regu-

lates Chop expression, we pretreated HepG2 cells with

cycloheximide (CHX), (a drug inhibiting protein

neosynthesis), and incubated the cells in normal glu-

cose condition with CDCA. CHX massively reduced

Chop induction by CDCA, indicating that Chop regu-

lation by FXR did not require de novo protein synthe-

sis (Fig. 4C).

Finally, in silico analysis revealed a bona fide FXR

response element in the proximal human Chop

promoter. We therefore performed a chromatin

immunoprecipitation against FXR and RXR followed

by real-time quantitative PCR (Fig. 4D). In control

cells, FXR is weakly bound to the site (Ct value of

28,78), whereas RXR is highly present (Ct value of

19,02). After CDCA incubation in normal glucose con-

ditions HepG2 cells incubated with CDCA showed a

drastic increase in FXR protein bound to the site (Ct

value of 22,47), whereas RXR binding was only mod-

estly lowered (Ct value of 19,47). These data suggest

that CDCA incubation under normal glucose condi-

tions (5 mM), results in replacement of FXR homod-

imer by a FXR/RXR heterodimer on the FXR

response element in the Chop promoter. These findings

could indicate a direct mechanistic link between FXR

and Chop signaling, possibly interfering with the

inflammatory response which was aggravated in FXR

KO mice under MCD diet.

Discussion

In this study, we examined the relationship between

FXR and CHOP in steatohepatitis. To this purpose,

we used a methionine choline-deficient (MCD) dietary

model which has been used in previous studies by

others to induce steatohepatitis and fibrosis in rodents

[14–19]. Although several short comings such as weight

loss, lack of insulin resistance, and obesity in this

model need to be acknowledged [20,21], MCD diet is

increasingly used to study the hepatic features of the

more severe stages of NAFLD such as inflammation

and oxidative stress in mice [22]. Moreover, it has been

demonstrated that loss of methionine and choline

makes human more susceptible to develop fatty liver

[23,24]. Methionine is an intermediate in S-Adenosyl-

methionine as well as in glutathione synthesis. Both

proteins are important antioxidants [25], therefore

methionine deficiency predisposes to oxidative stress,

inflammation, and fibrosis [26]. The finding that WT
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Fig. 3. MCD feeding does not induce ER stress and/or apoptosis in WT and FXR KO mice. Real-time PCR was used to assess mRNA levels

of ER stress and apoptotic markers ERdJ4, Grp78, Bad, and Chop. Chop mRNA levels were increased in WT mice upon MCD feeding

exclusively. Expression levels of ERdJ4, Grp78, and Bad did not change due to diet feeding in both, WT and FXR KO mice. a indicates a

significant difference from untreated WT mice (Ctrl); b indicates a significant difference from untreated FXR KO mice; c indicates a

significant difference from treated FXR KO mice; P < 0.05.
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mice develop only moderate inflammation and no

signs of ER stress (Fig. 2 and 3) may result from a

variety of reasons including differences between mouse

strains, diet, and housing conditions, factors which can

result in changes of gut microbiota, known to have

critical function in development of NAFLD/NASH

[27]. Of note, an absent unfolded protein response the

“classical” ER stress signaling cascade in response to

MCD feeding, was also reported by others [28].

Since Chop KO mice fed a MCD diet are prone to

development of inflammation, reduced mRNA expres-

sion of Chop in FXR KO mice fed a MCD diet

uncovered by this study may contribute to the aggra-

vation of inflammation. Loss of Chop results in

decreased cell death of activated macrophages,

resulting in their accumulation in the liver [11]. More-

over, anti-inflammatory effects of FXR via NFjB may

be relevant for this observation [7]. In line, inflamma-

tory markers F4/80, Tnfa, Mcp1 and Il1b were

increased in FXR KO MCD-fed mice (Fig. 2A). Fur-

thermore, our in vitro studies in HepG2 cells showed a

role of FXR in regulating Chop during low glucose

and high bile acid conditions (mimicking the in vivo

conditions under MCD diet), suggesting a beneficial

effect of FXR—Chop signaling in hepatocytes possibly

by interfering with cytokine secretion [29] and subse-

quently reduced recruitment and activation, of inflam-

matory cells (implicating an indirect effect on

preventing inflammation). Since FXR is highly

expressed in hepatocytes and only moderately
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expressed in Kupffer cells [30], the situation in hepato-

cytes (compared to macrophages) might be more rele-

vant to the overall situation seen in the liver. However,

further studies have to specify whether there is a direct

anti-inflammatory effect of FXR—Chop signaling in

macrophages. The observation that the FXR—Chop

signaling axis may have anti-inflammatory properties

only under low/normal glucose level emphasizes the

importance of the strict diabetic management in patients

with NAFLD, especially in those receiving FXR ago-

nists. Beneficial FXR effects could be much more pro-

nounced in patients with normal glucose levels.

Treatment with 9-cis retinoic acid as an agonist for

retinoic X receptor (RXR) demonstrate that RXR is

also involved in the regulation of Chop mRNA expres-

sion (Fig. 4B). Furthermore, our in vitro studies reveal

that the regulation of Chop via FXR and RXR may

occur indirectly at a transcriptional level (Fig. 4C) and

the two transcription factors need to be available as

proteins (Fig. 4D). Overall, our data suggest that

under conditions mimicking MCD diet-induced liver

injury (low glucose, high bile acids) FXR together with

RXR activate Chop mRNA expression and subsequent

inhibition of C/ebpa, which may explain suppression

of Srebp1c levels in MCD fed WT mice.

Despite observations by Watanabe and coworkers

suggesting that BA-activated FXR counteracts hep-

atic TG accumulation [9] via Srebp1c downregula-

tion, we observed a marked increase in hepatic lipid

accumulation in WT MCD fed mice despite a clear

reduction in Srebp1c mRNA levels compared with

FXR KO MCD-fed mice. Lipid accumulation may

result from increased FA flux from adipose tissue to

the liver, seen in MCD-fed mice [20] in synergy with

reduced VLDL synthesis and secretion [31]. In line

with reported findings in the literature, WT MCD-

fed mice showed low serum VLDL levels (data not

shown) [32]. In addition to the reduced hepatic

VLDL secretion due to low levels of phosphatidyl-

choline [32], it is attractive to speculate whether the

increased expression of VLDL receptor found in WT

MCD-fed mice (data not shown) may result in hep-

atic lipoprotein reuptake contributing to hepatic TG

accumulation. Furthermore, it has to be mentioned

that the inhibitory effect of activated FXR on

Srebp1c expression shown by Watanabe et al. [9]

seems to be an acute response to increased BA levels

since after 7 days of cholic acid (CA) feeding

mRNA levels of Srebp1c and its downstream targets

FasN and Scd1 returned to normal [9]. Therefore,

we propose that in our MCD-fed mouse model,

Srebp1c expression may be reduced due to the

Chop-induced inhibition of C/ebpa.

In conclusion, this study identifies FXR as a regula-

tor of Chop (under MCD conditions), which amelio-

rates inflammation and subsequently progression of

fatty liver disease from the benign stage of steatosis to

the more severe steps such as steatohepatitis implicat-

ing a potential role of Chop as pharmacological tar-

get.
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Supporting information

Additional Supporting Information may be found

online in the supporting information tab for this arti-

cle:
Fig. S1. MCD feeding leads to reduction in body-

weight. In both, WT and FXR KO mice, MCD feed-

ing over the period of 5 weeks results in bodyweight

reduction. * indicates a significant difference from

untreated WT mice, # indicates a significant difference

from untreated FXR KO mice; P < 0.05.

Fig. S2. Impaired de novo lipogenesis and b-oxidation

in WT and FXR KO mice-fed MCD diet. (A) mRNA

levels of Ppara and Acox were downregulated in bot,

WT and FXR KO mice fed a MCD diet for 5 weeks

(B) mRNA levels of Srebp1c and FasN were reduced

by MCD feeding in both WT and FXR KO mice

upon MCD feeding. a indicates a significant difference

from of untreated WT mice (Ctrl); b indicates a signifi-

cant difference from untreated FXR KO mice; c indi-

cates a significant difference from treated FXR KO

mice; P < 0.05.
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