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Abstract: Glass ionomer cements and resin-based composites are promising materials in restorative
dentistry. However, their limited mechanical properties and the risk of bulk/marginal fracture
compromise their lifespan. Intensive research has been conducted to understand and develop new
materials that can mimic the functional behavior of the oral cavity. Nanotechnological approaches
have emerged to treat oral infections and become a part of scaffolds for tissue regeneration. Carbon
nanotubes are promising materials to create multifunctional platforms for dental applications. This
review provides a comprehensive survey of and information on the status of this state-of-the-art
technology and describes the development of glass ionomers reinforced with carbon nanotubes
possessing improved mechanical properties. The applications of carbon nanotubes in drug delivery
and tissue engineering for healing infections and lesions of the oral cavity are also described. The
review concludes with a summary of the current status and presents a vision of future applications
of carbon nanotubes in the practice of dentistry.

Keywords: carbon nanotubes; glass ionomer cements; dental restorations; tissue engineering; drug
delivery systems

1. Introduction

The profound scientific, technological, and engineering impacts of the Fourth Indus-
trial Revolution, also referred to as “Industry 4.0”, are being experienced across many
aspects of society [1]. One series of outcomes relates to the dramatic changes occurring in
the creation and conduct of research, with significant growth appearing in completely new
areas, and the development of innovative research initiatives in underexplored areas to
address specific societal and healthcare needs [2]. This ongoing evolutionary process is
shifting many facets of human practices into a new era: the era of nanotechnology, the art
and science of materials engineering at a scale of less than 100 nm [3]. “Nano” is a prefix
derived from the ancient Greek word “nános”, which means “dwarf”. It refers to 1 billionth
part of a particular physical size. Therefore, one nanometer represents 1 billionth (1 × 10−9)
of a meter [4]. In the past 15 years, research on nanotechnology has revolutionized many
diverse medical and dental research outcomes by seeking new strategies and more effective
ways to apply the principles of bioengineering, cell-transplantation, and drug delivery
to construct biological substitutes to maintain and restore the functions of diseased and
compromised tissues [5].

The many applications of nanotechnology have led to significant improvements in
healthcare in general medicine and in dentistry in particular. One aspect that has en-
couraged new advances in dentistry is the development and utilization of innovative
nanomaterials in oral health practices [6]. As an example, biomimetic nanotechnology em-
ulates the structure of dental enamel and the surrounding tissues to promote and achieve
remineralization. The remineralization process focuses on restoring the amelogenin-based
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peptides, together with hydroxyapatite, to recover the hardness of the tooth [7]. These
improvements in dentistry are represented by the development of a toothpaste comprising
nanosized carbonate apatite, which effectively seals dentin tubules, promoting the man-
agement of dental sensitivity [8]. The aims of nanotechnology are to analyze structures,
understand the physical properties, and create functional constructs through direct action
on the existing framework [9]. Similar to nanomedicine, the use of nanotechnology in
dentistry, known as “nanodentistry”, promotes the achievement of near-optimum oral
health through the use of nanomaterials (including in tissue engineering and drug delivery
systems) as integral approaches to dental restorations [10].

The aim of this review is to present relevant aspects regarding the use of nanotech-
nology in the development of dental restorative materials such as glass ionomer cements
(GICs), and to discuss the influence of carbon nanotubes in drug delivery systems and
tissue engineering for dental applications currently and in the future.

2. Carbon Nanotubes in Dentistry

Of all the elements in nature, carbon has the unique ability to exist in several dif-
ferent forms and structures, from carbon black to diamonds, with the resulting diverse
applications. One of these scaffolds is the formation of nanotubes [11].

2.1. Characteristics of Carbon Nanotubes

Carbon nanotubes (CNTs) comprise a hollow, cylindrical structure of a hexagonal
network of carbon atoms, measuring from several nanometers to a few microns. Various
forms of this material can be produced using different techniques, including electric arc
discharge, laser ablation, catalytic decomposition of hydrocarbons, electrolysis, synthesis
from bulk polymers, and low-temperature solid pyrolysis, among others [12]. Carbon
atoms in nanotubes are exclusively sp2-hybridized and are arranged in a hexagonal lattice.
The resulting material has a high surface area, a small diameter, and high curvature. These
characteristics contribute to their many unique properties through van der Walls, π-π
stacking, and hydrophobic interactions. CNTs can be modified to increase solubility and
modulate the inclusion of functional groups for specific biomedical applications [13].

In the past two decades, significant research has examined the development and ap-
plication of carbon nanotubes in dentistry due to the mechanical (among other) properties
that they exhibit. In this aspect, they are excellent candidates to act as a reinforcement for
dental materials, for use as scaffolds, and for targeted drug delivery systems [14]. The
ability to modulate these properties enhances the utility and the clinical performance of
the nanocomposite material.

Despite these positive attributes, there is a limit to the loading of CNTs that can be
added as a filler or reinforcement to polymers or other materials. This phenomenon occurs
because of the agglomeration of CNTs. This is a major challenge in their use and is usually
addressed through chemical functionalization which increases dispersion of CNTs and
consequently leads to lower agglomeration. This effectively provides a higher loading
capacity for the matrix, with benefits regarding the enhanced mechanical properties of the
final composite [15]. Loading optimization for CNTs in the composite matrix is carried out
with the aim of maximizing the efficiency of stress transfer to the matrix interface of the
CNT. Variables such as interfacial stress transfer, aspect ratio, dispersion, and alignment, as
well as the type of synthesis, modulate the effectiveness of the reinforcement [16].

2.2. Single-Wall and Multiple-Wall Carbon Nanotubes

Both single- and multi-walled CNTs are available. Single-walled carbon nanotubes
(SWCNTs) have a diameter between 0.4 and 2 nm, while that of multi-walled carbon
nanotubes (MWCNTs) can vary between 2 and 100 nm. Lengths can extend to several
millimeters long, a characteristic which depends entirely on the method of synthesis [17].
Figure 1 shows the respective arrangements of the carbon atoms in SWCNTs and MWCNTs.
The angle of graphene rolling produces carbon nanotubes in three different formats: the
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achiral chair type (two sides of the hexagon oriented perpendicular to the axis of the CNT),
the achiral zigzag type (two sides of the hexagon oriented parallel the axis of the CNT),
and the chiral type (any pair of sides of the hexagon oriented at an angle different from
0 or 90◦ to the axis of the CNT). The different synthetic approaches do not mitigate the
prevalent possibility of defects appearing in the nanotubes, such as Stone–Wales defects
(90◦ change in π-π orientation), a pair of 5–7 rings, sp3-hybridized defects, and vacancies
(absence of a carbon atom in the six membered rings) [18].
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2.3. Applications of Carbon Nanotubes in Dentistry

The specific applications of CNTs and their versatility depend on their individual
properties, including morphology, size, and arrangement. In consequence, MWCNTs have
emerged as promising candidates for delivery systems due to the high loading capacity pro-
vided by their greater surface area and their ability to interact with cellular membranes [19].
Additionally, their excellent mechanical and electrical properties indicate them as good
candidates for use as fillers and as osteogenic scaffolds for bone proliferation and bone
formation [20]. Indeed, carbon nanotubes used as fillers exhibited good performance in
reinforcement at concentrations of 10 vol%, due to the load transfer on the interfacial
bonding of the reinforced material and the CNTs [21].

The utilization of endogenous bioactive materials stimulates a diversity of biological
interactions and elicits a cascade of responses from the living tissue [22]. To be effective in
the oral cavity, a bioactive material must show characteristics which embrace the control
of microbial infection, the strengthening of teeth, and have bio-promoting effects. These
include control of inflammation, remineralization of teeth, and/or promotion of tissue
regeneration [23]. In dentistry, these exogenous materials can be used in permanent
restorations, for example as pulp-capping materials, for dentinal tubule occlusion, for
scaffolding, and to promote tooth remineralization [24]. One example of bioactivity is
the remineralization of initial caries lesions, where the dentin and enamel beneath the
restoration can benefit significantly from the promotion of biomineralization, providing
adhesion is not compromised [25].

3. Dental Restorative Materials

The lifespan of dental restorations is limited and inherently depends on different
factors, including the type of dentition (primary or permanent teeth), size, site, function
of the restoration, and the composition of the dental material [26]. With recent scientific
advances and an enhanced understanding of the caries process, minimal intervention
procedures are performed to maintain the majority of the natural tissue, thereby providing
increased life expectancy of the restoration [27].
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One of the most important goals in contemporary dentistry is to reduce the failure rate
of dental restorations due to bulk/marginal fractures and ameliorate the risk of secondary
caries, thereby minimizing the need for a replacement restoration, with the consequent
further destruction of tooth tissues [28]. Secondary caries represents one of the main issues
leading to the accumulation of biofilm and consequently restoration failure [29]. Some
authors claim that the rate of secondary caries in dental restorations may be as high as
50–60% due to the lack of resistance and adhesion of the dental material to tooth tissues,
producing microleakage and promoting a high level of deleterious microbial activity [30].

Several materials have been introduced in dentistry as fillers and restorative materials
to improve the treatment of both carious and non-carious lesions. With the evolution of
dentistry and the emphasis on personal oral care practices, patients have a greater desire to
maintain their natural teeth, which leads to an increase in the rate of dental restorations [31].
Restorative dental materials must embrace three fundamental characteristics to deal with
tissue failure: (i) adhesion to the tooth tissues, (ii) appropriate mechanical properties,
similar to dentin and enamel, and (iii) a wide range of color options [32]. New synthetic
materials must overcome the challenge of the continuously moist environment of the oral
cavity, and must withstand the effects of masticatory forces, variation of temperature, pH,
microbial and enzymatic attacks, and be resistant to color changes from the exogenous
materials present in foods (chlorophylls, anthocyanins, carotenoids, synthetic dyes, etc.).
Bite forces may vary depending on the tooth location and the particular individual, for
which values are in the range of 100 to 500 Newtons [33,34].

Traditionally, dental amalgam has been used for dental restoration [35]. This material
is formed through the reaction of a powdered alloy, composed of silver, tin, and copper,
with mercury. The resulting malleable mass is used as a dental restorative. Despite its
history of use in the restoration of posterior teeth, this material suffers from several negative
characteristics. The most important one is that this material does not adhere to the dental
tissues and requires the sacrifice of caries-free tissue to provide the required mechanical
retention [36]. Toxicity for humans, the potential for environmental contamination, and
esthetic issues have increased concerns with the continued use of this material, leading to
research developments for alternative restorative materials [37]. Ceramic materials have
found wide use in restorative dentistry and are classified into three groups: glass-matrix
ceramics, polycrystalline ceramics, and resin-matrix ceramics (Figure 2), as proposed by
Gracis et al. [38].
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In addition to these materials, there are several dental restorative materials which
employ resin composites. These were developed to replace lost or decayed tooth structure,
attending to demands for better esthetic appearance and minimizing the hazards of using
mercury in dental amalgams. Although these resin-based composites are widely used
for restorations due to their color similarity to natural teeth, and for cavities subjected to
low level stress [39–41], their use is limited due to issues with mechanical strength, wear
resistance, polymerization shrinkage, and color stability. The main benefit in comparison
with other materials is the cost of the preparation, which makes them more affordable for
patients [42].

3.1. Characteristics of Glass Ionomer Cements

Glass ionomer cements (GICs) are dental materials that display attractive properties
for use as restorative and luting materials. They were introduced in 1972 by Wilson and
Kent as a “new translucent dental filling material” and consist of three basic components:
a polymeric water-soluble acid, a basic (ion-leachable) glass, and water [14]. This type
of material produces different properties from a powdered fluoroaminosilicate, such as
strength, rigidity, and fluoride release. It also takes advantage of the biocompatibility
and adhesive characteristics of the polyalkenoic acid component [38,42]. Glass ionomer
cements can be classified as shown in Table 1.

Table 1. Classification and characteristics of the glass ionomer cements.

Classification Characteristics and Use Reference

Type I
Luting cements with low fill thickness and rapid setting. Used for

the cementation of inlays, crowns, fixed partial dentures, and
orthodontic appliances.

[43]

Type II Restorations with particles larger than Type I. [43]

Type II-1 Considered as esthetic cements available for conventional and
resin-modified presentations. [43]

Type II-2 Reinforced cement for esthetic applications. [43]

Type III Lining cements and fissure sealants with low viscosity and
rapid setting. [43]

Based on composition Derived from an organic acid and a glass component referred to as
acid-base reaction cements. [44]

Resin-modified GICs Contains an ion-leachable glass, a water-soluble polymeric acid, an
organic monomer, and an initiator system. [45]

Polyacid-modified composite resin Light-polymerized composite resin restoratives with ion-leachable
glass particles and an anhydrous polyalkenoic acid. [46]

Metal-reinforced GICs
Mixture of a conventional powder with the addition of a range of

metallic powders, such as silver alloys, gold, palladium, and
titanium dioxide.

[47]

High-viscosity GICs Have a high powder–liquid ratio and fast setting properties. [48]

Zirconia-reinforced GICs Contain zirconium oxide, glass powder, tartaric acid (1–10%),
polyacrylic acid (20–50%), and deionized water. [49]

Glass ionomer cements (GICs) are formed as the result of an acid–base reaction.
The acid attacks and degrades the alumina-silicate glass, releasing cations of calcium
and aluminum. Chelation of cations occurs between the carboxylate groups and the
polyalkenoic acid chains form a cross-linked structure (Figure 3) [14].

The mechanical resistance of the GIC material is a key factor to provide good per-
formance of restoration for the patient. This requires consideration of the composition
and mechanical properties of the natural tooth since enamel and dentin have different
mechanical properties (Table 2). It was reported that the coefficient of thermal expansion
of GICs is similar to that of human dentin, thereby reducing the possibility of marginal
leakage and restoration failure [50].
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Table 2. Mechanical properties of enamel and dentin. Retrieved from [51].

Tooth Tissue Property Value

Hardness 2.0–3.5 GPa *
Enamel Young’s modulus 80–120 GPa

Fracture toughness 0.67–3.93 MPa m1/2

Hardness 0.3–0.7 GPa
Dentin Young´s modulus 10–40 GPa

Fracture toughness 1.1–2.3 MPa m1/2 **
* GPa indicates gigapascals; ** MPa indicates megapascals. Fracture toughness is expressed in units of stress times
the square root of crack length: MPa m1/2.

3.2. Benefits and Applications of Glass Ionomers in Dental Restorations

Currently, GICs are widely used in several dental applications, including full dental
restorations, fissure sealants, luting agents, liners, and bases, and as endodontic sealers
due their unique properties in comparison with other conventional materials [52]. These
properties include chemical adhesion to enamel and dentin in the presence of wetness, high
biocompatibility, resistance to microleakage, favorable thermal expansion and contraction,
good marginal integrity, fluoride release, and stability at high humidity [53].

The need for replacement restorations typically arises due to the development of
secondary caries at the interface of a restoration and tooth tissue. Bacteria present in the
human oral micro-environment, including Streptococcus mutans, Actinomyces spp., and
Lactobacillus spp., are the main microorganisms responsible for development of dental
biofilm [14]. In addition, inherent surface unevenness of glass ionomers increases the
surface area and provides niches for biofilm formation. GICs are considered to be cariostatic
and antibacterial materials due to fluoride release [28] and their strong bonding to tooth
tissues. However, the physical properties of these materials limit their use for posterior
tooth restoration [54]. An interesting strategy would be to develop dental materials with
selective antimicrobial activity for dominant oral pathogens through the incorporation of
nano-delivered natural compounds derived from plants or microorganisms. This could be
especially impactful for the creation of novel restorative materials.

3.3. Major Drawbacks of Using Glass Ionomers

Even though the glass ionomer cements possess many attractive characteristics, they
present significant disadvantages in practice, including poor hydrolytic stability, low
flexural strength, poor fracture toughness, and limited durability [55]. In addition, there
are clinical limitations, including prolonged setting reaction time, dehydration, and the
rough texture, which can reduce the final mechanical properties of the restoration after
setting [56]. To overcome these clinical constraints and provide enhanced performance
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for the patient, further improvements are required, particularly to enhance mechanical
strength. The use of resin-modified GICs has been proposed as one approach to correct
partially the composition issue, to enhance the physical properties of the material, and to
reduce fluoride ion release. When this release does occur, mineralization of the tissue is
reduced, and the probability of restoration failure is higher [57].

3.4. Nanotechnology in Glass Ionomers

Research for new materials with improved clinical performance has been continuous
and has led to achievements of nanotechnology in dental material manufacturing. These
new materials are established as “nanobiomaterials” and exhibit enhanced properties and
efficiency in comparison with formative bulk materials [58]. To overcome mechanical
and biological constraints of GICs, several nanomaterials, including hydroxyapatite, silica,
zirconia, graphene, and silver nanoparticles, have been incorporated into GICs. Introduc-
tion of nanohydroxyapatite and silica into GICs resulted in improvements in mechanical
properties (hardness and compressive and flexural strength) and maintained a sustained
fluoride release [59]. When alumina/zirconia and hydroxyapatite were added to the GIC,
antibacterial activity and biocompatibility were increased [60]. Among various nanomateri-
als, graphene has been used to reduce biofilm formation and to increase the wear resistance
of dental composites [11].

The influence of multi-walled carbon nanotubes (MWCNTs) in reinforced glass
ionomer cements with respect to their chemical, thermal, and mechanical properties for
specific use as a posterior restorative material was examined by Goyal et al. [61]. Con-
centrations of 0%, 1%, and 2% w/w of MWCNTs were added as a reinforcement agent,
obtaining a dark-colored material, which limits its application only to posterior teeth. An
enhancement of mechanical properties of the material was reported as a hardness increase
from 2.19 MPa to 5.70 MPa with the addition of 2% w/w of MWCNTs. This particular
composition also tolerated higher wear forces better than the other two compositions [61].

The esthetic appearance of restorative materials is very important for all patients and
is why GICs are widely used in the restoration of primary teeth. Color stability tests must
therefore be conducted on new materials to determine if they will meet the requirements of
the individual patient. The incorporation of carbon nanotubes into glass ionomer cements
has led to enhanced color stability profiles compared with other reinforcement materials
such as silver nanoparticles [62]. Based on these considerations of color stability this
material can be used effectively in posterior restorations, especially for primary teeth where
esthetic requirements and color stability are less clinically significant [63].

4. Carbon Nanotubes in Guided Bone Regeneration (GBR)

Currently evolving targets are shifting towards the development of biofunctional
materials which prevent disease and/or actively promote tissue regeneration. In the in-
stance of a bone defect, guided bone regeneration (GBR) is now a widely used technique
which deploys an occlusive membrane to seal the area of the bone defect to physically
prevent the incursion of non-osteogenic cells into defects [64]. This artificial barrier also
serves as a scaffold which fosters osteogenic cells to stimulate bone formation at a higher
rate than the surrounding connective tissue and prevents infection when used in dental
implants. Requirements for an ideal material used in GBR include: (i) biodegradability;
(ii) biocompatibility to promote integration with the tissue and avoid inflammatory re-
sponses; (iii) mechanical strength; and (iv) porosity to be partially occlusive to avoid
epithelial cell flow and fibroblast of the soft tissue, and allow the diffusion of oxygen,
nutrients, and bioactive substances [65].

Innovation of artificial scaffold materials to sustain bone cell proliferation and growth,
and to enhance incrementally or replace bone tissue, is a primary goal in bone bioengi-
neering [66]. In support of this biological and clinical outcome, CNTs have been explored
for the stimulation of bone regeneration and to provide an alternative permanent mechan-
ical function. It was observed that neutrally charged CNTs have the ability to sustain
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both osteoblast proliferation and bone forming functions, and they showed promising
biocompatibility with osteoblast cells [67].

Research studying the effects of the surface functionalization of CNTs in nanocom-
posites for dental implants, such as hydroxyapatite, zirconia, and titanium, has fostered a
greater understanding of the chemical groups that can promote osteoblast proliferation [68].
In addition, carbon nanotubes combined with hydroxyapatite demonstrated cytocompati-
bility, with more than 200% cell viability and compressive strength in the range of 13 to
29 MPa. This combination is considered an attractive bone-filling material [69].

4.1. Mechanical Properties of Nanofiber Polymeric Membranes Reinforced with Carbon Nanotubes

Microcracks in bone are the natural response of the tissue to excessive applied mechan-
ical loads. With the introduction of carbon nanotubes as scaffolds the reinforced bone tissue
is more resistant to the development and growth of fissures due to better load distribution,
dispersal of the crack growth, and a decrease in the stress intensity near the fissure tip [70].
The addition of different functional groups, including amino, phosphate, and carboxylic
acid moieties, can dramatically change the physical, mechanical, and biological properties
of CNTs with respect to bone growth. This functionalization will depend entirely on the
specific needs of the load (drugs, antigens, genes, etc.). Functionalization also assists
in CNT biodegradability through the introduction of structural defects which leads to
the improved intrusion of oxidative enzymes to enhance the degradation of CNTs [71].
Interaction of carbon nanotubes with tissue environment is modulated by tailoring the
functional groups at the surface, as this determines the charge density and the overall net
polarity. The result is that a charged surface obtained through chemical modification may
be more hydrophilic, in contrast to the initial, electrically neutral surface [68].

The use of CNTs as fillers in the reinforcement of scaffold materials is affected by
four parameters: (i) their extent of dispersion in the matrix, (ii) their aspect ratio, (iii) their
alignment, and (iv) the interfacial stress transfer. Their distribution allows the material
to have a uniform performance and higher superficial area, while the alignment of the
nanotubes is reflected in their improved mechanical strength, and stress transfer allows the
matrix to carry higher loads without cracking [16]. Maximization of the load transfer is
achieved by incrementing towards a larger aspect ratio. Measurement of these improve-
ments is possible using microindentation, which consists of applying a specific force using
a diamond indenter to measure the declinations of enamel rods and dental tubules [72].
The interaction between the polymer and the CNT is particularly important in order to
transfer the external stress forces to the CNTs, thereby enabling the matrix to bear higher
loads [73].

In addition to this application, the use of these materials for dentin surface modifi-
cation showed selective coating of the surface of the dentin and cementum by adhering
to the collagen fibers exposed from these surfaces [74]. Hahn et al. reported the ability of
carbon nanotubes to improve mechanical properties, such as hardness and elastic modu-
lus, when CNTs are added to a hydroxyapatite coating, resulting in an adhesion strength
ranging from 27.3 to 29.0 MPa [75]. Similarly, Marrs et al. studied the application of CNTs
for the reinforcement of a bone cement based on polymethylmethacrylate (PMMA). The
result was an enhancement in mechanical properties with peaks of performance observed
with concentrations of 2% wt. The product showed a flexural strength of 90.6 MPa and a
bending modulus of 3528 MPa [76]. Bonding, esthetic, mechanical, and physical properties
of restorative dental materials have been greatly improved. Although these materials show
excellent clinical response, investigations to achieve performance similar to the attributes
of natural teeth continue as an ongoing process [77].

Scaffolds for bone tissue engineering applications containing polycaprolactone (PCL)
have been widely used. PCL is a hydrophobic semicrystalline polymer whose crystallinity
decreases with the increment of molecular weight. This material has good solubility and a
low melting point (59–64 ◦C) [78]. It is a biodegradable and bioactive material and has been
considered as a possible substitute for bone tissue due to its unique properties. However,
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the application of PCL for this purpose is limited by its weak mechanical properties. This
disadvantage can be addressed through the production of polymeric nanofiber composites
formed through electrospinning processes [79]. The resulting polymer is easily synthesized
and processed and can be molded precisely into diverse shapes which are easily modified
due to the viscoelastic properties and the low melting temperature. A clinically important
characteristic of modified and electrospun PCL is that it can be functionalized with active
molecules such as drugs or bone growth stimulating factors [80]. Previous studies have
also shown that PCL reinforced with CNTs exhibited improved physicochemical, biological,
and mechanical properties, for example through the increment in elastic modulus and
tensile stress as well as conductivity, while they did not exhibit cytotoxicity [70,71].

4.2. Effect of Carbon Nanotubes on Cells

The cytotoxicity of CNTs has been widely studied. It was demonstrated that the
cytotoxicity of CNTs depends on the relationship with length, diameter, and the presence of
functional groups. To mitigate toxicity, many efforts have been made to modify the surface
properties of CNTs. For instance, Ketabi et al. studied the reinforcement of nanofibers of
polycaprolactone with multiple-wall carbon nanotubes for odontoblast cell interactions [81].
In the same way, Flores-Cedillo et al. reinforced polycaprolactone with MWCNTs for use
as scaffolds in bone tissue regeneration, thereby developing materials with improved
physicochemical, biological, and mechanical properties, such as increased elastic modulus
and tensile stress, as well as conductivity. While they did not exhibit cytotoxicity, it was
concluded that the application of an electric field to the carbon nanotubes does not promote
alignment or dispersion [42].

The diameter of carbon nanotubes provides them the capacity to inactivate bacteria
such as E. coli. Direct contact of the bacteria with the material causes cell membrane damage
and subsequently cell death. Differences in toxicity lie in the diameter of the tube and
the surface area available for interaction. Kang et al. demonstrated that single-wall CNTs
were more toxic for bacteria than multi-walled CNTs through oxidative stress. To quantify
the molecular response of the bacteria with the CNT gene expression, DNA microarray
analyses were performed [82].

A recent study investigated the influence of coating biopolymer nanofibers with CNTs
on cells [83]. It was demonstrated that these scaffolds could modulate different interactions
of the cells and tissues that allow bone healing and regeneration, reduce inflammatory
signals, and promote angiogenesis. The in vitro study demonstrated accelerated adhesion
and osteogenic differentiation, while the in vivo results showed an increase of bone forming
cells with higher bone mineral density, confirming the potential use in bone regeneration
and healing processes [83].

4.3. Preparation of Polymeric Membranes Reinforced with Carbon Nanotubes

The most common method to prepare polymeric membranes is through electrospin-
ning, a process which was introduced in the 1930s to produce polymeric fibers from several
nanometers to a few micrometers [84]. Electrospinning, as illustrated in Figure 4, is based
on the dispersion of a polymer in an appropriate solvent, which is then introduced into a
glass syringe. The polymeric solution is pumped through the syringe to which is applied a
high voltage (25 kV, positive pole), while the collector acts as the negative pole. Due to the
voltage difference that exists between the tip of the needle and the collector, the polymeric
material becomes stretched thereby forming a Taylor´s cone, which provides polymeric
fibers ranging from 30 nm to 1 µm in diameter [85]. The resulting membranes can be used
for many different applications, including fine filtration, scaffolds for tissue engineering,
and drug delivery systems.
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The synthesis and characterization of nylon-6 fibers using electrospinning, with and
without the reinforcement of carbon nanotubes, demonstrated the significant influence of
CNTs and how the concentration of CNTs (2.5, 5.0, 10.0, and 20.0%) affected mechanical
properties such as flexural strength, volumetric polymerization shrinkage, and elastic
modulus, with the best values obtained for concentrations of 2.5 and 5.0% of CNTs. The
highest value for flexural strength was reported as 106.0 MPa for a 5% concentration with an
elastic modulus of 201.0 MPa [86]. Polystyrene/MWCNT nano fibers showed an increase
in Young’s modulus of 22% compared with untreated polystyrene [87]. The preparation
of nanofibers of polyurethane/MWCNTs showed an enhancement in the tensile strength
compared with the bulk material [80]. Strength of polymeric nanofibers prepared through
electrospinning is due to the differently adopted conformations of the polymer chains and
the microstructure and is enhanced through interfacial linking forces between matrix and
nanofillers, mainly due to the specific surface area of the nanofibers [88].

5. Carbon Nanotubes in Drug Delivery Systems

Modifications in drug delivery systems have a profound effect on the bioavailability
and pharmacokinetics of medicinal agents and represent a widely researched area of drug
development. Currently, studies are taking advantage of the special properties of carbon
nanotubes. Major improvements in targeted drug delivery systems include a reduction
in drug dosage, retiming of drug distribution to obtain the same results, and reducing
the side effects from the current delivery methods [89]. Carbon nanotubes provide an
opportunity to introduce a high loading capacity and the ability to be easily taken up by the
cells. It has been stated that a carbon nanotube with a diameter of 80 nm can accommodate
approximately 5 million drug molecules, thereby by serving as a nanocontainer [90].

Although there are many available delivery systems their success is limited due to low
protein loading, size control, and toxicity; carbon nanotubes are studied for use in biological
systems based on their ability to penetrate cell membranes, their sustained capacity, and
their distribution within cells [19]. MWCNTs have the capacity for high protein loading
and stability under biological conditions [19].

The commonly suggested mechanism of interaction between carbon nanotubes and
cellular membranes is through receptor-mediated endocytosis. The uptake mechanism
arises from surface interactions of the media with the carbon nanotubes, an interaction
regarded as the most important for cell internalization [91].
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6. Conclusions and Future Applications

This review demonstrates the highly successful impact of carbon nanotubes in den-
tistry. The continuous development of new materials for oral applications, including for
functional dental restorations, demands the provision of new composites with enhanced
physical, chemical, and mechanical properties to deal with the clinical needs prevalent
in the oral cavity. Furthermore, dental composites are expected to exhibit a wide range
of desired characteristics, including biocompatibility, adhesion to tooth tissues, and color
stability, as well as the delivery of biological agents for prevention and treatment.

Because the physicochemical and mechanical properties of carbon nanotubes are
tunable, it is anticipated that their incorporation into dental materials will increase their
use in dentistry, leading to new and more effective functional applications. These potential
advancements could lead to the development of new materials for caries prevention with
the use of functionalized carbon nanotubes as drug delivery systems, as well as biomimetic
scaffolds that imitate the extracellular matrix for tissue engineering. In addition, carbon
nanotubes hold great potential for the development of dental materials with interesting
properties, including bioactivity, as a delivery system for agents with antimicrobial and
tissue-regenerative properties. Undoubtedly, they will provide innovative platforms for a
wide range of future studies which will improve oral care.
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