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Multimodal integration for Barrett’s esophagus

Shubin Liu,1 Shiyu Peng,2,* Mengxuan Zhang,3 Ziyuan Wang,1 and Lei Li1,4,*

SUMMARY

The esophageal adenocarcinoma is facing a worldwide challenge: early prediction and risk assessment in
clinical Barrett’s esophagus (BE). In recent years, the growing interests have been witnessed in prediction
and risk assessment in clinical BE. However, the resolution is limited, and the system is huge and expensive
for the existing devices. Inspired by the principle of collaboration between human eye vision and brain
cortex in data processing, here we propose multimodal learning framework to tackle tasks from various
modalities, which can benefit from each other. To our findings, the experimental result indicates that low-
level modality can directly affect high-level modality and form the final risk grading based on contribution,
which maximizes the clinical performance of medical professionals based on our findings.

INTRODUCTION

The discipline of esophageal cancer is facing amajor global challenge: preventing its early onset and reducing its severity.1 According to the

statistics for 2020,2 the global incidence rate of the disease reached an astonishing 604,000 cases, ranking 7th in the world’s most common

malignant tumors. Unfortunately, themortality rate of esophageal cancer has claimed the lives of approximately 54,000 patients, ranking 6th

in terms of mortality. Esophageal cancer can be roughly divided into two main types: esophageal squamous cell carcinoma (ESCC) and

esophageal adenocarcinoma (EAC). In recent years, the incidence rate of EAC has risen sharply, with an annual incidence rate of 0.7 cases

per 100,000 people. EAC is with the characteristics of occult onset, difficulty in early diagnosis, high malignancy, and poor prognosis, which

makes more complex.3 The development of EAC is closely related to the presence of Barrett’s esophagus (BE), characterized by a clear

boundary between esophageal squamous epithelium and gastric columnar epithelium under endoscopy. In patients with upward displace-

ment ofR1 cm at the junction of BE and gastroesophageal mucosa, metaplastic columnar epithelium replaced the normal stratified squa-

mous epithelium in the lower esophageal segment.4 Metaplasia can be gastric fundus gland metaplasia, cardiac epithelial metaplasia, or

special intestinal metaplasia (SIM).5 Among them, BE with intestinal metaplasia has a higher risk of cancer transformation. However, the

exact mechanism of BE carcinogenesis is not fully understood, highlighting the importance of identifying BE risk factors and developing

relevant computer models for early detection. Traditional medicine categorizes the presence of columnar epithelium in the BE based on

histology: gastric fundus type, cardiac type, and intestinal type.6 Among them, intestinal-type BE is considered a precancerous lesion closely

related to the occurrence of cancer. Mature intestinal epithelial cells can acquire additional mutations and then develop into dysplasia and

cancer. The detection and risk grading (RG) of intestinal-type BE are facing key challenges worldwide. While it’s true that many people with

BE do not experience any symptoms, this does not necessarily mean they are out of harm’s way. In fact, the danger of a disease going un-

noticed can be even more dangerous, since by the time it’s discovered, it may be in a late stage. For clinical BE, low resolution (LR) images

still dominate due to limitations in optical and computational principles. The LR-endoscopic images can be attributed to several factors. (1)

Many current endoscopic imaging devices, such as the Olympus CF-140L and EC-3890Li, are limited to resolutions below 1920p. (2) Endo-

scopic images are often downsampled to lower resolutions before being transmitted to medical systems, which is due to limited storage

space and the high cost of data transfer. In this case, the images are often compressed and downsampled to reduce data size and trans-

mission time, thereby reducing image resolution. However, while high-definition endoscopes offer good image quality, they do come with

some disadvantages, such as higher cost and larger size. These factors can make it difficult for somemedical facilities to justify the purchase

of high-definition endoscopes, particularly in cases where lower resolution imaging is considered to have the potential to complete the

clinical tasks at hand. Additionally, the larger size of high-definition endoscopes may also pose challenges in terms of maneuverability

and patient comfort during procedures. In recent years, it is exciting that artificial intelligence technology has made significant progress

in cancer identification and prognosis,7–10 especially the use of Conventional Neural Networks (CNN),11 which has shown extraordinary orig-

inality in these fields. For example, a CNN network was successfully used in the task of automatically detecting gastric cancer and the seg-

mentation of rectal cancer. Given the user-friendliness of the device, the focus of the issue appears to be shifting from simply purchasing

more expensive equipment to finding ways to achieve higher accuracy with low-cost endoscopes. Here we discussion the inherent logical
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relationship between super resolution (SR), disease identification (DI), and RG for BE, to the best of our knowledge, our work is the first

attempt to perform multimodal tasks in clinical BE.

Inspired by the cooperation between human vision and cerebral cortex in data processing and the principle of attention, here we describe

a multimodal learning framework to tackle tasks from various modalities, which can benefit from each other. In the visual modality, we devel-

oped 2 distinct yet collaborative real-time pipelines (SR and DI) that effectively filter out irrelevant smooth regions and focus on specific

texture details. Additionally, we investigated the significant impact of different resolutions on real-time DI. In the data modality, we designed

a real-time data pipeline (RA) to handle high-level tasks. We predicted the score of future health assessments and employed an ablation

design to explore the impact of multiple risk factors on health, thereby maximizing the clinical performance of medical professionals based

on our findings.

Methods

Principle and concept

EAC patients experience various pathological states based on the severity of their condition, including normal, esophagitis, BE, and EAC, as

described in Figure 1A. Perhaps esophagitismay not have a fundamental impact on EAC, but BEdoes, which evolves directly into EAC. BE can

Figure 1. Principle and concept for BE with multimodal learning framework

(A) Development process of various pathological states of EAC and risk factor of BE.

(B) Multimodal computational process.
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be divided into gastric type, cardiac type, and intestinal type based on themorphological characteristics ofmucosal epithelium,with intestinal

type being the focus of this study. With a two-year follow-up record for clinical BE, the health information of 846 patients was closely moni-

tored. Natural-visual information will be further processed and interpreted by the cerebral cortex, although the light signal is collected by the

visual organ, it will be converted into neural signal for cerebral cortex to explain. Both are indispensable, and attention plays important roles in

both visual information and neural information. Inspired by this, here we describe a multimodal learning framework illustrated in Figure 1B to

tackle tasks from variousmodalities, which can benefit from each other. In the visualmodality, we develop 2 distinct yet collaborative real-time

pipelines with attention (SR and DI) that effectively filter out irrelevant smooth regions and focus on specific texture details. Additionally, we

investigate the significant impact of different resolutions on real-time DI. In the data modality, we design a real-time data pipeline with atten-

tion (RA) to handle high-level tasks.We predict the score of future health assessments and employ an ablation design to explore the impact of

multiple risk factors on health, such as how are these risk factors ranked. It can be expected that a high-precision prognosis systemwill reduce

the investment in manpower, material resources, and efficiency.

Clinical BE medical research

In this study, we included a total of 846 patients with BE. We collected data on their age, gender, BMI, margin, degree of education, smoking

and drinking habits, belching, absolute tension, acid reflux/heartburn, foreign body sensation, high-fat diet, anxiety, anorexia, palpitations,

chest pain, cough, sleep status, hypertension, coronary heart disease, diabetes, esophagitis, Helicobacter pylori infection, family history of

esophageal cancer, and divided them into two groups based on pathological types: SIM and non-SIM. We then performed a single-factor

logistic regression analysis and included significant single factors in a multivariate analysis to determine the independent risk factors for

SIM. We assigned scores based on these independent risk factors and conducted computer simulation analysis. For Table 1, the basic

data from patients with BE is collected, including age, gender, BMI, margin, degree of education, smoking and drinking habits. We then per-

formed a single-factor logistic regression analysis and found that age, gender, and BMI were statistically significant (p < 0.05).

Table 1. Basic information of BE patients with different pathological subtypes

Groups SIM% Non SIM% total c P

Age (years) 24.322 0.000

<50 5(4.5) 188(25.6) 193

[50 106(95.5) 547(74.4) 653

Gender 10.593 0.001

Male 85(76.6) 445(60.5) 530

Female 26(23.4) 290(39.5) 316

BMI 29.282 0.001

<24 16(14.4) 239(32.5) 255

24 �BMI<28 48(43.2) 342(46.5) 390

BMI[28 47(42.3) 154(21.0) 201

Marriage 2.22 0.528

Married 102(91.9) 688(93.6) 790

Divorced 3(2.7) 26(3.5) 29

Widowed 5(4.5) 18(2.4) 23

Unmarried 1(0.9) 3(0.4) 4

degree of education 2.528 0.64

Bachelor’s degree or above 29(26.1) 204(27.8) 233

Junior college 36(32.4) 211(28.7) 247

High school 12(10.8) 89(12.1) 101

Junior high school 14(12.6) 124(16.9) 138

Primary school and below 20(18.0) 107(14.6) 127

Smoking habits 0.000 0.991

Yes 46(41.4) 305(41.5) 351

No 65(58.6) 430(58.5) 495

Drinking habits 1.923 0.165

Yes 35(31.5) 282(38.4) 317

No 76(68.5) 453(61.6) 529
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For Table 2, the clinical symptoms from patients with BE were also collected, including belching, absolute tension, acid reflux/hardburn,

foreign body sensation, high-fat diet, anxiety, anorexia, palpitations, chest pain, cough, and sleep status. Results from a single-factor logistic

regression analysis showed that acid reflux/heartburn was statistically significant (p < 0.05).

In Table 3, the comorbidities in BE patients were collected, which included hypertension, coronary heart disease, diabetes, esophagitis,

Helicobacter pylori infection, family history of esophageal cancer, and single factor logistic regression analysis. The results showed that the

family history of esophageal cancer had statistical significance (p < 0.05).

And in Table 4, the inclusion of single factor meaningful factors in multivariate analysis suggests that age, gender, BMI, acid reflux/hazard,

family history of esophageal cancer are all significant.

RESULTS

The interplay between human visual perception and the cortical brain is achieved through the transmission and processing of neural path-

ways, whose complex structures and precise regulation enable us to perceive a wide range of visual information and process it rapidly

and accurately. In the visual processing of the cortical brain, attentionmechanisms regulate the activity of neurons tomore effectively process

Table 2. Clinical symptoms of BE patients with different pathological subtypes

Groups SIM% Non SIM% total c P

Belching 0.748 0.387

Yes 18(16.2) 97(13.2) 115

No 93(83.8) 638(86.8) 731

Abdominal distension 0.469 0.493

Yes 25(22.5) 145(19.7) 170

No 86(77.5) 590(80.3) 676

Acid reflux/heartburn 8.248 0.004

Yes 101(91.0) 711(96.7) 812

No 10(9.0) 24(3.3) 34

Foreign body sensation 0.179 0.673

Yes 55(49.5) 380(51.7) 435

No 56(50.5) 355(48.3) 411

High-fat diet 0.121 0.727

Yes 3(2.7) 16(2.2) 19

No 108(97.3) 719(97.8) 827

Anxiety 0.893 0.345

Yes 11(9.9) 54(7.3) 65

No 100(90.1) 681(92.7) 781

Anorexia 1.432 0.231

Yes 4(3.6) 48(6.5) 52

No 107(96.4) 687(93.5) 794

Palpitate 0.532 0.466

Yes 13(11.7) 105(14.3) 118

No 98(88.3) 630(85.7) 728

Chest pain 0.045 0.831

Yes 26(12.7) 179(87.3) 205

No 85(76.6) 556(75.6) 641

Cough 0.924 0.336

Yes 5(4.5) 51(6.9) 56

No 106(95.5) 684(93.1) 790

Sleep status 0.427 0.514

Yes 22(19.8) 166(22.6) 188

No 89(80.2) 569(77.4) 658
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visual information of objects we focus on and filter out irrelevant or secondary information. Inspired by this principle, here we describe amulti-

modal learning framework to tackle tasks from various modalities, which can benefit from each other. In this section, the visual modality is

illustrated in Figure 2, here we describe 2 distinct yet collaborative real-time pipelines that effectively filter out irrelevant smooth regions,

and focus on specific texture details.

For the real-time SR pipeline in Figure 2A, it is mainly composed of feature extraction, shrinking, non-linear mapping, expanding, coor-

dinate attention and deconvolution operation. Parametric Rectified Linear Unit (PRELU) is selected as the activation function, and each layer

is activated using it. The feature extraction includes a 2D conv layer with 53 5 kernel and a PRELU function. The shrinking includes a 2D conv

layer with 13 1 kernel and a PRELU function. The non-linear mapping includes 4 2D conv layers with 33 3 kernel and 4 PRELU functions. The

expanding includes a 2D conv layer with 13 1 kernel and a PRELU function. The coordinate attention includes a coordinate attention layer and

a PRELU function, where5 represents dot product operation. Here the coordinate attention will automatically focus on the area of interest,

which greatly alleviates the limitations. The deconvolution includes a deconv layer with 93 9 kernel to generate a 43 SR image. The output SR

image is further into the DI pipeline as input. In this section, an ingenious idea is to apply specific optimization function to the texture area and

the smooth area. For example, while only MSE is used in the smooth area, L1 and MSE are used for joint training in the texture area, to help

retain as much texture details as possible. The loss function in the texture area can be described as:

Loss1 = W1*MSE+ W2*L1 (Equation 1)

Table 3. Complication of diseases in BE patients with different pathological subtypes

Groups SIM% Non SIM% total c P

Hypertension 11.122 0.001

Yes 47(42.3) 198(26.9) 245

No 64(57.5) 537(73.1) 601

Coronary heart disease 1.973 0.16

Yes 21(18.9) 102(13.9) 123

No 90(81.1) 633(86.1)

Diabetes 3.333 0.068

Yes 22(19.8) 98(13.3) 120

No 89(90.2) 637(86.7) 726

Esophagitis 5.062 0.167

LA-A 65(58.6) 506(68.8) 571

LA-B 18(16.2) 87(11.8) 105

LA-C 25(22.5) 121(16.5) 146

LA-D 3(2.7) 21(2.9) 24

Helicobacter pylori infection 0.173 0.678

Yes 43(38.7) 300(40.8) 343

No 68(61.3) 435(59.2) 503

Family history of esophageal cancer 4.592 0.000

Yes 19(17.1) 7(1.0) 26

No 92(82.9) 728(99.0) 820

Table 4. SIM multivariate logistic regression analysis of risk factors

variable b SE Wald P OR 95%CI

Age 2.207 0.513 18.530 0.000 9.089 3.327-24.829

gender 0.714 0.266 7.200 0.007 0.490 0.291-0.825

BMI 0.000

BMI 1.294 0.339 14.601 0.000 3.648 1.878–7084

BMI 0.888 0.252 12.415 0.000 2.429 1.483-3.980

Acid reflux/heartburn 1.277 0.458 7.757 0.005 3.585 1.460-8.804

Family history of esophageal cancer 3.354 0.535 39.3.9 0.000 29.626 10.032–81.688
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the loss function in the smooth area can be described as:

Loss2 = MSE (Equation 2)

the loss function of the final joint optimization can be described as:

Total_Loss = Loss1+ Loss2 (Equation 3)

then the deduction result is described as:

TotalLoss = ð1 + W1Þ
�
Min
q

1

n
Sn

ⅈ = 1

��F1

�
Ireal

L; q
� � Ireal

L
��2

2

�
+W2 �

�
Min
q

1

n
Sn

ⅈ = 1

��F1

�
Ireal

L; q
� � Ireal

L
��� (Equation 4)

whereW1 represents the weight ofMSE in the texture area andW2 represents the weight of L1 in the texture area, Ireal
L and Ireal

T are the i-th LR

and Ground Truth (GT) image pair, and F1 (Ireal
L; q) is the network output for Ireal

L with parameters q.

For the real-time DI pipeline in Figure 2B, it is mainly composed of 4 conv blocks, 4 attention blocks and 1 compound blocks. Here each

conv block includes RELU function following 1 conv layer with 33 3 kernel, a BatchNormalization layer and aMaxpooling layer. The attention

block includes an Average Pooling layer, 2 Fully connected (FC) layers, a Multiply layer following a Sigmoid function. We created a dataset

Figure 2. Overall framework of visual modality

(A) Overall architecture for SR pipeline.

(B) Overall architecture for DI pipeline.
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including 1,500 images with gastric-fundus-type BE, cardiac-type BE and intestinal-type BE. Our DI pipeline aims to identify and label the

lesion area of intestinal-type BE. In this pipeline, the Cross-Entropy Ht is utilized as the loss function:

Ht = Sn
ⅈ = 1 Ireal

T logF2

�
Ireal

S; q
�

(Equation 5)

where Ireal
T represents GT value, and F2 (Ireal

S; q) is the network output for SR input Ireal
S with parameters q. Our work is performed on a PC

platform (Intel Core i5-8600K CPU @3.6GHz + GTX1070) equipped with Windows10 operating system. For the model implementation and

training, the baseline architecture is based on Fast Super-Resolution Convolutional Neural Networks (FSRCNN)12 andCoordinate attention.13

The model uses Adam optimizer for parameter optimization, with a learning rate of 10�3, epochs of 200 and an upscaling factor of 43.

Figure 3 illustrates the comparison-SR results with DI, the extensive experimental indicates that our method significantly outperforms

other state-of-the-art methods. Benefiting from the attention mechanism and the joint training of multiple optimization functions in

Figure 3. Comparison-SR results with DI

(A) Bicubic.

(B) Ours.

(C) EDSR.14

(D) FALSR.15

(E) ESPCN.16

(F) Ground Truth.
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different regions, our experimental result takes the lead. In clinical BE, the blessed performance of SR and DI technology is crucial, for

instance, the area reconstructed by SR is exactly the labeled DI area. As shown in Figure 3, the texture details are discovered using

our pipeline. However, the details of insignificant flat areas can be ignored. Inspired by biomimetic principle, the proposed pipeline places

more attention on the label area and ignores interference from flat areas. In addition, quantitative analysis of the Peak Signal-to-Noise

Ratio (PSNR) and Structure Similarity Index Measure (SSIM) was also recorded in Figure 3, and our method shows competitive advantages

over classical SR methods. In this study, a dataset of 1,500 images including intestinal-type BE and other-type patients was collected from

846 patient populations included in the study according to different pathological subtypes (Table 1). The data were split in a ratio of 7:2:1

between training/validation/testing. In the visual modality, SR pipeline is responsible for converting LR images into high-resolution (HR)

images that preserve texture details; the result of the SR pipeline is processed as input by DI pipeline to obtain the final result. The

outcome accuracy for disease identification only achieves 83.6% without SR assistance; however, our proposed vision modality achieves

accuracy at 94.1%.

Figure 4 shows the visual maps of the model calculation process and the logical relationship between SR and DI. Figures 4A–4H illustrate

the visualization map of each layer from the network. Different colors indicate different levels of attention on the network, here yellow rep-

resents higher attention and blue represents lower attention. According to our findings, the pipeline intentionally avoids interference from flat

areas to maximize the utilization of texture information; this hypothesis is lent credence by visual maps in Figure 4. As illustrated in Figure 4I,

the result implies the DI task can benefit from the SR task. The accuracy increases almost linearly with the increase of resolution, which is also

Figure 4. Visual maps of the calculation process and the logical relationship between SR and DI

(A) Input.

(B–G) Visual maps of the calculation process.

(H) SR result.

(I) Impact of various resolution on accuracy.
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applicable to different classification networks such as CNN and Resnet18.17 This result proves our previous conjecture, which benefits our

clinical BE.

Conclusions

Inspired by the cooperation between human vision and cerebral cortex in data processing and the principle of attention, here we describe a

multimodal learning framework to tackle tasks from various modalities, which can benefit from each other. In the visual modality, we devel-

oped 2 distinct yet collaborative real-time pipelines (SR and DI) that effectively filter out irrelevant smooth regions and focus on specific

texture details. Additionally, we investigated the significant impact of different resolutions on real-time DI. In the data modality, we designed

Figure 5. Overall structure and result of the RG pipeline

(A) Procedure of the RG pipeline.

(B) CNN component.

(C) BiGRU component.

(D) Attention component.

(E) Test loss.

(F) Comparison-prediction result with various methods.

(G) Boxplot of the risk grading calculated using RG pipeline.
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a real-time data pipeline (RA) to handle high-level tasks (Figure 5). We predicted the score of future health assessments and employed an

ablation design to explore the impact of multiple risk factors on health, thereby maximizing the clinical performance of medical professionals

based on our findings.

Limitations of the study

In this study, we found that resolution cannot be infinitely improved.When a certain critical condition is reached, the best advantage ofmutual

benefit between the two pipelines can achieve dynamic equilibrium.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lea contact, Leili (leili@scu.edu.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

� All data reported in this paper is available within the paper.
� The original code in this paper is available from the lead contact upon reasonable request.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon reasonable

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

846 patients from our hospital were randomly assigned to the experimental group.All experimental procedures were approved by College of

Sichuan University.

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Age (years) <50 193

[50 653

Gender Male 530

Female 316

Marriage Married 790

Divorced 29

Widowed 23

Unmarried 4

Degree of education Bachelor’s degree or above 233

Junior college 247

High school 101

Junior high school 138

Primary school and below 127

Others This paper N/A

Critical commercial assays

Olympus-290 Olympus N/A

CV-290 Olympus N/A

CLV-290SL Olympus N/A

GIF-HQ290 Olympus N/A

OEV262H Olympus N/A

WM-NP2 Olympus N/A

Software and algorithms

Pycharm JetBrains https://www.jetbrains.com/pycharm/download/?section=window/

Python Open-source software https://www.python.org/
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METHOD DETAILS

Computational details

With the screening of medical risk factors in the previous section, the final risk factors were confirmed. Here the RG pipeline is created to

predict the risk values and risk grading according to various risk factors, as illustrated in Figure 5. For non-numeric data, such as gender,

professional medical personnel use numerical coding to assign values to risk factors. The overall structure of RG pipeline is illustrated in

Figure 5A, which mainly includes a CNN module, a bidirectional gated recurrent unit (BiGRU) module, an attention module and multiple

Fully connected (FC) modules. As illustrated in Figure 5B, CNN module includes 4 1D convolution layers and 2 maxpooling

layer, which is to extract local features with small dimension. Here the size of 1D convolution kernel is set to 2 and its number is 32,

stride = 1, padding = 0. The FC modules are introduced to improve the nonlinearity of the pipeline, and its output is computed by iter-

ating from 1 to T using:

UðxÞ = s
�
WT

f x + b
�

(Equation 6)

where Wf and b are the weight matrix and bias vectors respectively for the hidden layer, and s is activation function. BiGRU is a recurrent

network unit that excellent at capturing key information of time series for either long or short term. The main structure of GRU includes an

update gate and a reset gate. The architecture of the GRU cell is illustrated in Figure 2C. The logic of GRU cell is as follows:

rt = sðWrUt + Urht� 1 + brÞ (Equation 7)

zt = sðWzUt + Uzht� 1 + bzÞ (Equation 8)

h0
t = tanhðWhUt + Uhðrtht� 1Þ + bhÞ (Equation 9)

ht = ztht� 1 + ð1 � ztÞh0
t (Equation 10)

where s is the sigmoid function and tanh is the hyperbolic tangent function.Ur, z are the weightmatrixes for the previous vector ht� 1, and h0t is
a candidate activation. Vector rt , zt denote the reset gate and the renew gate vector.

The BiGRU includes the forward GRU and the reverse GRU. The forward GRU generates a forward feature vector sequence {h1
!. ht

!
}, while

the reverse GRU generates a reverse feature vector sequence {h1

/
. ht

/
}. Hence, the final feature vector sequence ht can be computed using:

h t = btht

/

+ atht

!
+bt (Equation 11)

where bt is the output weight of information for backward propagation GRU unit at time t, at is the output weight of information for forward

propagation GRU unit at time t, and bt is the corresponding offset.

Attention architecture imitates how human brain calculates information, which is of great significance for the improvement of prediction

performance.Multi head attention is introduced to solve the problemof the proportion of input vector. The data that contributemore is given

a greater proportion, which is of great significance to the improvement of performance accuracy. Multi head attention in Figure 5D illustrates

the detailed update process as follows:

vt = sðhtÞ (Equation 12)

Pt =
expðvtÞPm

k = 1

expðvkÞ
(Equation 13)

at =
Xm
t = 1

Ptht (Equation 14)

where s is activation function tanh, ht is the feature vector from BiGRUmodule, softmax function generates probability vector Pt , and at is the

generated attention vector.

The test loss in Figure 5E is continuously iterated and updated until it remains stable, proving that this method has good robustness and

high accuracy. In Figure 5F, the RG pipeline outperforms competitive advantage over the comparison methods, here B-GT; C-CNN; D-RG;

E- XGBoost.18 As illustrated in Figure 5G, the final risk factors are confirmed which are Age (I), Gender (F), BMI (G), Acid reflux/heartburn

(J) and Family history of esophageal cancer (H), respectively. Continuous ablation experiments are specially designed to verify the specific

impact of different risk factor on the evaluation value. To our findings, J accounts for the largest proportion, followed by I, followed by G,

F, and H, as illustrated in Figure 5G. This has to some extent inspired medical personnel to pay more attention to J’s clinical manifestations,

paving the way for modernmedicine. In the whole multimodal framework, the end-to-end optimization benefits the twomodalities, and here

the Prompt idea is used to achieve high-precision prediction of the output of BE, and the output results of visual modals and data modalities

need to be unified into the same dimension. For example, features are extracted from images and extracted from parameters, and then they
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are fused into a unified feature vector, and then the two feature vectors are weighted and stitched into a unified feature vector to achieve the

final assessment according to the final feature vector parameters. The combined formula can be described as:

Out = gf ð$Þ+ dgð$Þ (Equation 15)

where f ð$Þ is the function that converts the image to a vector representation, and gð$Þ is the function that converts the argument to a vector

representation. g and d are weight matrices that are used to weight the representation of images and parameters.

Relatively speaking, our method has been validated based on images and data information from 846 patients, but the acquisition of data-

sets remains a challenge. In the future, multi-center studies will be considered to address the problem of insufficient samples and achieve

wider clinical validation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Use SPSS 26.0 statistical software for data organization and statistical analysis. Age, BMI, and other measurement data are represented by

means and statistically described. Clinical symptoms, disease complications, and other counting data are compared and analyzed using

the Perason chi square test and Fisher’s exact probability method. The significance of differences was tested using one-way ANOVA.

Then, single factor meaningful inclusion in multivariate logistic regression analysis further clarifies independent risk factors. p < 0.05 is consid-

ered statistically significant.
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