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A B S T R A C T

Patients with inflammatory lung diseases are often additionally exposed to polycyclic aromatic hydrocarbons
like B[a]P and B[a]P-induced alterations in gene expression in these patients may contribute to the development
of lung cancer. Mice were intra-nasally treated with lipopolysaccharide (LPS, 20 μg/mouse) to induce pulmonary
inflammation and subsequently exposed to B[a]P (0.5 mg/mouse) by intratracheal instillation. Gene expression
changes were analyzed in mouse lungs by RNA microarrays. Analysis of genes that are known to be involved in
the cellular response to B[a]P indicated that LPS significantly inhibited gene expression of various enzymes
linked to B[a]P metabolism, which was confirmed by phenotypic analyses of enzyme activity. Ultimately, these
changes resulted in higher levels of B[a]P-DNA adducts in the lungs of mice exposed to B[a]P with prior LPS
treatment compared to the lungs of mice exposed to B[a]P alone. Using principle component analysis (PCA), we
found that of all the genes that were significantly altered in their expression, those that were able to separate the
different exposure conditions were predominantly related to immune-response. Moreover, an overall analysis of
differentially expressed genes indicated that cell-cell adhesion and cell-cell communication was inhibited in
lungs of mice that received both B[a]P and LPS. Our results indicate that pulmonary inflammation increased the
genotoxicity of B[a]P via inhibition of both phase I and II metabolism. Therefore, inflammation could be a
critical contributor to B[a]P-induced carcinogenesis in humans.

1. Introduction

During inflammation, a variety of inflammatory cells is recruited to
the site of inflammation including macrophages, neutrophils and lym-
phocytes, which contribute to the establishment of an inflammatory
micro-environment (King, 2015b). Within this micro-environment, a
variety of inflammatory mediators or enzymes have been found, in-
cluding reactive oxygen species (ROS), myeloperoxidase (MPO), β-
glucuronidase, tumor necrosis factor (TNF-α) and interleukin (IL)-6,
(Gabay, 2006; Gungor et al., 2007; Mittal et al., 2014; Shi et al., 2016a;
Zelová &Hošek, 2013) that are suggested to additionally affect aryl
hydrocarbon receptor (AhR) signaling. AhR signaling is important for

the cellular response to many environmental carcinogens, such as
polycyclic aromatic hydrocarbons (PAHs) like benzo[a]pyrene B[a]P.
Indeed, individuals that are exposed to B[a]P in combination with
pulmonary inflammation have an increased risk for developing lung
cancer, for instance patients with chronic obstructive pulmonary dis-
ease (COPD) or emphysema (Gomes et al., 2014; King, 2015a).

Most patients with chronic lung inflammatory disease are also ex-
posed to environmental genotoxicants, such as cigarette smoke, diesel
exhaust or ambient air particulate matter (PM) of various sources that
can carry chemical carcinogens (Grunig et al., 2014). For example, over
70% of cigarette smokers show inflammatory responses in the lung and
especially those people have an increased risk of developing lung

http://dx.doi.org/10.1016/j.taap.2017.09.023
Received 9 June 2017; Received in revised form 22 September 2017; Accepted 29 September 2017

☆ This work is dedicated to the memory of Dr. Domenico Spina. Dr. Spina passed away on 5th December 2016 after a long and brave struggle with cancer. He was a Reader in
Pharmacology, and Head of Pharmacology and Therapeutics Research group in the Institute of Pharmaceutical Science at King's College London. His death was premature and he will be
greatly missed by his many colleagues, students and friends.

⁎ Corresponding author.
E-mail address: R.Godschalk@maastrichtuniversity.nl (R.W. Godschalk).

Toxicology and Applied Pharmacology 336 (2017) 8–19

Available online 05 October 2017
0041-008X/ © 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

MARK

http://www.sciencedirect.com/science/journal/0041008X
https://www.elsevier.com/locate/taap
http://dx.doi.org/10.1016/j.taap.2017.09.023
http://dx.doi.org/10.1016/j.taap.2017.09.023
mailto:R.Godschalk@maastrichtuniversity.nl
http://dx.doi.org/10.1016/j.taap.2017.09.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.taap.2017.09.023&domain=pdf


cancer (Walser et al., 2008). One major group of compounds in cigar-
ette smoke are PAHs, with B[a]P as one of the best studied PAH that is
classified as human carcinogen (Group1) by the International Agency
for Research on Cancer (IARC) (Abdel-Shafy &Mansour, 2016;
Ewa &Danuta, 2017). B[a]P crosses the cell membrane and forms a
complex with AhR. After binding, the complex translocates into the
nucleus where it interacts with the aryl hydrocarbon receptor nuclear
translocator (ARNT) and stimulates B[a]P metabolism by inducing the
gene expression of cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1)
(Schults et al., 2014; Umannova et al., 2008). B[a]P exerts its muta-
genic and carcinogenic properties only after metabolic activation, in
which CYPs and epoxide hydrolase are involved; B[a]P is converted
into the ultimate carcinogenic derivative B[a]P-7,8-dihydrodiol-9,10-
epoxide (BPDE), which can covalently bind to DNA and form pre-mu-
tagenic adducts, preferentially at guanine residues (i.e. 10-(deox-
yguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-B[a]P [dG-N2-
BPDE]) (Arlt et al., 2008; Shi et al., 2016a,b). However, the majority of
reactive B[a]P intermediates is detoxified by phase II enzymes, which
convert these intermediates into water soluble metabolites. Enzymes
that are involved in this detoxification include glutathione-S-trans-
ferases (GSTs), UDP-glucuronosyltransferases (UGTs) and sulfo-
transferases (SULTs) (Ren et al., 2014; Zheng et al., 2002b). In case a
reactive intermediate reaches the DNA and forms an adduct, B[a]P-
induced DNA damage induces cell cycle arrest by activation of the
tumor suppressor protein p53 to provide enough time for removal of the
adducts by DNA repair enzymes. Regarding the bulky DNA lesions that
are induced by B[a]P, nucleotide excision repair (NER) is the most
important DNA repair pathway (Kucab et al., 2015; Verhofstad et al.,
2010).

Several studies have shown that B[a]P is capable of inducing an
inflammatory response but vice versa inflammatory mediators can also
enhance B[a]P-induced genotoxicity (Smerdova et al., 2013;
Uno &Makishima, 2009). For instance, after exposing rats in-
tratracheally to B[a]P for 2 days, lung inflammation, edema, and epi-
thelial damage was observed (Qamar et al., 2012), but additionally,
exposure to B[a]P with concommittant activation of inflammatory-re-
lated pathways, largely increased B[a]P genotoxicity via various path-
ways. These pathways included signaling that was initiated by nuclear
factor-κB (NF-κB), TNF-α, β-glucuronidase, hypoxia-inducible factor
(HIF)-1, IL-6 and IL-8 (Ji et al., 2013; Patel & Gooderham, 2015; Schults
et al., 2010; Shi et al., 2016a, 2017; Umannova et al., 2008). However,
although studies have revealed that many inflammation-related med-
iators promote B[a]P genotoxicity, an overall view on how inflamma-
tion promotes B[a]P-induced DNA damage is still missing.

In previous studies (Arlt et al., 2015; Shi et al., 2016a) we used an
animal model of inflammation (i.e. lipopolysaccharides (LPS)-treated
mice) and showed that higher B[a]P-DNA adduct levels were observed
in the lungs of LPS-treated mice that were additionally exposed to B[a]P
relative to the lungs of mice exposed to B[a]P alone (Arlt et al., 2015;
Shi et al., 2016a). In the current study, an RNA microarray analysis was
performed (mouse whole genome arrays) on lung to get an overview of
how inflammation can promote B[a]P-induced genotoxicity.

2. Materials and methods

2.1. Chemicals

Benzo[a]pyrene (B[a]P; CAS no. 50-32-8; purity> 96%) was pur-
chased from Sigma-Aldrich (St Louis, MO). All other chemicals were of
analytical purity or better.

2.2. Animal treatment

All animal experiments were approved by the Institutional Ethics
Committee and conducted in accordance with the protocols approved
by the Home Office under “The Animals (Scientific Procedures) Act

(1986)” at King's College London (Arlt et al., 2015). C57B1/6 mice
(male; approximately 8–10 weeks old, 20–25 g) were obtained from
Charles River Laboratories and kept under controlled pathogen-free
conditions and allowed food and water ad libitum. Mice were divided
into four groups as follows: Group I: control group (n = 3), mice were
nasally instilled with saline at day 0 and after 24 h, mice were in-
tratracheally instilled with tricaprylin (25 μl/mouse); Group II: LPS
group (n= 4), mice were nasally instilled with 20 μg LPS (Escherichia
coli, serotype O55:B5; 1 mg/ml; dissolved in saline) at day 0 and after
24 h, mice were intratracheally instilled with tricaprylin (25 μl/mouse);
Group III: B[a]P group (n = 4), mice were nasally instilled with saline
at day 0 and after 24 h, mice were intratracheally instilled with B[a]P
(0.5 mg in 25 μl tricaprylin/mouse); and Group IV: LPS & B[a]P group
(n = 4), mice were nasally instilled with 20 μg LPS at day 0 and after
24 h, mice were intratracheally instilled with B[a]P (0.5 mg/mouse).
All instillations were performed under anesthesia with isoflurane fol-
lowed by injection of ketamine/zylazine (1 mg/0.166 mg per mouse).
Mice were sacrificed at day 3 by intraperitoneal administration of an-
esthesia (2 g/kg body weight urethane). Lung tissue was collected and
snap-frozen in liquid nitrogen. Samples were stored at −80 °C until
analysis. The selection of the 20 μg LPS/mouse is based on our previous
study (Gungor et al., 2010) and the use of the 0.5 mg B[a]P/mouse is
based on a study published by Dr. Hashimoto who investigated the in
vivo mutagenicity of B[a]P in gpt delta mice (Hashimoto et al., 2005).

2.3. RNA isolation, purification and quality assessment

Total RNA was extracted from frozen lung tissue according to the
manufacturer's instructions, using TRIzol reagent (Invitrogen, Breda,
The Netherlands) and purified on columns using Qiagen RNeasy Micro
Kit (Qiagen, Venlo, the Netherlands). RNA concentration and purity
were assessed spectrometrically using a Nano Drop ND-1000 spectro-
photometer (Isogen, IJsselstein, The Netherlands). RNA quality was
assessed on an Agilent 2100 bioanalyzer (Agilent Technologies,
Amsterdam, the Netherlands). Microarray hybridization experiments
were only performed on RNA samples with a RNA Integrity Number
(RIN)> 8.0.

2.4. Microarray processing

Total RNA (100 ng) was labelled by a Whole Transcript Sense Target
Assay and hybridized to mouse whole-genome Affymetrix Gene 1.1 ST
arrays targeting 21,115 unique genes (Affymetrix, Santa Clara, CA).
Hybridization, washing, and scanning of all Affymetrix Genechips was
performed according to standard Affymetrix protocols. Scans of the
Affymetrix arrays were processed using the Affymetrix GeneTitan
Instrument.

Quality control was performed on raw data by assessing the signal
distribution by using scatter plot, MA-plot and a normal probability
plot. Positive (landmark) and negative (blank) spots were used in the
quality control and not used in further analyses. Normalized data were
visualized by Principal Component Analysis (PCA) for additional
quality assessment. The gene expression data have been deposited in
NCBI's Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)
and are accessible through GEO Series accession number GSE102016.

2.5. Analysis of microarray data

Microarray analysis was performed using the MADMAX pipeline for
statistical analysis of microarray data (Lin et al., 2011). Briefly, mi-
croarrays were normalized with the robust multichip average method
and probes were annotated according to Dai et al. (Bolstad et al., 2003;
Dai et al., 2005). Individual genes were defined as changed when
comparison of the normalized signal intensities showed a p ≤ 0.05 in a
2-tailed paired intensity-based moderated t-statistics (IBMT) and a fold
change of> 1.2 or<−1.2 (Sartor et al., 2006).
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A first dedicated analysis focused on genes that were selected on
basis of their known involvement in B[a]P metabolism (phase I and
phase II enzymes), DNA repair and transport of B[a]P metabolites over
the cell membrane (phase III). Meanwhile, comparison between the
gene expression changes and phenotypic assays, which were published
in previous work (Arlt et al., 2015), were made, such as Cyp1a (i.e. 7-
ethoxy-resorufin-O-deethylase [EROD] and 3-cyano-7-ethoxycoumarin
[CEC] assay), NAD(P)H:quinone oxidoreductase (Nqo1) and β-glucur-
onidase enzyme activity assays, NER capacity assay, and 32P-post-
labelling for BPDE-DNA adducts. A second approach used PCA on all
differentially expressed genes (DEGs) to identify the key variables to
distinguish the four different treatments (i.e. control, LPS, B[a]P and
LPS & B[a]P) (Raychaudhuri et al., 2000). These genes were subse-
quently analyzed for Gene Ontology (GO, http://www.geneontology.
org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG, http://
www.genome.jp/kegg/pathway.html) pathway enrichment analysis by
using the Database for Annotation, Visualization and Integrated Dis-
covery (DAVID; version 6.8, http://david.abcc.ncifcrf.gov/summary.
jsp) online software (Jiao et al., 2012). The GO function provides
ontologies to attributes of gene function in three domains, including
biological process (BP), molecular function (MF) and cellular compo-
nent (CC) (Harris et al., 2004). The KEGG pathway analysis is a soft-
ware which establishes pathway maps that contain current knowledge
on biological networks (Zhang &Wiemann, 2009). Finally, an overall
analysis was performed on the identified DEGs using DAVID.

2.6. Principal component analysis (PCA) analysis

Principal Components Analysis (PCA) was applied to separate
samples of each treatment based on the gene expression and to visualize
the distribution of the data. Before PCA analysis, a pool of 4731genes
was pre-selected on basis of the statistical significance (p < 0.05) and
fold change (> |1.2) between each type of treatment versus control. The
data for these significant genes was visualized by PCA. Further reduc-
tion of the selected genes was done by calculating the PCA loadings,
which assign a distance measure to each gene. A cut-off of 0.02 was
used to select the genes with the highest norm value as they have the
largest influence on the PCA distribution of the samples. Calculations
were performed in the Matlab™ software package (The MathWorks,
Inc., Natick, MA).

3. Results

3.1. Number of genes changed after each exposure

When compared with control, a total of 3797, 2208 and 3407 genes
were significantly (p ≤ 0.05, fold change > |1.2|) differentially ex-
pressed in LPS-exposed, B[a]P-exposed and LPS-combined with B[a]P-
exposed mouse lungs, respectively (Fig. 1). Among the 2208 genes

altered by B[a]P treatment, 1132 genes were up-regulated and 1076
genes were down-regulated. Of the 2208 genes that were differentially
expressed after B[a]P exposure, 585 were also differentially expressed
after LPS exposure, but not necessarily in the same direction. The
combined exposure to B[a]P and LPS showed overlap with exposure to
B[a]P only for 592 genes, but again not necessarily in the same direc-
tion. Finally, 318 genes were differentially expressed by all three
treatments when compared to controls.

3.2. Dedicated analysis of gene expression profiles involved in B[a]P
metabolism and DNA damage response

To gain further insight into the effect of LPS on B[a]P-induced
carcinogenesis, a list of 57 genes were derived from published literature
that indicated that these genes are involved in B[a]P metabolism, the
cellular response to B[a]P and DNA repair (Kim et al., 1998; Ghosal
et al., 2003; Moorthy et al., 2003; Arlt et al., 2015; Martignoni et al.,
2006; Guo et al., 1994; Bauer et al., 1995; Luckert et al., 2013; Trush
et al., 1991; Adams et al., 1995; Shi et al., 2009; Quinn and Penning,
2008; Kalabus et al., 2012; Stiborova et al., 2016b; Wada et al., 2013;
Shen et al., 2010a; Iskander et al., 2005; Iskander et al., 2004; Zhang
et al., 2011; Zheng et al., 2002a; Cai et al., 2010; Buckley and Klaassen,
2007; Shi et al., 2016a; Zhang et al., 2012; Shi et al., 2000; Romert
et al., 1989; Raza et al., 1991; Alexandrov et al., 2002; Lodovici et al.,
2004; Rojas et al., 2000; Saunders et al., 2006; Monari et al., 2007;
Schults et al., 2013; Gungor et al., 2007; Kunze et al., 2015; Melis et al.,
2013; Christmann and Kaina, 2013; Shen et al., 2008; Starostenko et al.,
2016; Gibbons et al., 2014; Kranz et al., 2014). We divided the gene
expression profiles into four categories, phase I metabolism, phase II
metabolism, DNA damage response (DDR) and phase III reactions. In
this analysis, we focused on the expression of LPS combined with B[a]P
versus expression by B[a]P only to establish how LPS exposure can af-
fect the B[a]P-induced gene expression changes. As shown in Table 1,
15 out of 17 genes belonging to phase I, phase II and DDR were sig-
nificantly inhibited by additional exposure to LPS compared to B[a]P
alone, including Cyp1a1, Ephx1, Nqo2, Comt, Cat, Gss, Sult1a1, Gstp1,
Gstm1, Gstt1, Gpx3, Sod3, and Ddb1. Only Xpa and Nox1 were up-
regulated by additional exposure to LPS, when compared to B[a]P ex-
posure only.

3.3. Confirmation of DEGs by phenotypic assays

The expression of several key enzymes in B[a]P metabolism and the
response to B[a]P appeared to be differentially expressed after addi-
tional exposure to LPS. In order to validate these results, the gene ex-
pression data were compared with several phenotypic assays, including
the measurement of Cyp1a activity (EROD and CEC assay), Nqo1 ac-
tivity, β-glucuronidase activity, and NER capacity (Fig. 2). Also B[a]P-
DNA adduct levels were assessed as net result of B[a]P exposure, me-
tabolism and DNA repair.

Gene expression of Cyp1a1 correlated with Cyp1a enzymes activity
as determined by both EROD and CEC assays (Fig. 2A and B).

Although gene expression of Nqo1 was not significantly (p = 0.089)
inhibited by LPS, Nqo1 enzyme activity was slightly lower (1.2-fold;
p < 0.05) in LPS & B[a]P when compared to B[a]P exposure only.
Interestingly, Nqo2 mRNA expression was significantly down-regulated
in the B[a]P & LPS group when compared to B[a]P exposure only,
which may in part be reflected in this phenotypic assay (Fig. 2C).

β-Glucuronidase is produced and released by inflammatory cells
after LPS exposure. Indeed, the β-glucuronidase activity was 1.5-fold
higher in lungs of animals that were exposed to LPS & B[a]P, and si-
milarly, the gene expression of Gusb was also 1.4-fold higher in LPS & B
[a]P-exposed lungs compared to lungs exposed to B[a]P only (Fig. 2D).

Finally, NER capacity was assessed by a modified comet assay, and
the expression of Xpa demonstrated the best correlation with this
phenotypic endpoint (Fig. 2E). Xpa showed a 1.3-fold higher gene

Fig. 1. Venn diagram, where each circle shows the number of genes significantly ex-
pressed after different treatments (e.g. LPS, B[a]P and LPS with B[a]P) versus control.
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Table 1
Summary of 57 genes that related to B[a]P metabolism and B[a]P-induced DNA damage.

Category Entrez 

ID

gene 

name

Gene description LPS&B[a]P 

versus
B[a]P

(Log2 

based)Fold 

change

t-test 

p-value

References

Phase I 13076 Cyp1a1 cytochrome P450, family 1, subfamily a, 

polypeptide 1
-4,44 0,02872

Phase I 13078 Cyp1b1
cytochrome P450, family 1, subfamily b, 

polypeptide 1
1,01 0,96422

Phase I 13077 Cyp1a2

cytochrome P450, family 1, subfamily a, 

polypeptide 2 1,04 0,79911

Phase I 13112 Cyp3a11 cytochrome P450, family 3, subfamily a, 

polypeptide 11 -1,09 0,61748

Phase I 13095 Cyp2c29 cytochrome P450, family 2, subfamily c, 

polypeptide 29 1,13 0,26600

Phase I 13095 Cyp2c38 cytochrome P450, family 2, subfamily c, 

polypeptide 38 1,18 0,05241

Phase I 17523 Mpo myeloperoxidase 1,14 0,14159

Phase I 13849 Ephx1

epoxide hydrolase 1, microsomal -1,74 0,00119

Phase I 11863 Arnt aryl hydrocarbon receptor nuclear 

translocator -1,11 0,04787

Phase I 58810 Akr1a1 aldo-keto reductase family 1, member A1 

(aldehyde reductase) 1,11 0,36576

Phase I 70861 Akr1cl aldo-keto reductase family 1, member C-like 1,02 0,74712

Phase I 12408 Cbr1 carbonyl reductase 1 -1,42 0,00165

Phase I 18984 Por P450 (cytochrome) oxidoreductase -1,49 0,00082

Phase I 237038 Nox1 NADPH oxidase 1 1,39 0,02639

Phase I 224480 Nox3 NADPH oxidase 3 -1,04 0,68945

Phase I 50490 Nox4 NADPH oxidase 4 1,03 0,87572

Phase I 18104 Nqo1

NAD(P)H dehydrogenase, quinone 1 -1,40 0,08864

Phase I 18105 Nqo2

NAD(P)H dehydrogenase, quinone 2 -1,14 0,02715

Phase I 12846 Comt catechol-O-methyltransferase -1,31 0,01349

Phase II

394436 Ugt1a1

UDP glucuronosyltransferase 1 family, 

polypeptide A1 1,44 0,12914

Phase II

394435 Ugt1a6b

UDP glucuronosyltransferase 1 family, 

polypeptide A6B 1,22 0,42449

Phase II

394434 Ugt1a9

UDP glucuronosyltransferase 1 family, 

polypeptide A9 1,11 0,75507

Phase II

394430 Ugt1a10

UDP glycosyltransferase 1 family, 

polypeptide A10 1,06 0,63962

Phase II 110006 Gusb glucuronidase, beta 1.37 0,07471

Phase II 20887 Sult1a1 sulfotransferase family 1A, phenol-

preferring, member 1 -1,50 0,03487

Phase II 20860 Sult1e1 sulfotransferase family 1E, member 1 -1,22 0,23284

Phase II 14854 Gss glutathione synthetase -1,27 0,01461

Phase II 14870 Gstp1

glutathione S-transferase, pi 1 -1,65 0,00053

Phase II 14862 Gstm1

glutathione S-transferase, mu 1 -1,99 0,00049

Phase II 14871 Gstt1 glutathione S-transferase, theta 1 -1,42 0,03348

Phase II 14782 Gsr glutathione reductase 1,19 0,14067

Phase II 14775 Gpx1 glutathione peroxidase 1 1,12 0,33496

Phase II 14776 Gpx2 glutathione peroxidase 2 -1,22 0,13192

Phase II 14778 Gpx3 glutathione peroxidase 3 -1,31 0,00163

Phase II 625249 Gpx4 glutathione peroxidase 4 1,01 0,95164

Phase II 14780 Gpx5 glutathione peroxidase 5 1,04 0,57018

Phase II 75512 Gpx6 glutathione peroxidase 6 -1,03 0,82376

Phase II 67305 Gpx7 glutathione peroxidase 7 -1,18 0,24477

Phase II 69590 Gpx8 glutathione peroxidase 8 (putative) -1,01 0,91315

Phase II 20655 Sod1 superoxide dismutase 1, soluble -1,02 0,81073

(Kim et al., 1998; Ghosal et al.,
200 3; Arltet al. , 2015)

(Kim et al., 1998; Ghosal et al.,
2003; Moorthy et al., 2003;

Martignoni et al. , 2006)

(Guo et al., 1994; Bauer et al.,
1995; Kim et al., 1998; Ghosal et
al. , 2003; Martignoniet al. , 2006)

(Ghosal et al., 2003; Martignoni et
al. , 2006; Luckert et al. ,  2013)

(Bauer et al., 1995; Ghosal et al.,
2003; Martignoni et al. , 2006)

(Bauer et al., 1995; Ghosal et al.,
2003; Martignoni et al. , 2006)

(Trush et al., 1991)

(Adams et al., 1995; Kim et al.,
1998)

(Shi et al. , 2009)

(Quinn and Penning, 2008)

(Quinn and Pennin g, 2008)

(Kalabus et al. , 2012)

(Stiborova et al. , 2016b)

(Wada et al., 2013)

(Wada et al., 2013)

(Wada et al., 2013)

(Iskander et al., 2005; Shen et al.,
2010a)

(Iskander et al., 2004; Shen et al.,
2010a)

(Zhanget al., 2011)

(Zheng et al., 2002a; Cai et al.,
2010)

(Zheng et al., 2002a; Buckley and

Klaassen, 2007)

(Zheng et al., 2002a; Buckley and

Klaassen, 2007)

(Zheng et al., 2002a; Buckley and

Klaassen, 2007)

(Shi et al. , 2016a)

(Zhang et al., 2012)

(Zhang et al., 2012)

(Shi et al. , 2000)

(Romert et al., 1989; Raza et al.,
1991)

(Alexandrov et al., 2002; Lodovici

et al. , 2004)

(Rojas et al., 2000)

(Saunders et al. , 2006)

(Saunders et al. , 2006)

(Saunders et al. , 2006)

(Saunders et al. , 2006)

(Saunders et al. , 2006)

(Saunders et al. , 2006)

(Saunders et al. , 2006)

(Saunders et al. , 2006)

(Saunders et al. , 2006)

(Monari et al. , 2007)
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expression in LPS & B[a]P-exposed animals than after B[a]P exposure
only. All other DNA repair enzymes did not have statistically significant
changes in their expression; except for Ddb1, which showed a 1.3-fold
lower expression in the LPS & B[a]P group compared to the B[a]P
group. Ddb1 was initially implicated in the process of NER, but later it
was found that Ddb1 primarily functions as a core component of E3
ubiquitin ligase complexes that regulate numerous essential processes
in the cell, including DNA repair, DNA replication and chromatin re-
modeling (Fischer et al., 2014).

Of course mRNA expression does not always reflect phenotypic ef-
fects due to posttranslational modifications, but still most phenotypic
assays in this study reflect the mRNA expression of their underlying
genes. The relationship with DNA repair is more complicated, because
of the involvement of many proteins in the NER process and NER is
mostly post-translationally regulated. DNA repair activity was (non-
significantly) up-regulated in the LPS & B[a]P group, which may be a
direct response to increased levels of DNA damage. Indeed, B[a]P-DNA
adduct levels after LPS & B[a]P exposure were 2.6-fold (p < 0.05)
higher than after B[a]P exposure only (Fig. 2F).

3.4. PCA and KEGG pathway analysis

In order to investigate the interrelationship among all four groups of
treatment, PCA was applied on all DEGs to identify those genes that
could distinguish between the various treatments (Fig. 3). Of all the
DEGs, 398 genes were identified that could differentiate between con-
trol, LPS, B[a]P and LPS & B[a]P group. To get further insights into the

pathways in which these 398 genes are involved, KEGG pathway ana-
lysis was performed. As shown in Table 2, identified pathways related
to the immune response and response to infections dominated the list of
significantly altered pathways. Since the expression of these genes
could also distinguish between control and B[a]P-exposed lung samples
this indicates that B[a]P exposure alone can already affect inflamma-
tion and vice versa.

3.5. Overall analysis of impact of LPS and B[a]P exposure: identification of
DEGs

Finally, to investigate the effect of LPS on B[a]P-induced geno-
toxicity, an unsupervised analysis was performed. DEGs had to have a
p ≤ 0.05 in a 2-tailed paired intensity-based moderated t-statistics
(IBMT) and a cut-off of fold change of> |1.2|. We filtered data and
identified DEGs by using the following criteria: 1) Genes are sig-
nificantly differentially expressed in B[a]P-exposed versus control ani-
mals; and 2) Genes are additionally significantly differentially ex-
pressed in the LPS & B[a]P group versus B[a]P group. In other words, we
focused on genes that are differentially regulated by B[a]P and their
expression is subsequently altered by the presence of inflammation.
With these selection criteria, the DEGs that were identified will not
represent an LPS effect. This resulted in a total of 971 DEGs (Fig. 4). 9
genes were down-regulated after B[a]P exposure when compared to
controls and further significantly down-regulated by the combined ex-
posure to LPS and B[a]P. Similarly, 13 genes were up-regulated by the B
[a]P group and further significantly up-regulated in the LPs & B[a]P

Phase II 20656 Sod2 superoxide dismutase 2, mitochondrial 1,16 0,49365

Phase II 20657 Sod3 superoxide dismutase 3, extracellular -1,97 0,00001

Phase II 12359 Cat catalase -1,62 0,00054

DDR

13870 Ercc1

excision repair cross-complementing rodent 

repair deficiency, complementation group 1 -1,14 0,15908

DDR

22590 Xpa

xeroderma pigmentosum, complementation 

group A 1,27 0,01806

DDR

22591 Xpc

xeroderma pigmentosum, complementation 

group C -1,03 0,79776

DDR

50505 Ercc4

excision repair cross-complementing rodent 

repair deficiency, complementation group 4 -1,02 0,84055

DDR

22592 Ercc5

excision repair cross-complementing rodent 

repair deficiency, complementation group 5 -1,04 0,60135

DDR

13871 Ercc2

excision repair cross-complementing rodent 

repair deficiency, complementation group 2 -1,10 0,31138

DDR

71991 Ercc8

excision repaiross-complementing rodent 

repair deficiency, complementation group 8 1,01 0,94476

DDR

319955 Ercc6

excision repair cross-complementing rodent 

repair deficiency, complementation group 6 1,07 0,51230

DDR

13194

Ddb1 

(Xpe) damage specific DNA binding protein 1 -1,31 0,00168

DDR 107986 Ddb2 damage specific DNA binding protein 2 1,11 0,25741

DDR

19359

Rad23b 

(Xpg) RAD23b homolog (S. cerevisiae) -1,09 0,20104

DDR 22059 Trp53 transformation related protein 53 -1,19 0,22330

DDR

16653 Kras

v-Ki-ras2 Kirsten rat sarcoma viral oncogene 

homolog 1,09 0,28840

Phase III 26357 Abcg2 ATP-binding cassette, sub-family G (WHITE), 

member 2 -1,03 0,75372

Phase III 12780 Abcc2 ATP-binding cassette, sub-family C 

(CFTR/MRP), member 2 1,02 0,75995

(Monari et al. , 2007)

(Monari et al. , 2007)

(Schultset al. , 2013)

(Gungoret al. , 2007)

(Gungoret al. , 2007)

(Gungoret al. , 2007)

(Gungoret al. , 2007)

(Gungoret al. , 2007)

(Kunze et al., 2015)

(Melis et al., 2013)

(Melis et al., 2013)

(Christmann and Kaina, 2013)

(Shen et al. , 2008)

(Starostenko et al. , 2016)

(Gibbons et al. , 2014)

(Gibbons et al. , 2014)

(Kranz et al., 2014)

(Kranz et al., 2014)

Red= up-regulated >1.2 and p<0.05

Green=down-regulated < -1.2 and p<0.05

Table 1 (continued)

Q. Shi et al. Toxicology and Applied Pharmacology 336 (2017) 8–19

12



group. In total, these 22 genes showed a synergistic effect of the com-
bined treatment. However, most DEGs (949 genes) demonstrated an
inhibition in the combined exposure. For example, 619 genes were
significantly up-regulated after B[a]P exposure when compared to

controls, but these genes were again significantly down-regulated in the
LPS & B[a]P group. Similarly, 330 genes were significantly down-
regulated in the B[a]P group compared to control, whereas up-regu-
lated in combination with LPS treatment.

3.6. Functional and pathway enrichment analysis

Due to the limited number of genes that were identified in the ‘sy-
nergistic effect’ gene set (22 genes), further analysis focused on the
‘inhibitory effect’ gene set (949 genes). We assigned the 619 genes that
were up-regulated by B[a]P but their increased expression was subse-
quently inhibited by LPS as group 1, and the other 330 genes as group
2. The list of 949 genes that were identified were analyzed using DAVID
to further explore the functions of these DEGs. The top 4 GO terms in
each Biological Process (BP), Cellular Component (CC) and Molecular
Function (MF) are presented in Fig. 5. The group 1 gene set (619 genes)
was significantly enriched in cell adhesion (35 [number of genes in-
volved], 6% [the percentage over whole gene set]), protein binding
(173, 28%), cytoplasm (250, 40%), extracellular exosome (161, 26%),
membrane (313, 51%), and lipid metabolic process (33, 5%) (for
complete analysis see Supplementary Data 1). The results for group 2

Fig. 2. In vitro assay phenotypic data were partly derived
from previously published work (Arlt et al., 2015; Shi et al.,
2016a). Expression patterns of genes that are potentially
relevant for each particular phenotypic assay are given
underneath. (A) and (B) are EROD and CEC assay respec-
tively, that mainly measure Cyp1a enzyme activity in mi-
crosomal fractions isolated from lung tissues of mice treated
with vehicle (control), LPS, B[a]P and LPS & B[a]P, re-
spectively. (C) Nqo1 enzyme activity in cytosolic fractions
from lung tissues. (D) β-glucuronidase activity in cytosolic
fractions from lung tissues. (E) NER repair capacity in tissue
extracts isolated from lung tissues. (E) B[a]P-DNA adduct
formation (i.e. dG-N2-BPDE) measured by 32P-postlabeling
in lung of mice treated with vehicle (control), LPS, B[a]P
and LPS & B[a]P. Expression data in different treatment
groups was corrected by setting control values as 1. For
each phenotypic assay, the best correlating gene was
marked in grey color. All values are given as the
means ± SD (n= 4). ND, not detected. RFU, relative
fluorescence unit. Statistical analysis of the phenotypic as-
says was performed by 2-way ANOVA, followed by Tukey's
multiple comparisons test, and the gene expression data
were analyzed by a 2-tailed paired intensity-based moder-
ated t-statistics (IBMT) (*p < 00.05 compared to mice
treated with B[a]P only).

Fig. 3. PCA analysis results of gene expressions that optimally differentiate between
control, LPS, B[a]P and LPS & B[a]P treatment.
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(330 genes) were as follows: translation (17, 5.2%), poly(A) RNA
binding (43, 13.1%) and nucleus (103, 31.4%) (for complete analysis
see Supplementary Data 2). The same groups were used for pathway
analysis by KEGG (Table 3). Group 1 genes were mainly involved in
pathways associated with adherence junction, endocytosis, focal ad-
hesion, N-glycan biosynthesis, acute myeloid leukemia, steroid bio-
synthesis, extracellular matrix (ECM)-receptor interaction, and axon
guidance. In addition, pathways related to cancer were also observed
for the group 1 gene set. On the other hand, only ‘ribosome’
(p = 0.0088) was identified in the KEGG pathway analysis for the
group 2 gene set. Thus, both analyses (GO terms and KEGG) suggest
that cell-cell adhesion and the extracellular matrix is modulated by the
combined exposure to B[a]P and LPS when compared to B[a]P ex-
posure only.

4. Discussion

It has been extensively described that B[a]P forms DNA adducts in
mouse lung which are involved in lung carcinogenesis (Zuo et al.,
2014). More recently, it has become clear that inflammation can further
increase the genotoxicity of B[a]P (Arlt et al., 2015). Because in-
flammatory signaling is complex, and the fact that inflammation can
impact on carcinogenesis at multiple levels, there is a lack of complete
understanding of how inflammation affects B[a]P-induced carcinogen-
esis and therefore more knowledge is needed to effectively intervene in
the process. To get more insight into the processes that are altered by B
[a]P exposure during acute pulmonary inflammation, we used micro-
array technology in a mouse model to identify gene expression patterns
that were affected by both stimuli. The resulting gene expression pro-
files were additionally compared with results of our previous studies
(Arlt et al., 2015; Shi et al., 2016a,b, 2017) which have measured
multiple molecular endpoints to further increase our biological

understanding of the influence of LPS on B[a]P-induced genotoxicity.
It is known that B[a]P by itself is not genotoxic because it does not

contain active groups in the molecule, but it's reactive metabolites may
contain highly reactive groups that can bind covalently to macro-
molecules (e.g. protein and DNA). A variety of enzymes are involved in
B[a]P metabolism, including enzymes encoded by Cyp1a1, Cyp1b1,
Ephx or Arnt (Hamouchene et al., 2011; Hockley et al., 2007; Zuo et al.,
2014). Since a lot of information is already available about the meta-
bolic pathways of B[a]P, targeted analysis of gene expression profiles
was performed, in which we focused on genes that are known to be
involved in B[a]P metabolism and B[a]P-induced DNA damage re-
sponse. A total of 57 genes were selected based on studies previously
published (Table 1). We directly compared the expression of these
genes in the B[a]P and LPS & B[a]P treatment group and showed that
gene expression of several key enzymes in phase I metabolism (e.g.
Cyp1a1, Ephx1, Arnt, Cbr1, Por, Nqo2 and Comt) were significantly in-
hibited by additional exposure to LPS. This may theoretically lead to
slower metabolism of B[a]P. On the other hand, exposure to B[a]P is
reported to cause gene up-regulation of various phase II detoxification
enzymes, including GSTs, UGTs and SULTs (Gelboin, 1980). In our
study gene expression of a majority of these phase II detoxification
enzymes was significantly down-regulated by prior exposure to LPS,
including Sult1a1, Gstp1, Gstm1, Gstt1 and Gpx3. In contrast our results
indicated that UGTs like Ugt1a1 and Ugt1a6 were all up-regulated by
prior exposure to LPS although these changes were not statistically
significant; UGTs are major detoxification enzymes catalyzing the
conjugation of B[a]P-7,8-dihydrodiol to glucuronides. B[a]P-glucur-
onides can be cleaved by β-glucuronidase (Gusb). Interestingly, al-
though Gusb gene expression was not statistic significantly up-regulated
(p = 0.075) β-glucuronidase enzyme activity was significantly up-
regulated in animals that were treated with both B[a]P and LPS.

Table 2
KEGG pathway analysis of genes derived from PCA analysis.

Term Count % Benjamini

Phagosome 23 5.8 4.40E−08
Herpes simplex infection 22 5.5 3.80E−06
Cell adhesion molecules (CAMs) 21 5.3 3.20E−07
Tuberculosis 20 5 4.70E−06
Regulation of actin cytoskeleton 20 5 6.30E−05
Endocytosis 17 4.3 2.00E−02
Leishmaniasis 16 4 1.10E−08
Leukocyte transendothelial migration 16 4 1.50E−05
Influenza A 16 4 6.00E−04
Focal adhesion 15 3.8 9.10E−03
Staphylococcus aureus infection 14 3.5 2.80E−08
Measles 14 3.5 7.60E−04
Antigen processing and presentation 13 3.3 3.10E−05
Osteoclast differentiation 13 3.3 1.30E−03
Viral myocarditis 11 2.8 6.20E−04
Chagas disease (American trypanosomiasis) 11 2.8 3.50E−03
Hepatitis C 11 2.8 2.20E−02
Ribosome 11 2.8 3.20E−02
Graft-versus-host disease 10 2.5 1.40E−04
Type I diabetes mellitus 10 2.5 5.50E−04
Adherens junction 10 2.5 1.30E−03
Rheumatoid arthritis 10 2.5 2.90E−03
Toxoplasmosis 10 2.5 2.20E−02
Allograft rejection 9 2.3 1.30E−03
Autoimmune thyroid disease 9 2.3 4.90E−03
Pertussis 9 2.3 6.20E−03
Toll-like receptor signaling pathway 9 2.3 3.20E−02
Arrhythmogenic right ventricular

cardiomyopathy (ARVC)
8 2 2.10E−02

Complement and coagulation cascades 8 2 2.70E−02
Prion diseases 7 1.8 1.80E−03
Inflammatory bowel disease (IBD) 7 1.8 3.00E−02
Biosynthesis of unsaturated fatty acids 5 1.3 3.20E−02

Fig. 4. Hierarchical clustering of genes in Control, LPS, B[a]P and LPS & B[a]P treated
samples. In hierarchical clustering, the red color represents up-regulation and the green
denotes down-regulation. (For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)
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Therefore, β-glucuronidase could convert glucuronided B[a]P metabo-
lites back into their active forms (Shi et al., 2016a). Due to the down-
regulation of the phase II enzymes, cells can subsequently not suffi-
ciently detoxify the active metabolites, potentially leading to more DNA
adducts. Indeed, higher levels of B[a]P-induced adducts were found in
inflamed lungs after B[a]P exposure.

In addition, Nox1 was significantly up-regulated in the LPS & B[a]P
group. Nox1 is a biomarker for cellular oxidative stress, indicating that
more ROS are produced in LPS & B[a]P-exposed animals, which may
cause additional DNA damage (Knaapen et al., 2006). It was previously
reported that ROS may inhibit NER (Hakem, 2008). However, in the
present study, out of the 11 selected NER-related genes, only Xpa and
Xpe were significantly up-regulated and down-regulated by LPS, re-
spectively. In this case, gene expression changes did not necessarily
reflect repair activity, probably because DNA repair activity is mainly
regulated at the post-translational level.

To visualize the potential phenotypic effects of gene expression
changes, we linked the gene expression profiles with phenotype data
which were published by us in our previous studies (Fig. 2). The EROD
and the CEC assay both mainly measure the activity of CYP1 family
enzymes (Krais et al., 2016; Martin et al., 2010). Using the EROD and
CEC assay we observed a significant inhibitory effect in the LPS & B[a]
P-treated animals compared to animals treated with B[a]P only; Cyp1a1
expression changes observed here correlated with the phenotype. In
contrast to Cyp1a1 gene expression and enzyme activity, the quanti-
tation of Cyp1a1 and Cyp1b1 proteins by Western blotting showed no
difference between B[a]P- and LPS & B[a]P-exposed mouse lungs (pre-
viously published data; (Arlt et al., 2015)). At this moment it is un-
known why gene expression and protein levels of these Cyp1 enyzmes
do not represent Cyp1 activity. One possible reason is the selection of a
single time point (48 h) for both measurements; Cyp1a1 gene expres-
sion is an early event whereas protein expression would be considered a
later event and enzyme activity may additionally be modulated by

posttranslational protein modification. Moreover, Cyp activity can also
be inhibited by ROS (Karuzina & Archakov, 1994a,b; Morel & Barouki,
1998), which is produced in excess by exposure to LPS, which may
provide an explanation why protein levels and enzyme activity do not
correlate.

In addition, Cyp1a1 is the most induced CYP enzyme after B[a]P
exposure in both in vitro and in vivo studies, and it is most relevant for B
[a]P metabolism (Arlt et al., 2008; van Delft et al., 2010; Stiborova
et al., 2016a). However, the role of Cyp enyzmes in B[a]P-induced
genotoxicity is still not fully elucidated. While in in vitro studies in-
creased activity of Cyp1a1 is predominantly involved in the activation
of B[a]P, paradoxically in in vivo studies it seems that Cyp1a1 is more
important for B[a]P detoxification (Arlt et al., 2008, 2012). Since the
current study was an in vivo experiment, a decreased expression of
Cyp1a1/Cyp1a1 by the presence of inflammation might indicate that
less B[a]P is detoxified. Also some for other phenotypic assays, the gene
expression pattern did not correspond directly to activity (i.e. NER and
NQO1 activity). NER is the major repair mechanism for B[a]P induced
DNA damage and the measured repair activity is the net effect of a
combination of enzymes during the NER process (recognition and in-
cision) (including Xpa, Xpc, Ercc1, Ercc2, and Ercc 4) (Schärer, 2013).
NER capacity was higher in the LPS & B[a]P group than in the B[a]P-
exposed animals or controls, but it did not reach statistical significance.
Enhanced NER activity seems logical as a reaction to B[a]P-induced
DNA damage, but due to the LPS-induced oxidative stress both ex-
pression of some NER-related genes (Fig. 2E) and activity can be in-
hibited (Langie et al., 2007). Since the level of DNA damage is de-
termined by the formation of DNA adducts and their removal, the
higher levels of DNA damage that were observed in the LPS & B[a]P
group cannot be related to changes in DNA repair activity alone.

NQO1 can protect cells against oxidative stress that is induced by
redox cycling of B[a]P-quinones (Shen et al., 2010b). The B[a]P-in-
duced activity of Nqo1 was significantly inhibited by LPS. However, in
the current study we found that Nqo2 gene expression displayed a
better correlation than Nqo1 gene expression with the phenotypic
measure of Nqo1 enzyme activity. It is possible that the phenotypic
assay is not specific for Nqo1 alone, but may additionally reflect Nqo2
enzyme activity. Interestingly, higher gene expression of Nox1 and
lower gene expressions of Nqo1 and Nqo2 might lead to higher levels of
oxidative stress in LPS & B[a]P animals than animals treated with B[a]P
or even LPS alone, further driving the inflammatory response. Indeed,
PCA analysis indicated that 398 genes could differentiate animals
among all treatment groups (control, LPS, B[a]P and LPS & B[a]P), and
most of these genes are known to be involved in immune response and
inflammation (Table 2). Interestingly, both B[a]P and BPDE have been
reported to induce inflammation and immune responses in both in vitro

Table 3
KEGG pathway enrichment analysis of DEGs.

Term Count % Benjamini

Functional annotation for
619 genes

Pathways in cancer 26 4.2 2.40E−02
Endocytosis 24 3.9 2.40E−03
Proteoglycans in cancer 17 2.7 2.60E−02
Focal adhesion 16 2.6 4.70E−02
Axon guidance 14 2.3 1.60E−02
Adherens junction 12 1.9 3.20E−03
ECM-receptor interaction 11 1.8 2.00E−02
N-Glycan biosynthesis 8 1.3 2.30E−02
Acute myeloid leukemia 8 1.3 4.50E−02
Steroid biosynthesis 6 1 1.40E−02
Thyroid cancer 6 1 4.40E−02
Functional annotation for

330 genes
Ribosome 10 3 8.80E−03

Fig. 5. The numbers of genes and the percentage over whole gene set in each enriched GO
terms that were identified for group 1 gene set (619 genes) (A) and group 2 gene set (330
genes) (B). Dark bar represents Biological Process (BP); Grey bar represent (Cellular
Component) and light grey represent Molecular Function (MF).
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and in vivo studies (Dreij et al., 2010; Qamar et al., 2012). These data
suggest that genes involved in inflammation may be key determinants
in B[a]P-induced genotoxicity.

To further analyse the data in an unsupervised approach we iden-
tified DEGs on the basis of 2 criteria: 1. They were altered in expression
by B[a]P exposure and 2. The additional exposure to LPS modified their
gene expression. This resulted in genes that mainly displayed an in-
hibitory effect (i.e. gene expression initially changed by B[a]P but again
altered towards controls in the presence of inflammation), and we
subsequently performed GO and KEGG enrichment analysis on gene set
group 1 (619 genes, initially up-regulated by B[a]P) and 2 (330 genes,
initially down-regulated by B[a]P) via the online tool DAVID. Among
the GO terms identified for the Group 1, the majority of genes were
involved in cellular components: membrane (313 genes), cytoplasm
(250 genes) and extracellular exosome (161 genes). These cellular
components are essential for maintaining cellular intactness and in-
teraction between cells (Edgar, 2016; Tekpli et al., 2010). Many of these
genes were related to cell adhesion. Cell adhesion plays a significant
role in inhibiting the processes in multistage carcinogenesis, cancer cell
local invasion and metastasis (Bremnes et al., 2002). However, our data
indicate that inflammation (induced by LPS treatment) inactivated cell
adhesion, which may further stimulate lung cancer development that
was initially induced by B[a]P. For the group 2 gene set (initially down-
regulated by B[a]P), genes related to ‘RNA translation’ processes were
identified. This was unexpected because it is known that B[a]P can
enhance its own bio-activation by inducing gene expression (e.g.
Cyp1a1, Cyp1b1 and Mpo) via binding to xenobiotic-response elements
in the nuclear DNA (Schults et al., 2013). This should lead to increased
RNA production and subsequent translation. It is possible that part of
the phenotypic inhibition is due to a slower translation of mRNA into
functional proteins. However, it should be noted that we measured RNA
expression at 48 h after B[a]P exposure, and at that time point the
largest part of B[a]P may already be metabolized and removed. LPS
inhibited the metabolism of B[a]P and therefore we might detect a

delayed effect of B[a]P in the lung in the presence of LPS. Another
possibility could be that LPS inhibited the down-regulation of genes
involved in RNA translation.

The KEGG pathway enrichment analysis showed similar results as
the analysis of GO terms. For example, pathways involved in en-
docytosis and adherens junction were identified for the group 1 gene set
and pathways involved in ribosome function was found for the group 2
gene set. Besides that, several pathways related to cancer were observed
for group 1 genes. Specifically, genes related to cytokine-cytokine re-
ceptor interaction, Wnt signaling pathway and mitogen-activated pro-
tein kinase (MAPK) signaling pathway were found. Moreover, the
endpoint of these pathways all point to cell proliferation and differ-
entiation. This might provide additional evidence for the delayed effect
of B[a]P due to prior LPS exposure; after exposure to B[a]P for 48 h,
cells are recovering from the B[a]P-induced damage by modulating cell
cycle, DNA repair, and cell proliferation and differentiation (van Delft
et al., 2010). But, in the presence of LPS, all of these normal cellular
responses after B[a]P exposure are inhibited and may happen at or later
than 48 h after the exposure to B[a]P.

The current study has some limitations that need to be mentioned.
Firstly, the RNA microarray was performed on RNA derived from whole
mouse lung. Therefore, part of the gene expression changes may be
related to the influx of inflammatory cells into the lung. For instance,
increased expression and activity of beta-glucuronidase is probably not
due to increased expression of this gene in lung epithelial cells, but may
be due to the fact that activated inflammatory cells expressing this gene
are present in higher amounts in the lung after LPS exposure.
Nevertheless, the gene expression changes observed in the current study
still give an indication for the general underlying mechanism(s) and
help to understand why the presence of inflammation in the lung leads
to higher levels of DNA damage. Secondly, the effect of LPS treatment
was not directly included in in the selection of DEGs. Therefore, some of
the DEGs that were selected based on our criteria may be related to an
LPS effect only. Indeed, we showed that over 50% of the DEGs in the

Fig. 6. Proposed alternation of B[a]P metabolism pathway
after initial LPS-induced inflammation. This pathway is
based on our transcriptome analysis together with previous
phenotypic analyses, suggesting that LPS inhibits Cyp1a1,
epoxide hydrolase, GSTs, SULTs. Although UGTs are up-
regulated by LPS, β-glucuronidase, which could convert
UGTs conjugated Ba]P metabolites into their free form, is
also up-regulated. Finally, LPS enhanced the B[a]P-induced
DNA damage by forming BPDE-DNA adducts.
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LPS and LPS & B[a]P group overlap (Fig. 1). However, since it was not
the focus of our study to investigate a pure LPS effect on gene expres-
sion, these data are not shown but all gene expression data have been
deposited online and can be accessed.

Last but not least, the animals were sacrificed at one single time
point after exposure. Indeed, 48 h may be too late for assessing very
early B[a]P metabolic events, but in our previous studies in which we
exposed rodents to B[a]P, highest DNA adduct levels were always found
at approximately 2 days after the exposure (Arlt et al., 2015). There-
fore, to investigate cellular effects at the highest level of DNA damage,
48 h was chosen as exposure time point.

5. Conclusion

Many previous microarray studies have investigated the effect of B
[a]P exposure in vitro and in vivo, and we confirmed these results by
showing that B[a]P can disrupt cholesterol (steroid) metabolism, DNA
repair and cell cycle at 48 h after exposure. The additional treatment to
LPS is less well studied, but may mimic real life situations much better,
because many types of environmental exposures (e.g. cigarette smoke,
vehicle exhaust, ambient air particulate matter) not only result in the
exposure to PAHs but are also capable of inducing inflammation.
Combined exposure of mice to LPS and B[a]P resulted in a complex
gene expression response which pointed towards delayed metabolism of
B[a]P. Although the expression of genes that code for enzymes that are
known to activate B[a]P were inhibited by inflammation, genes of en-
zymes in phase II detoxification reactions were also down-regulated by
LPS (Fig. 6). Consequently, exposure to LPS seems to slow down B[a]P
metabolism and this leads to a prolonged exposure of lung cells to B[a]
P. As a consequence higher B[a]P-DNA adduct levels were observed in
mouse lung after 48 h of exposure. Additionally, our analysis indicated
that cell-cell communication is disturbed which is important for the
process of lung carcinogenesis. Overall, our data support the idea that
the combined exposure to PAHs and inflammation will lead to an in-
creased risk for developing lung cancer.
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