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ABSTRACT

Molecular mechanisms of bacterial chromosome
packaging are still unclear, as bacteria lack nucle-
osomes or other apparent basic elements of DNA
compaction. Among the factors facilitating DNA con-
densation may be a propensity of the DNA molecule
forfolding due to itsintrinsic curvature. As suggested
previously, the sequence correlations in genome
reflect such a propensity [Trifonov and Sussman
(1980) Proc. Natl Acad. Sci. USA, 77, 3816-3820]. To
further elaborate this concept, we analyzed position-
ing of A-tracts (the sequence motifs introducing the
most pronounced DNA curvature) in the Escherichia
coli genome. First, we observed that the A-tracts
are over-represented and distributed ‘quasi-regularly’
throughout the genome, including both the coding
and intergenic sequences. Second, there is a
10-12 bp periodicity in the A-tract positioning indic-
ating that the A-tracts are phased with respect to
the DNA helical repeat. Third, the phased A-tracts
are organized in ~100 bp long clusters. The latter
feature was revealed with the help of a novel
approach based on the Fourier series expansion of
the A-tract distance autocorrelation function. Since
the A-tracts introduce local bends of the DNA duplex
and these bends accumulate when properly phased,
the observed clusters would facilitate DNA looping.
Also, such clusters may serve as binding sites for
the nucleoid-associated proteins that have affinities
for curved DNA (such as HU, H-NS, Hfq and CbpA).
Therefore, we suggest that the ~100 bp long
clusters of the phased A-tracts constitute the ‘struc-
tural code’ for DNA compaction by providing the
long-range intrinsic curvature and increasing

stability of the DNA complexes with architectural
proteins.

INTRODUCTION

Multi-level DNA packaging in a bacterial nucleoid involves
concerted interactions between genomic DNA, architectural
proteins and RNA (1-4). It has been suggested that at higher
levels of organization, topologically independent segments of
genomic DNA (domains of supercoiling) are packaged into
the rosette-like structure (1,5,6). However, this packaging
mode cannot account for the total DNA compaction ratio
(103—104) in bacteria (7,8). Hence, some lower levels of nuc-
leoid organization should play a significant role in DNA con-
densation. The spatial organization of bacterial DNA at these
levels remains unknown as bacteria lack apparent packaging
subunits, such as nucleosomes in eukaryotes.

Among the factors facilitating DNA folding may be a
propensity of DNA to form small coils and loops due to its
sequence-dependent intrinsic curvature, in other words—
a ‘structural code’ encrypted in the DNA sequence (9,10).
Indeed, if the intrinsically curved DNA fragments were posi-
tioned periodically in phase with the DNA helical repeat of
10-11 bp, the local DNA bends would accumulate, causing
formation of nearly planar arcs or open loops (11). Presence
of the DNA loops at specific positions in genome would
facilitate DNA packaging in a ‘programmed’ manner. Note
that the DNA loops, typically containing ~10% bp, play
important role in gene regulation in bacteria [see (12,13)
for review].

The mono- and dinucleotide 10-11 bp periodicities were
observed in genomic DNA in a number of studies, starting
with a pioneering work by Trifonov and Sussman (14-17).
Initially, these periodicities were associated with the DNA
folding in eukaryotic nucleosomes (14). Later, it was shown
that the coding sequences from both pro- and eukaryotic gen-
omes are similar in this regard and an alternative interpretation
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was suggested (15), connecting such periodicities with the
3.6 amino acid periodicity observed in the protein o-helices
(as 3.6 amino acid periodicity ‘translates’ into 10.8 bp
periodicity in the coding DNA sequences).

However, it remains unclear how frequent are these ‘peri-
odically organized” DNA fragments in various genomes.
Can these periodicities play a major role in DNA packaging?
Do such fragments have a certain characteristic length (which
would define the size of the DNA loops mentioned above), or
are their lengths distributed in a statistically independent
manner? So far, the latter question has been addressed only
qualitatively, based on the ‘visual’ inspection of the genomic
sequence periodicities (18). One of the reasons for this limita-
tion is the absence of a rigorous quantitative procedure to
estimate the ‘length’ of a sequence periodicity. We suggest
such a procedure here and apply it to the analysis of the
sequence periodicities in Escherichia coli and other bacterial
genomes.

Another ambiguity existing in the literature is related to the
distribution of the intrinsically curved DNA fragments
between various functional regions in genome. Using various
DNA bending models, it was predicted that in the intergenic
regions, especially in promoters, the DNA curvature is stron-
ger on average than in the coding sequences (19-22). [The
role of curved DNA elements in gene regulation has been
extensively reviewed in (23-25)]. However, the 10-11 bp
periodicities, which may contribute to the long-range ‘system-
atic’ DNA bending and folding, are present (and were first
discovered) in the coding regions (14,15). As the coding
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sequences constitute a bulk of the bacterial genome, the curved
fragments have to be omnipresent in the coding regions in
order to play a role in the genome packaging. The question
if this is the case remains open.

The best-known motifs causing intrinsic DNA bending (or
curvature) are the A-tracts, defined as the sequences A,T,,
(26-31). The largest DNA bends are produced by periodically
repeating 4-8 bp long A-tracts (30,31) separated by ‘quasi-
random’ (predominantly GC-rich) DNA fragments, such that
the overall sequence period is close to the DNA helical repeat,
10.5 bp (or its multiple).

There are several alternative models describing the A-tract-
induced curvature of DNA, reviewed recently in (25,32). Two
of them are used most frequently: the A-tract (30,31,33) and
the non-A-tract (34-36) models. These models differ in
stereochemical details (such as the sequence-dependent
inclination of base pairs in solution), which are still a subject
of heated discussion. However, one important fact is estab-
lished unambiguously: when an A-tract is surrounded by
‘quasi-random’ DNA fragments, the directionality of bending
is consistent with the ‘bending vector’ being directed into the
minor groove approximately in the center of A-tract (30,31)
(see Figure 1A). Our analysis of the A-tracts phasing in
genomic sequences is based on this observation.

Another sequence motif, G-tracts (G,C,,), is associated
with DNA bending into the major groove, especially in the
presence of divalent cations (37,38). To focus on the strongest
possible ‘structural signals’ in the DNA sequence, we restric-
ted our analysis to the distribution of the A- and G-tracts.
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Figure 1. Schematic representation of the procedure used to calculate the ‘A-tract curvature’ for a DNA segment. (A) The A-tracts (shown in blue) interspersed with
‘random’ sequences (shown in gray) cause local DNA bending. Each bend is represented by a vector directed into the minor groove in the center of an A-tract, with
the length proportional to the bending angle. (B) View along the DNA axis: the resulting ‘curvature vector’ (in red) is the vector sum of the A-tract bending vectors.

The A-tract curvature was determined as the length of this vector.



We show that the distribution of the two types of tracts is
strikingly different—the A-tracts are abundant and omnipres-
ent, while the G-tracts are under-represented in the bacterial
genomes. In addition, the distribution of the A-tracts is highly
non-random and ‘quasi-periodic’, and thus is likely to con-
tribute to the DNA packaging.

METHODS

The A-tracts are defined as the sequences A,T,, where
4 < (n 4+ m), i.e. A-tracts comprise the dimeric steps AA:TT
and AT, but not TA. Similarly, G-tracts are the sequences
G,C,,, where 4 < (n + m). Only those A- and G-tracts
were taken into account that cannot be extended further. In
particular, the sequence A,T,, was counted as an A-tract if it
occurred in the context BA,T,,V (both m, n # 0), or BA,B
(n#0,m=0)or VT,V (m # 0, n = 0), where B # A and
V #T.

To describe the distribution of A- and G-tracts, the distance
autocorrelation function (DAF) was used, similar to that intro-
duced earlier (14,15). This function, F(x), represents the num-
ber of the pairs of A-tracts with distance x between their
centers (Figure 2). The F(x) values were calculated as follows.
If the distance x is integral (e.g. x3 = 20 in Figure 2), then F(x)
is increased by 1. Otherwise, the function values for the two
nearest integers, x + 0.5 and x — 0.5, are increased by 0.5. In
the example given in Figure 2, two distances are non-integral,
x; = 9.5 and x, = 10.5. Accordingly, the values F(9) and
F(11) are increased by 0.5, while F(10) is increased by
0.5 + 0.5 = 1. By analogy, the same procedure was applied
to the G-tracts.

The resulting function F(x), defined for the integral argu-
ments x, was expanded into the Fourier series (39) of N fre-
quency harmonics with coefficients A;, 0 < j < N — 1. Here,
the magnitude of a zero frequency component, Ay, is the aver-
age value for the function F(x), and the rest of the coefficients
A;(j=1,2,3...) are the magnitudes of the higher-frequency
components. Next, we calculated the ‘intensity’ of each
non-zero frequency component, A; = [A;|// S0 Al
which characterizes a contribution of this component (with
a period N/j) to the net oscillation of the autocorrelation
function.

To introduce a measure of the A-tracts phasing within a
given DNA segment, the following procedure was applied.
The bends caused by A-tracts were represented by vectors
going through the centers of the A-tracts and pointing toward
the minor groove (Figure 1A); see Introduction and refs
(30,31). Then, the ‘2D vector sum’ of the bending vectors
was calculated and the net A-tract curvature, K, was obtained

...GTAATTGCTGCTTTTTAGCTCAAATTTCGT...

x;=9.5 x,=10.5

x;=20

Figure 2. A scheme illustrating definition of the DAF for A-tracts (underlined).
The distances between the tract centers, x;, are in base pairs. If the length of an
A-tract is odd (e.g. As), its center coincides with the central base pair. If the
A-tract length is even (e.g. AATT), its center is placed between the base pairs
of its central dimeric step.
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as the length of the resulting vector (Figure 1B):

)7 172

2
K= ( Z o cos(co,)) + ( Z o sin(wi)> , 1

where 0,; is the bending angle for the i-th A-tract, w; is the net
DNA twisting between the i-th and the first bending vectors
(Figure 1B). This simplified procedure is similar to those used
previously for the analyses of the physical properties of both
DNA (40) and protein (41) sequences. Note that the ‘2D vector
sum’ defined above does not represent actual equilibrium
curvature in a DNA segment, but rather is a measure of the
A-tracts phasing, and as such it serves the purposes of the
present study. Furthermore, the ‘direct’” summation of the A-
tract bends in the 3D space—rather than using 2D vector
sum’—would require introducing at least 10 more parameters
into the model (wedge angles at each dinucleotide step). Such
an approach would make the A-tract curvature estimation
less reliable (25).

Among various A-tracts, the bend angle is known to be the
largest for the Ag-tract, estimated as 17-21° from cyclization
experiments (42). The bend angle magnitude depends on the
ionic conditions, specifically on the concentration of divalent
cations Mg®" (43). Topological measurements of supercoiled
DNA under the ionic conditions comparable with physiolo-
gical conditions (in the presence of Mg”") found the Ag-tract
bend angle to be 22° at room temperature (44). Thus, we
consider a value 20 + 2° to be the best current estimate
of the DNA bending per Ag-tract. Based on the quadratic
relationship between the gel retardation and the DNA bending
angle per helical pitch (30), we used the following bend
angles: 20° for the 5-6 bp A-tracts, and 15° for the 4 and
7 bp long A-tracts. An additional assumption here is that
the DNA bending angle is the same for all A,T,,-tracts
with a given length (m + n), i.e. Ag and A3T; are assumed
to produce the same DNA bending (25,28). Approximate
magnitudes of the A-tract bends are suitable for estimating
the degree of A-tract phasing.

The genome of E.coli K-12 MG1655 (and other bacterial
genomes used in the present study) was retrieved from the
GenBank of the National Center for Biotechnology Informa-
tion (ftp://ftp.ncbi.nih.gov/genbank/genomes). The coding and
intergenic regions were determined according to the GenBank
annotations [coding DNA sequence (CDS) coordinates]. As
the bacterial genomes have very few introns, they were omit-
ted from our analysis. For comparison, the ‘random’ sequences
were generated, with the same nucleotide composition as in
the corresponding genome. The results for genomic sequences
were compared with the corresponding means over 10 imple-
mentations of the independently generated random sequences;
the corresponding variances were used to evaluate statistical
significance of the differences.

RESULTS
Occurrences of the A- and G-tracts

First, we calculated the numbers of occurrences of the A- and
G-tracts of different lengths in the E.coli genome (Table 1) and
compared them with the corresponding values for random


ftp://ftp.ncbi.nih.gov/genbank/genomes
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Table 1. Occurrences of the A- and G-tracts of different length in the E.coli
genome and in the coding sequences, CDS*

Tract length (bp) A-tracts (A, T,,) G-tracts (G,C,,)

Genome CDS Genome CDS
4 51603 41360 37904 33814
5 23384 18832 8446 7403
6 8603 6306 1624 1380
7 2794 1858 315 241
8 999 661 41 23
9 227 138 3 2
10 28 17 2 2

“The length of A- and G-tracts is defined as (n + m).

occurrence ratio (genome / random)

tract length, bp

Figure 3. Relative occurrences of the A- and G-tracts in the E.coli genome.
Given are the ratios of occurrences in genome to the average occurrences in 10
random sequences of the same base composition. Over-representation of the
genomic A-tracts (A, T,,) is statistically significant (P < 0.001, ¢-test) for the
lengths (n + m) = 5-9 bp. Black lines with filled symbols represent the data
for the entire genome and the red lines with open symbols represent the data for
the coding sequences only (CDS). The A-tracts (solid lines with squares) are
over-represented in the genome, while the G-tracts (dashed lines with circles)
are under-represented (see Table 1 for the absolute numbers).

sequences (Figure 3). Notice that the G-tracts are under-
represented (Figure 3), the ratio ‘genome/random’ being as
low as 0.1 for the tract length of 10 bp. In contrast, the short
A-tracts are over-represented, with the ‘genome/random’ ratio
reaching its maximum for 8 bp long tracts (both for the entire
genome and for the CDSs). In terms of the absolute numbers,
the situation is different (Table 1)—the main contribution
to the total number of A-tracts comes from the shorter
A-tracts. Therefore, when analyzing the distances between
the tracts, we restricted ourselves to the 4-7 bp long A-
and G-tracts.

Distance autocorrelations of the A- and G-tracts

In Figure 4, the distance autocorrelations of the A- and
G-tracts in the E.coli genome are compared with those in
random sequences. There are several features distinguishing
the distributions of these tracts in the genome. First, the ‘dis-
tance occurrences’ for the genomic A-tracts (Figure 4A, solid
lines) are 2-3 times higher than for random sequences (dotted
lines), while the situation is reverse for G-tracts (Figure 4B).

A A-tracts in E. coli genome
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Figure 4. Distance autocorrelations of the (A) A-tracts and (B) G-tracts in the
E.coli genome. The tract lengths vary from 4 to 7 bp; therefore, the distances
between the tracts are considered to be 7 bp and larger. The data for the genomic
DNA are represented by solid lines, and those for random sequences by dotted
lines. Both genomic and random sequences have [G 4+ C] = 51%. Note that in
random sequences, the average occurrence of the A-tracts is somewhat less than
that of the G-tracts [see the arrows in (A) and (B), respectively]; this is con-
sistent with the GC-content exceeding 50%. The genomic DNA reveals an
opposite trend: the absolute numbers for the A-tracts (A) are three times higher
than those for the G-tracts (B). Also, periodicity of 10—12 bp is seen in the
positioning of the peaks for the A-tracts [numbers in (A)], while no apparent
regularity is seen for the G-tracts. The peaks in (A) marked with blue numbers
are out of phase with the peaks marked with red numbers (see the main text).

These trends are consistent with the over-representation of
A-tracts and under-representation of G-tracts in the genome
(Figure 3). Second, the magnitudes of the oscillations are
larger for the A-tracts than for the G-tracts. Third, there is an
apparent 10—12 bp periodicity in the peak positioning for the
A-tracts (cf. red numbers in Figure 4A), while the G-tract
peaks do not reveal any kind of regularity (Figure 4B). Finally,
the absolute values of occurrences decrease with the distance
quite noticeably for the A-tracts, but not for the G-tracts. This
indicates that the A-tracts are not evenly positioned throughout
the genome but are grouped together, so that these A-tracts are
more frequently separated by short than by long distances (will
be discussed in detail below). If the A-tracts were distributed
randomly, there would be no decrease in their occurrences
with the distance, since the probabilities of finding two
A-tracts separated by 20 or 200 bp are the same. Indeed, no
such decrease was observed for random sequences (Figure 4A,
dotted line).



Overall, the distance autocorrelations of the A-tracts in the
genome differ principally from those in random sequences. At
the same time, the G-tract autocorrelations calculated for the
genome and for random sequences are quite similar, indicating
that the genomic G-tracts are distributed quasi-randomly.
Therefore, further analysis is concentrated solely on the
A-tract distribution.

Fourier analysis of the distance autocorrelations

To quantify periodic patterns in the A-tract autocorrelation
function, DAF, the Fourier transform technique was used.
We calculated the intensities of Fourier harmonics (periodicit-
ies) as a function of the oscillation period (see Methods for
details). In short, the intensity of a certain periodicity repres-
ents the relative contribution of this periodicity into the net
oscillating component of the initial function. As mentioned
above, the DAF wvalues vary significantly with distance
(cf. magnitudes of the peaks in Figure 4A for the distances
shorter than 100 bp and for those longer than 100 bp). There-
fore, we analyzed the A-tract autocorrelations in two data
intervals (sampling windows) separately: (i) the ‘first 100 bp’
window, with the distances between the A-tracts from 7 to
106 bp and (ii) the ‘second 100 bp” window, with the distances
from 107 to 206 bp. (The minimal distance analyzed, 7 bp,
corresponds to the shortest distance between the centers of
two non-overlapping 7 bp A-tracts.)

Consider the results of the Fourier series expansion of the
A-tract DAF in the ‘first 100 bp’ window (Figure 5A, solid
line). These results reveal a strong periodic pattern: there are
two main peaks in the intensity plot at 3 and 11.1 bp, repres-
enting two major non-zero harmonics. Notice that the sum
of these two harmonics reproduces the oscillatory behavior
of the DAF remarkably well, accounting for every local
maximum in its irregular profile (Figure 5B). Similar peaks
were observed in the previous analyses of the mono- and
dinucleotide autocorrelations in bacterial genomes [reviewed
in (9)]. The 3 bp periodicity is related to the protein coding
(14), and the 11.1 bp periodicity apparently reflects the phas-
ing of the A-tracts along the DNA helix, because it suggests
the frequent occurrence of the distances between the A-tracts,
which are close to the DNA helical repeat (~10.5 bp) or its
multiples.

Since the ‘spectral resolution’ is relatively low when only
100 data points are used in the Fourier transform, we have
expanded the DAF over a larger interval of distances (up to
1200 bp) to achieve a higher ‘resolution’. The results did not
change principally; however, the 11.1 bp peak has decom-
posed into several peaks between 10 and 12 bp, with two
main peaks at 10.6 and 11.2 bp (resolution +0.1 bp; data
not shown). Therefore, here and below, we refer to the
11.1 bp peak in the intensity plot as the 10-12 bp peak.

Next, we consider the results of the Fourier analysis of
the A-tract DAF in the ‘second 100 bp” window (Figure 5A,
dotted line). The 10-12 bp peak disappears, while the 3 bp
peak retains nearly the same amplitude. The change in the
amplitude of the 10-12 bp periodicity is clearly visible in
Figure 5C, where the sums of the zero frequency and 11.1 bp
harmonics are plotted against the ‘first” and the ‘second 100 bp’
data intervals. Based on these results, we conclude that the
10-12 bp periodicity, or the A-tract helical phasing, is strongly
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Figure 5. Relative contributions of the periodicities into the net oscillating
component of the A-tract autocorrelation function, DAF. (A) Intensity of the
periodicity as a function of its period. Results were obtained by expanding the
DAF (Figure 4A, solid line) into the Fourier series (see Methods for details).
Calculations were performed for two data sets (sampling windows): solid line—
the “first 100 bp’ (the DAF values for the distances 7-106 bp) and dotted line—
the ‘second 100 bp’ (the DAF values for the distances 107-206 bp). Note that the
peak at 11.1 bp is present only for the first window, while the peak at 3.0 bp
is present for both windows. (B) Superposition of the zero frequency, 3.0 and
11.1 bp harmonics (solid line) is plotted against the DAF (dotted line). Note that
the two non-zero harmonics are sufficient to reproduces the ‘spiky’ behavior of
the autocorrelation function. (C) Superposition of the zero frequency and the
11.1 bp harmonics with the intensities calculated for the ‘first’ and the ‘second
100 bp’ windows (solid line) are plotted against the corresponding intervals of
the DAF (dotted line).
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pronounced for the distances up to ~100 bp, but vanishes
when the distance increases up to 200 bp.

The A-tract periodicity length

To determine the characteristic length of the A-tract phasing,
we used the ‘sliding’ window technique. Namely, we analyzed
how the intensity of the 10—12 bp periodicity changes when the
sampling window (in which DAF was expanded into Fourier
series) gradually moved from the ‘first 100 bp’ (strong
10-12 bp peak in the intensity plot, Figure 5A) to the ‘second
100 bp’ (weak 10-12 bp peak). This procedure is illustrated in
Figure 6A, where it is applied to a simple test function, f{x),
representing an ideal sine wave with period of 10 arbitrary
units (au) in the interval 1 < x < 100 and a constant for
x > 100. In this case, the 10 au harmonic intensity changes
from one to zero, diminishing 2-fold at such a position of
the sampling widow, when the left half of the window contains
a perfect sine wave, and its right half contains a constant
function. Accordingly, the position of the window center cor-
responds to the periodicity length, which is 100 au for the test
function.

To examine how the size of the sampling window affects the
results, we used three window sizes: 80, 100 and 120 au. The
half-drops in the intensity occur at 100 au—as expected—for
the 80 au (dotted line) and 100 au (solid line) sampling win-
dows. In the case of the 120 au window (dashed line), the
intensity plot does not reach the plateau at the beginning,
because the window size is larger than the periodicity length.
As a result, the intensity half-drop point is slightly shifted
to the higher lengths (Figure 6A). Thus, in order to estimate
the periodicity length correctly, one has to consider several
window sizes and select those for which the plateau at the
beginning of the plot is observed.

Next, we applied the described procedure to the genomic
A-tract DAF. The calculated dependence of the intensity of
10-12 bp periodicity on the position of the sampling window
is shown in Figure 6B. Again, the windows of three sizes have
been used: 80, 100 and 120 bp. Overall, the plots have the
shapes similar to those calculated for the test function
(Figure 6A). In the case of the 80 and 100 bp windows, the
‘intensity versus window position’ plots have plateaus at the
beginning, validating usage of these windows for determining
the periodicity length. Our procedure for the 80 and 100 bp
windows gives an estimate of this length, which is ~100 bp. In
the case of 120 bp window, wherein plateau at the beginning of
the plot is absent, the half-drop of intensity is also close to
100 bp. Taking into account complexity of the genomic
sequence and the consequent irregular oscillations of the
A-tract DAF, we consider this value as a plausible assessment
of the characteristic length of the A-tract phasing in the E.coli
genome.

The presence of a broad intensity maximum in the range of
170-210 bp (Figure 6B) can be interpreted as follows. There
are two groups of peaks in the A-tract DAF (marked with red
and blue numbers in Figure 4A). The peak-to-peak distances
within each group are multiples of 10—12 bp (the peaks are
phased), but there is no correlation between positioning of the
‘red’ and ‘blue’ peaks. Also, the ‘red’ and ‘blue’ peaks are not
correlated with the peaks in the range 110-170 bp. Accord-
ingly, when the sampling window moves out of the region of
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Figure 6. Intensity of an oscillating component as a function of the sampling
window position. The window positioning step was 10 bp. Three sizes of the
sampling window were used: 80 bp (dotted black lines), 100 bp (solid red lines
with circles) and 120 bp (dashed blue lines). (A) Intensity of the 10 au peri-
odicity for the test function: fix) = 5 — 2cos(2mx/10) for 1 < x < 100 and
fix) = 3forx > 100 (‘au’ stands for arbitrary units; the test function is shown in
the inset). Using all three window sizes results in a similar drop in the intensity
when the window slides out of the periodicity range (from 1 to 100 au for the test
function). When the window size is smaller than the periodicity length, a plateau
precedes the drop, otherwise there is no such a plateau. The length of the
periodicity can be evaluated as a half-height of the intensity drop (shown with
an arrow). (B) Intensity of the 10—12 bp periodicity for the A-tract DAF. The
periodicity lengths (shown with the arrows) amounted to ~100 bp for all three
sizes of the sampling window. Possible origin of the second maximum in the
range of 170-210bp is discussed in the text. (C) Intensity of the 3 bp periodicity
for the A-tract DAF. Note that there is no drop in the intensity within the first
500 bp.



the ‘red’ peaks, there is a drop in the intensity of 10-12 bp
periodicity, and when the ‘blue’ peaks get into the sampling
window the second intensity maximum appears. This finding
implies that the groups of independently phased A-tracts (or
the A-tract clusters) are often located close to each other, with
the distance between the cluster centers being ~200 bp.

As a control, we applied the same procedure to the intensity
peak at 3 bp, to find out the length of periodicity in this case
(Figure 6C). Since the 3 bp periodicity is believed to be asso-
ciated with the protein coding (14) one would anticipate that
its characteristic length is close to an average gene length
(~1000 bp in the case of E.coli). As expected, the 3 bp peri-
odicity expands much further than does the 10-12 bp period-
icity, and a noticeable drop in the intensity is observed in the
range of 800—1000 bp.

Summarizing, our results indicate that the A-tracts are not
distributed randomly in the genome, but rather are grouped
into clusters containing several A-tracts phased with respect
to each other. The characteristic length of such clusters is
~100 bp. Next, we tackle the distribution of these clusters
in the E.coli genome, focusing on the comparative analysis of
the coding and regulatory regions.

The A-tract clusters in the coding and intergenic regions

To analyze the distribution of the phased A-tracts in the
genome, we calculated the ‘A-tract curvature’ in the sliding
100 bp windows (Figure 7). As described in Methods, this
parameter characterizes the number of A-tracts and the degree
of their phasing in a window. The 100 bp window corresponds
to the characteristic length of the clusters of phased A-tracts as
estimated above.

Two important inferences follow from the data presented in
Figure 7A. First, the phased A-tract clusters are abundant in
the genome. In particular, there are ~9000 non-overlapping
clusters with the curvature >40°, compared with ~3000 such
clusters in random sequences of the same base composition
(data for random sequences are not shown). Notice that the
A-tract curvature of 40° requires the presence of at least two
phased 5-6 bp A-tracts in a window. The average peak-to-peak
distance is ~500 bp for peaks >40° in the genome, compared
with ~1500 bp in a random sequence (calculated from the data
shown in Figure 7A and the data for random sequences).

Second, many DNA fragments that are noticeably curved
due to the presence of the phased A-tracts are located inside
CDS regions (Figure 7A, red bars). About 70% of the A-tract
curvature peaks >40° lie in the CDS; the net number of such
curved DNA fragments in CDS exceeds 2.5 times the corres-
ponding value for a random sequence. This is an unexpected
observation since significant DNA curvature was reported
previously only in promoter regions of the bacterial genomes
(21,22), but not in the CDS. Finally, the large peaks in A-tract
curvature (>100°) were observed both in the intergenic
regions and in the CDS (Figure 7B and C, respectively).

A-tracts in other bacteria

Distribution of A-tracts in several other bacterial genomes
with intermediate GC-content, Bacillus halodurans (44%
GC), Yersinia pestis (48% GC), Salmonella typhimurium
and Neisseria meningitides (52% GC), is similar to that in
E.coli. First, the A-tracts are 2- to 3-fold over-represented
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Figure 7. Distribution of the A-tract curvature in the E.coli genome. The
A-tract curvature was calculated in the 100 bp sliding window with 1 bp step,
according to Equation 1 and using the set of the twist angles from (47). (A)
Circular diagram represents the A-tract curvature distribution in the entire
E.coli genome (red, CDS; black, intergenic sequences). Origin and terminus
of replication (63) are indicated. The numbers on the outmost circle indicate the
position in the genome in millions of base pairs. The A-tract curvature values
start at 40° (the points on the innermost circle). The cross bars at the radial lines
correspond to 100° of curvature. (B and C) Two detailed pictures of the A-tract
curvature distribution in the 3000 bp regions, indicated with arrows in (A). The
start and termination sites of transcription are indicated with green triangles and
red hexagons, respectively. The gene directions are shown with the hooked
arrows. Notice that the strong peaks in A-tract curvature (up to 100°) are located
both in the intergenic regions (B) and in the CDS (C).

in these genomes as compared with the random sequences
of the same base composition. Second, the 10—12 bp period-
icity in the A-tract distribution is pronounced. Third, the
characteristic length of the A-tract phasing is in the range
80-130 bp in each of the analyzed genomes.
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The bacteria with GC-rich genomes naturally have lower
A-tract occurrences. However, in some genomes these occur-
rences are 2-fold higher than in random sequences, and the
10-12 bp periodicity remains noticeable (e.g. Pseudomonas
aeruginosa, 58% GC). However, in the extremely GC-rich
genomes (e.g. Mycobacterium tuberculosis, 66% GC and
Streptomyces coelicolor, 72% GC) the A-tract occurrences are
close to or even lower than those in random sequences. Finally,
in the extremely GC-poor genomes (Bacillus anthracis, 35%
GC and Staphylococcus aureus, 33% GC) the A-tract occur-
rences are very high and, as a result, the periodicity peaks are
widened significantly (data not shown). More detailed analysis
of the A-tract distribution in various bacterial genomes is in
progress and will be presented elsewhere.

DISCUSSION
Validation of the results

To ensure that our findings reflect the actual features of the
genome organization and do not depend on the particular
methods used in the analysis, we performed several tests.
Specifically, we applied ‘running’ 3 bp averaging to exclude
the 3 bp periodicity from the A-tract distance autocorrelations
(18,45). Such a procedure neither led to the emergence of new
peaks in the intensity versus period plot (Figure SA) nor affec-
ted the characteristic length of the 10-12 bp periodicity for the
A-tract distribution.

In addition, we analyzed the distribution of the A-tracts
containing only adenines or thymines in one strand (such
non-extendable sequences A,:T, comprise a particular case
of the A,T,-tracts and are denoted here as A-runs, see
Table 2). Naturally, the occurrences of A-runs were 2- to 3-
fold lower than the occurrences of the A, T, -tracts (Table 1)
and we observed smaller magnitudes of the peaks in the auto-
correlation function calculated for A-runs (data not shown).
Nevertheless, the results obtained for A-runs are qualitatively
the same as the results for A,T,,-tracts reported here. For
comparison, results for the G-runs (sequences G,:C,) are
also given in Table 2.

Throughout this study, we compared the A-tract distribution
in bacterial genomes with that in the random sequences of
the same base composition. In addition to this parameter,
natural sequences are distinguished by the sets of dinucleotide

Table 2. Ratios of occurrences of the A- and G-tracts of different length in the
E.coli genome and in random sequences with the same dinucleotide content®

Tract length (bp) A-tracts® G-tracts”
A, T, AT, G,C,, G,:C,
4 0.88%* 1.05%%* 0.83%* 0.71%%*
5 1.10%%* 1.34%%% 0.64%%* 0.55%%*
6 L1454 1.48%%* 044 0.34#%%
7 1.09™ 1.26%%* 0.32%%* 0.28%*
8 1.14%%% 0.95 0.15%%** 0.20%*
9 0.78%%* 0.22%%% 0.05%%* 0.09
10 0.28%%* 0.00 0.12%* 0.46

“The ratios ‘genome/random’ are averaged over 10 implementations of a ran-
dom sequence with the same dinucleotide composition as in the genome.
**Significance level P < 0.01 and ***significance level P < 0.001 (z-test).
"The results for tracts in the form A,T,, or G,C,, are shown separately from
the tracts containing purines in one strand and pyrimidines in the other strand
(AT, or G,:C,).

relative abundances or ‘genomic signatures’ [reviewed in
(46)]. In particular, for the E.coli genome, the ratio of
(observed/expected) frequencies is 1.2 for the AA:TT dinuc-
leotide. Therefore, to check the statistical significance of our
results on the over-representation of A-tracts, the random
sequences with the E.coli dinucleotide composition were gen-
erated and used for control (see Methods for further details).

As expected, the relative abundance of genomic A-tracts
diminished compared with evaluations based on the individual
nucleotide frequencies (cf. the ‘genome/random’ ratios for
A, T, -tracts based on the dinucleotide content given in
Table 2 with the corresponding data based on the individual
nucleotide frequencies given in Figure 3). Nevertheless, devi-
ations from random remain statistically significant (Table 2).
The occurrences of the 4-8 bp long A-tracts in the genome
differ from those in the random sequences with high level
of significance (P < 0.001 for 4, 5, 6 and 8 bp long tracts;
P < 0.01 for 7 bp tracts; #-test). In most of the cases, the
A-tract occurrences are higher than expected by 9-14%
[Table 2; (n + m) = 5 to 8]. Only the number of 4 bp long
A-tracts is less than expected by 12%.

The above consideration is related to A-tracts in the form
A, T,. However, if one considers the A-tracts containing only
adenines or thymines in one strand (A-runs), then the A4:T,
runs are over-represented in the E.coli genome (Table 2). The
A,:T, runs produce stronger curvature than do A,T,,-tracts
(28,30); therefore, their relative abundance would be critical
for the DNA folding. Importantly, the (observed/expected)
ratio increases up to 1.3-1.5 for the 5-7 bp A-runs, where
the DNA curvature is the strongest and drops below unity
for the longer A-runs. These data, taken together, strongly
suggest that over-representation of the A-tracts is not a direct
consequence of the well-known biases in the dinucleotide
composition but rather reflects ‘new’ hitherto unreported
features of the E.coli genome organization.

Finally, to test our results on the distribution of the phased
A-tracts in the genome, we used three different sets of the twist
angles (47-49) to calculate the A-tract curvature [note that the
results shown in Figure 7 were obtained with the twist angles
calculated by Kabsch et al. (47)]. All the three sets produced
similar results, both in terms of locations of the phased A-tract
clusters and in terms of the A-tract curvature values.

Comparison with the results of previous
sequence analyses

Our observation that the short A-tracts are over-represented in
the E.coli genome is consistent with the codon usage frequen-
cies (50). It was shown that the codons constituting ‘3 bp A-
tracts’ are among the most frequently used ones in E.coli;
namely, codons AAA, UUU, AUU and AAU occur at frequen-
cies 33.6,22.4,30.4 and 17.7 per 1000 of used codons, respect-
ively (the average frequency is 18.3). Also, one of the most
frequent codons, GAA (39.6/1000), contains the AA dinuc-
leotide as well. This preference in the codon usage may
explain how a genome with 88% coding sequence can harbor
such a large number of the A-tracts.

The high percentage of the coding sequences in the genome
also explains the presence of the 3 bp periodicity in the dis-
tributions of both A- and G-tracts. However, the pronounced
10-12 bp periodicity was observed for the A-tracts only. This



is in accord with the previous E.coli genome studies (15,18,51)
where the 11 bp periodicity was observed for the WW dinuc-
leotides (W stands for A or T) but not for the GG dinucleotides,
while the 3 bp periodicity was observed for both WW and GG
dinucleotides. Another important observation by Herzel et al.
(18) was that the 11 bp periodicity in the distribution of WW
dinucleotides extended up to 100 bp, although the upper limit
of this periodicity was not discussed. Here, for the first time,
we provide a quantitative estimate of the periodicity length.

The genomic distribution of the phased A-tracts can be
compared with the distribution of the DNA curvature estim-
ated with the ‘wedge’ model (33). Before comparing the two
sets of data, note that both approaches, ours and that based on
the wedge model, have advantages and disadvantages. On the
one side, the wedge model (33) takes into account all 16 DNA
dimeric steps, but the dimeric ‘wedge angles’ are not consist-
ent with the X-ray and NMR data, and the predicted magnitude
of curvature is too high [for recent reviews see (25,32)]. On the
other side, the empirical parameter ‘A-tract curvature’ used
here gives the values of DNA bending consistent with experi-
mental data (43,44), but accounts only for the bends caused
by the A-tracts interspersed with ‘pseudo-random’ sequences.
Possible contribution from the other sequences is ignored.
However, the phased A-tracts make the most pronounced con-
tribution to DNA curvature. Furthermore, the G-tracts, the
other sequence motifs capable of producing DNA curvature,
are distributed quasi-randomly in the genome. Therefore, we
believe that the ‘A-tract curvature’ correctly reflects the main
tendencies in the ‘real’ curvature distribution in genomic DNA.

Based on the wedge model, it has been predicted earlier
(21,22) that the intergenic regions, specifically promoters, are
the most curved regions in bacterial genomes. We also observe
that the ‘concentration’ of the phased A-tracts is higher in the
intergenic regions compared with the coding regions in E.coli
genome. In addition, we show that the phased A-tracts clusters
are abundant in the coding sequences, resulting in a signific-
antly higher A-tract curvature of the coding DNA than it would
be expected from the base composition. This novel observa-
tion indicates that the DNA curvature due to A-tracts is a
general characteristic of the E.coli genomic DNA, not limited
to the regulatory regions.

Implications in bacterial genome packaging

The non-random distribution of A-tracts may provide a struc-
tural basis for the bacterial chromosome packaging. As shown
above, the A-tracts are over-represented in the genome and
demonstrate pronounced 10—12 bp periodicity. This period-
icity is close to the DNA helical repeat and therefore is likely
to produce the DNA intrinsic curvature (11). More import-
antly, the phased A-tracts are grouped into clusters, thereby
greatly increasing the ‘local concentration’ of these A-tracts in
genomic DNA. Accordingly, the energy cost of DNA looping
is significantly lower for the A-tract containing fragments
compared with the intrinsically straight ones (25).

When DNA is supercoiled (as in the bacterial nucleoid), the
presence of the intrinsically curved fragments would facilitate
branching of the plectonemic superhelix (52,53). Owing to the
A-tracts, such branching would occur at the specific positions
and, thus, it may direct the DNA compaction in a pre-arranged
manner (Figure 8). In frame of this model, the promoters, as
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the most curved fragments of genomic DNA, would frequently
appear at the apexes of the superhelical branches, which could
increase the accessibility of the promoters for transcription
factors and RNA polymerase (54,55).

Furthermore, we found that the clusters of phased A-tracts
are omnipresent in the genome, providing both the intergenic
and the coding regions with ‘looping potential’. Thus, the
highly non-random distribution of the A-tracts could constitute
a genome-wide structural code for DNA packaging in E.coli.
The same traits of the A-tract distribution occur in several
other bacteria (see below), indicating that such structural
code may represent a widespread molecular mechanism
involved in the bacterial nucleoid organization.

In turn, the under-representation of the G-tracts in the E.coli
genome (Figure 3) may be related to the increased propensity
of these sequence motifs to adopt the A-DNA conformation
(56,57). A-DNA is less flexible than B-DNA in terms of both
bending and twisting and, therefore, the excessive number of
G-tracts may hinder the nucleoid compaction by producing
the extended stretches of the A-conformation in genomic
DNA. Another reason for the small number and ‘quasi-
random’ distribution of G-tracts may be that the requirement
for protein coding leaves room for only one ‘folding code’
hidden in the E.coli genome, namely, the A-tract phasing.

The structural code observed in the present study is con-
sistent with the experimental data on the MNase digestion,
which provides information on the characteristic sizes of the
most abundant structural components in the bacterial
nucleoid. The results of the previous studies (58,59) and
those of a recent systematic digestion analysis (K.M. Virnik,
M.Y. Tolstorukov, V.B. Zhurkin and S. Adhya, manuscript in
preparation) suggest that the elementary structural unit
of the nucleoid from actively dividing cells has the size of
100-120 bp. This value is close to the characteristic size of the
phased A-tract clusters estimated here. This size, ~100 bp,
is also very close to the sizes of the regulatory gal- and lac-
loops (113 and 92 bp, respectively). Therefore, we suggest that
folding and regulatory loops may have similar structural
organization and, moreover, the same loops may play both
regulatory and packaging roles in the nucleoid (Figure 8B).

However, the structural properties of the DNA alone are
hardly sufficient for the 1000-fold DNA compaction. Rather,
the DNA structural code may complement other packaging
mechanisms, such as the involvement of architectural proteins
(HU, H-NS, Hfq, CbpA, etc.), some of which have specific
affinity to the curved DNA (60). Thus, the clusters of phased
A-tracts are likely to be operative in the packaging of the
bacterial chromosome in two ways: (i) facilitate forming of
the small DNA loops and (ii) serve as ‘binding sites’ for the
nucleoid-associated proteins (22).

Comparison with other bacteria

Analysis of the A-tract distribution in different bacteria allows
drawing several inferences. (i) The A-tract phasing and clus-
tering in S.typhimurium are nearly the same as in E.coli. In
addition, these closely related bacteria have similar sets of the
DNA-binding proteins (61). Therefore, it is likely that their
chromosomes are packaged similarly. Overall, the similarity
of the A-tract distributions in E.coli and S.typhimurium
substantiates our hypothesis on the importance of A-tracts
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Figure 8. Model of the A-tract assisted compaction of the bacterial chromosome. (A) Schematic representation of the A-tract distribution in a fragment of the
bacterial genome. A-tracts are shown in cyan and non-A-tract DNA is shown in gray. Note that A-tracts are grouped in clusters. (B) Putative model of the bacterial
‘compactosome’ (64): a cluster of the phased A-tracts introduces DNA curvature, facilitating DNA looping by the architectural proteins. The color code used for the
A-tracts and non-A-tract DNA is the same as in (A). Proteins assistin DNA bending (magenta) and secure the loop closure (ochre and green). This scheme is drawn by
analogy with the gal-loop, where HU protein facilitates DNA bending, and Gal repressors secure the loop closure (65,66). (C) Under superhelical stress, the clusters of
phased A-tracts (dark blue) would facilitate branching of the plectonemically supercoiled DNA, appearing at the apexes of the branches. Thus, the phased A-tract
clusters may constitute a code for the sequence-directed packaging of the bacterial chromosome within the domains of supercoiling.

for DNA packaging. (ii) Clustering of the phased A-tracts is
inherent not only to genomes of E.coli and closely related
bacteria. We observed similar A-tract distribution in
B.halodurans (fermicutes) and N.meningitides (B-proteobac-
teria), which are quite distant from E.coli (y-proteobacteria).

It is obvious that the proposed A-tract-related mechanism of
the DNA packaging is not operative in all bacteria, specifically
in those with extremely high GC-content. It is conceivable that
these bacteria use different mechanisms of chromosome con-
densation. Indeed, it is known that bacteria differ significantly
in the composition of DNA-binding proteins (61,62), and in
the DNA sequence organization near gene starts (22). Thus,
the structural signals in DNA sequence, if any, are also likely
to be different.

CONCLUSIONS

We investigated distributions of the A- and G-tracts in E.coli
and several other bacterial genomes and observed that: (i) short
A-tracts are 2- to 3-fold over-represented in the genomes,
compared with random sequences, while the G-tracts are

under-represented; (ii) the A-tract distribution demonstrates
periodicity of 10-12 bp, indicating that the A-tracts are
often phased with the DNA helical repeat; (iii) the phased
A-tracts are grouped into ~100 bp clusters; (iv) such clusters
are present throughout the genomes, including the coding
sequences. Our results suggest that the non-random distribu-
tion of A-tracts in a bacterial genome may constitute the struc-
tural code for DNA condensation into a nucleoid. The genomic
DNA fragments, which are intrinsically curved due to the
presence of the A-tract clusters, would serve as basic elements
of DNA packaging in bacteria, facilitating DNA looping and
directing interactions with architectural proteins.
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