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Background: Numerous clinical and experimental observations have alluded to the
substantial anti-neoplastic role of vitamin D in breast cancer (BC), primarily by inducing
apoptosis and affecting metastasis. Tumor progression and resistance to chemotherapy
have been linked to vasculogenic mimicry (VM), which represents the endothelial-
independent formation of microvascular channels by cancer cells. However, the effect
of vitamin D on VM formation in BC has not been thoroughly investigated. This study
examined the impact of 1a,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D,
on the expression of major factors involved in BC migration, invasion, and VM formation.

Experimental Methods: Publicly available transcriptomic datasets were used to profile
the expression status of the key VM markers in vitamin D-treated BC cells. The in silico
data were validated by examining the expression and activity of the key factors that are
involved in tumor progression and MV formation in hormone-positive MCF-7 and
aggressive triple‐negative MDA-MB-231 BC cells after treatment with calcitriol.

Results and Discussions: The bioinformatics analysis showed that tumor VM formation-
enriched pathways were differentially downregulated in vitamin D-treated cells when
compared with control counterparts. Treatment of BC cells with calcitriol resulted in
increased expression of tissue inhibitors of metalloproteinases (TIMPs 1 and 2) and
decreased content and gelatinolytic activity of matrix metalloproteinases (MMPs 2 and 9).
Furthermore, calcitriol treatment reduced the expression of several pro-MV formation
regulators including vascular endothelial growth factor (VEGF), tumor growth factor (TGF-
b1), and amphiregulin. Eventually, this process resulted in a profound reduction in cell
migration and invasion following the treatment of BC cells with calcitriol when compared to
the controls. Finally, the formation of VM was diminished in the aggressive triple‐negative
MDA-MB-231 cancer cell line after calcitriol treatment.
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Conclusion: Our findings demonstrate that vitamin D mediates its antitumor effects in BC
cells by inhibiting and curtailing their potential for VM formation.
Keywords: vitamin D, breast cancer, invasion, vasculogenic mimicry, metalloproteinases
INTRODUCTION

Breast cancer (BC) is the most common type of cancer among
women worldwide (1). Epidemiological data from 1990 to 2017
have signaled that the incidence of BC has been rising in all
geographical regions of the world, especially in the Middle East
and North Africa (MENA), South Asia, and Latin America (2).
The staggering upsurge in the incidence of BC continues to pose
a serious health challenge to the global healthcare authorities.
One of the major hurdles faced by healthcare professionals
remains the heterogeneous and complex nature of BC (3, 4).
To add to its complexity, the breast tissue, being subject to a
diverse set of conflicting hormonal and growth signals, is more
prone to neoplastic transformations as opposed to other
biologically less dynamic tissues.

It is well established that classical angiogenesis, initiated by
endothelial blood vessels, supports tumor growth and metastasis.
However, in 1991, Maniotis et al. reported an endothelial-
independent vascularization formation by tumor cells, a process
described as vasculogenic mimicry (VM). The VM contributes to
tumor proliferation and invasion inmany types of cancers through
the upregulation of several proteins, including matrix
metalloproteinase (MMP)-2, MMP-9, vascular endothelial
growth factor (VEGF), and growth factor-b1 (TGF-b1) (5–9).
Despite the technological and clinical advances in BC
management and therapeutics, VM has been shown to be
associated with aggressive behaviors of tumor progression and
perfusions (10, 11), leading to unsatisfactory and adverse clinical
outcomes (12, 13). Therefore, there is an ever-growing need for the
development of VM-specific therapeutic strategies for BC.

In the last two decades, a plethora of investigational studies have
explored the status of VM formation and its role in the prognosis
and clinicopathological parameters of BC. For instance, a study on
more than 1,200 patients with BC showed a positive correlation
between the increased VM positivity and larger tumor size, the
propensity formetastasis, differentiation grade, and poor prognosis
(14). Considering the characteristics of breast molecular subtypes
and hormone-positive BC expression of VEGF (15), research has
shown that cancer progression can be arrested or slowed down by
targeting TGF-b1, MMP-2, and MMP-9 when irradiated by a
proton beam (7). Additionally, the ERa-positive cell line MCF-7
has been reported to induce VM upon exposure to the VM
mediator, interleukin 1b (7). Furthermore, aggressive triple‐
negative MDA-MB-231 BC cells readily exhibit VM phenotypes
by forming tubular-like structures in the gel matrix (16).

Vitamin D is known to undergo a two-step metabolism in both
the liver and kidney to produce the biologically active form calcitriol,
whichbinds to thevitaminDreceptor (VDR)andallows it toperform
avarietyofphysiological roles (17, 18).Thecalcitriol, in turn, operates
by binding to the intracellular VDRs in target cells. VDRs, first
2

reported in the BC cell lines in 1979, represent a family of nuclear
steroid receptors that, when engaged, can regulate the expression of
greater than 200 genes involved in cell growth anddifferentiation and
has been shown to greatly affect breast tissue kinetics (19, 20), by
acting as ligand-activated transcription factors (21). Numerous
extrarenal tissues in the body including breast tissue cells contain
1-a-hydroxylase enzymes needed to produce the active vitamin D
metabolite 1,25(OH)2D from circulating 25(OH)D (22). Previous
work has shown that the locally synthesized 1,25(OH)2D binds to
VDRs expressed in breast epithelial tissue and modulates the
expression of several genes (23). Breast tissue cells also contain 24-
hydroxylase enzyme (CYP24) that transforms 1,25(OH)2D into the
less active metabolites (24,25-dihydroxyvitamin D3 and 1,24,25-
trihydroxyvitamin D3). Hence, breast tissue cells possess all key
components to produce vitamin D and transduce and respond to
vitamin D-dependent signals (23, 24). Numerous observational, in
vitro, and animal model-based studies have elaborated on the
protective effects of vitamin D signaling against the development
and progression of BC (25–34).

The clinical administration of calcitriol or vitaminDanalogshas
been investigated in several epidemiological and experimental
studies that have indicated its effective role in the prevention and
treatment of awide spectrumofmalignancies (35, 36).Calcitriol has
been shown to suppress cell proliferation and tumor progression by
altering multiple mechanisms (37, 38). It inhibits cancer stem-like
cells and induces triple-negative BC differentiation (39).
Additionally, it has been shown that calcitriol exhibits anti-
proliferative concentrations in both MCF-7 and MDA-MB-231
BC cell lines (40). We have recently reported that calcitriol could
exert significant anticancer effects by disrupting cellular iron
homeostasis (41). Interestingly, studies have analyzed the role of
calcitriol in angiogenesis. It has been shown that calcitriol treatment
would enhance angiogenesis in in vitro and in vivo lab-based
experiments (42–45). In sharp contrast, the impact of calcitriol on
vascularization has been shown to decrease endothelial cell growth
and attenuate vessel formation (46, 47). In this perspective, a recent
study has demonstrated the ability of calcitriol to inhibit tumor
neovascularization and metastasis in BC (48). Collectively, more
investigations are essential to investigate the antineoplastic role of
vitamin D in BC. Therefore, this study was designed to investigate
the anti-metastatic role of vitamin D and its association with the
modulation of VM factors in BC cells.
MATERIALS AND METHODS

Bioinformatics Analysis of Publicly
Available Transcriptomic Data Resources
In silico bioinformatics were used to identify major pathways that
are associated with vitamin D in BC cells. The microarray dataset
June 2022 | Volume 12 | Article 918340
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of GSE27220 (41) was obtained from the National Centre for
Biotechnology Information Gene Expression Omnibus (NCIB
GEO, https://www.ncbi.nlm.nih.gov/geo). The transcriptional
effect of 1,25-dihydroxyvitamin D3 was explored at
physiological and supraphysiological (pharmacological)
concentrations (100 nM) in the BC MCF-7 cell line. The
differentially expressed genes (DEGs) were identified using the
GEO2R online tool (https://www.ncbi.nlm.nih.gov/geo/info/
geo2r.html), which employs LIMMA (Linear Models for
MicroArray data) and GEOquery packages from the
Bioconductor for group comparisons. Gene set enrichment
analysis was carried out using "Enrichr" tool (49).

Cells and Treatment Protocols
Human BRCA cell lines MCF-7 and MDA-MB-231 from the
American Type Culture Collection (Manassas, VA, USA) were
used throughout the study. Cells were maintained in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented with 2 mg/ml of
insulin, 1 mM of sodium pyruvate, 1 mM of non-essential amino
acids, 4 mM of glutamine, 10% fetal calf serum, and antibiotics
(penicillin/streptomycin) at 37°C and 5%CO2. Cells were seeded at
0.5–1 × 105 cells/ml in 25-cm flasks at ~70% confluency, and then
cells were treated with various concentrations of calcitriol (25-
hydroxyvitamin D; the active form of vitamin D) (2551; Tocris
Bioscience, Minneapolis, MN, USA) for several time points.
Control cultures were either left untreated or treated with equal
volumes of dimethyl sulfoxide (DMSO) as the vehicle.

Quantitative Real-Time Reverse
Transcription–PCR
The cDNA was synthesized from 1 mg of total RNA using the
QuantiTect Reverse Transcription Kit (Qiagen, Valencia, CA, USA),
according to the manufacturer’s protocol. RT-PCR was performed
using 1:l of complementary DNA (cDNA), specific primers for
various tissue inhibitors of metalloproteinases (TIMPs) [TIMP1-
forward: 5′-CGCAGCGAGGAGGTTTCTCAT-3′, TIMP1-reverse:
5′-GGCAGTGATGTGCAAATTTCC-3′, TIMP2-forward: 5′-
GGCGTTTTGCAATGCAGATGTAG-3′, TIMP2-reverse: 5′-
CACAGGAGCCGTCACTTCTCTTG-3′], SYBR® Green I, and
an iCycler Thermal Cycler. Expression levels of target human
genes were normalized to GAPDH expression [GAPDH forward-
5′-ATCACCATCTTCCAGGAGCGAGATC-3′, GAPDH reverse-
5′-GGCAGAGATGATGACCCTTTTGGC-3′].

Western Blotting Analysis
Cells were lysed in ice-cold NP-40 lysis buffer (1.0% NP-40, 150
mM of NaCl, and 50 mM of Tris-Cl, pH 8.0) containing protease
cocktail inhibitor tablets (Cat. No. S8830; Sigma, Darmstadt,
Germany). Whole-cell lysate protein concentrations were
quantified using the standard Bradford method. Lysate proteins
were separated by 12% sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) and then transferred onto a
nitrocellulose membrane. The membrane was blocked by 5%
skimmed milk powder dissolved for 1 h at room temperature,
washed with TBST, and reacted with primary immunoglobulin G
(IgG) unlabeled antibodies (Pro-VM formation Sampler Kit, Cell
Signaling Technology, Danvers, MA, USA) at 1:1,000 dilution
Frontiers in Oncology | www.frontiersin.org 3
overnight at 4°C. The secondary (anti-mouse and anti-rabbit)
antibodies (Cat. No. 7076 and 7074) were then reacted with the
membrane at 1:1,000 dilutions for 1 h at room temperature. The
secondary (anti-IgG) antibody (Cell Signaling) was reacted with the
membrane at 1:5,000 dilution for 1 h at room temperature.
Chemiluminescence was detected using the enhanced
chemiluminescence (ECL) kit (Cat. No. #1705061; Bio-Rad
Laboratories, Hercules, CA, USA). Later, the protein band
quantification was carried out using the Bio-Rad Image Lab
software (ChemiDoc™ Touch Gel and Western Blot Imaging
System; Bio-Rad). Then b-actin (Sigma) was used as a
normalization control, and values of control (untreated) samples
were defined as 1.00; values of experimental samples were quantified
relative to those of control.

Matrix Metalloproteinase Activity Assay
Cells treated with and without calcitriol were assayed for MMP
activity using the human MMP-2 (Cat. No. ab100606, Abcam,
Cambridge, UK) and MMP-9 assay kits (Cat. No. ab100610,
Abcam, Cambridge, UK); supernatants of calcitriol-treated and
control cells were separately collected at 24 and 48 h
posttreatment. As per the manufacturer’s protocol, 10 µg/ml of
trypsin was added and incubated for 1.5 h. A trypsin inhibitor
was then added at 100 µg/ml concentration for 15 min. MMP
substrate solution with test components was then added to the
microplate along with the controls. Plates were read at room
temperature and 412-nm wavelength absorbance, and data were
tabulated and analyzed.

Proteome Profiler Array
Fifty-five angiogenesis-related proteins were measured in MCF-7
and MDA-MB-231 cells using the Human Angiogenesis (Pro-VM
formation mediators) Array Kit (Cat. No. ARY007; R&D Systems,
Minneapolis, MN, USA). Whole-cell lysate protein concentrations
were quantified using the standard Bradford method. Four
nitrocellulose membranes, each containing 55 different capture
antibodies, were blocked by Array Buffer 6 for 1 h at room
temperature. Lysate aliquots containing 300 mg of protein were
prepared with Array Buffer 4 and 20 ml of Detection Antibody
Cocktail. Samples were then loaded onto the membrane overnight
at 2°C–8°C. Chemiluminescence was detected by streptavidin–
horseradish peroxidase (HRP) methods using the dilution factor
suggested by themanufacturer. Protein dot quantificationwas done
using the Bio-Rad Image Lab software (ChemiDoc™ Touch Gel
andWestern Blot Imaging System; Bio-Rad). Reference spots were
used as a normalization control; values of control (untreated)
samples were defined as 1.00; values of experimental samples
were quantified relative to that of control.

Cell Migration Assay
Cells treated with and without calcitriol were assayed using Cell
Migration/Chemotaxis Assay Kit (96-well, Abcam) to measure the
migration level according to the manufacturer’s instructions. Cell
Migration/Chemotaxis Assay Kit (96-well, Abcam) utilizes a Boyden
chamber, where the cells migrate through a semi-permeable
membrane under different stimuli. Cell migration was analyzed
directly by reading fluorescence (Ex/Em = 530/590 nm) in a plate
June 2022 | Volume 12 | Article 918340
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reader. Prior to the assay, cells were prepared by starving the cells for
18–24 h in serum-free media. A cell migration assay containing the
desired chemoattractant was prepared in the bottom chamber. The
cellmigration chamberwas incubated at 37°C in aCO2 incubator for
2–48 h. The standard curve for each cell type was prepared. The
migrated cells were separated. The cell dye was added, and the
migrated cells were quantified.

Cell Invasion Assay
Calcitriol-treated and control cells were assayed using the Cell
Invasion Assay kit (Basement Membrane, 96-well, ab235697,
Abcam, USA) to measure the invasion level according to the
manufacturer’s instructions. Cell Invasion Assay (Basement
Membrane, 96-well, Abcam) utilizes a Boyden chamber coated
with Basement Membrane Extract (BME), where the cells invade
the matrix and then migrate through a semi-permeable
membrane in the Boyden chamber in response to stimulants
or inhibitory compounds. Cell invasion was analyzed directly by
reading fluorescence (Ex/Em = 530/590 nm) in a plate reader.
Prior to the assay, cells were prepared by starving the cells for 18–
24 h in serum-free media. A cell invasion assay containing the
desired chemoattractant was prepared in the bottom chamber.
The cell invasion chamber was incubated at 37°C in a CO2

incubator for 2–48 h. The standard curve for each cell type was
prepared. Later, the cells were washed. The cell dye was added,
and then cells were incubated at 37°C in a CO2 incubator for
60 min. The cell invasion chamber was disassembled, and the
invading cells were quantified.

Tube Formation Assay
Cells were seeded in 96-well plates at a density of 2 × 10 cells per well in
thematrix solution and then processed according to themanufacturer’s
protocol (Abcam, UK). Several images were captured by a phase-
contrast inverted microscope at ×10 magnification.

Statistical Analysis
Data were statistically analyzed by the two-way ANOVA with
Tukey’s multiple comparisons test for multiple comparisons of
values; a p < 0.05 was considered statistically significant. Data
fitting and pictorial graphs were presented using the GraphPad
Prism 8 software (San Diego, CA, USA).
RESULTS

Vitamin D Signaling Downregulates “TGF-b
Regulation of Extracellular Matrix” and
“Vasculogenic Mimicry-Related” Pathways
in BC Cells
Bioinformatics analysis using a publicly available dataset of MCF-7
cells treated with calcitriol showed that several pathways were
subject to differential regulation by vitamin D signaling
(Figure 1A). “TGF-b regulation of extracellular matrix” and
“VM-related” pathways are shown in Figures 1B, C as the top
downregulated pathways. They were also selected for biological
validation. The signaling pathways, which are upregulated in
Frontiers in Oncology | www.frontiersin.org 4
calcitriol-treated MCF-7 cells, relative to the controls are shown
in Supplementary Table 1. These data show the adjusted p-value,
odds ratio, and the combined score for each pathway. It also shows
the DEG related to each pathway.

Vitamin D Influences the Levels and
Activity of Tissue Inhibitors of
Metalloproteinases and Matrix
Metalloproteinases
The effect of vitamin D was measured by analyzing the level of
TIMPs andMMPs onMCF-7 andMDA-MB-231 cell lines treated
with 10 µM of calcitriol for 24 and 48 h. As demonstrated in
Figure 2A, the expression level of TIMP1 increased at both 24 and
48 h inMCF-7-treated cells compared with the control. Moreover,
expression of TIMP2 also increased 24 h posttreatment, while a
reduction was observed at 48 h compared to the control in MCF-7
cells. However, expression levels of both TIMP1 and TIMP2
showed a significant upregulation in MDA-MB-231
posttreatment at 24 h. Reduction of TIMP1 and non-significant
TIMP2 upregulation was observed 48 h posttreatment. The
treatment of MCF-7 and MDA-MB-231 cells with 10 µM of
vitamin D showed a significant effect on the expression of TIMPs
andMMPs at protein levels. As shown in Figure 2B, TIMP1 levels
were significantlydecreased inMCF-7 at 24h,while an increasewas
observed at 48 h posttreatment. However, TIMP2 expression was
increased at both 24 and 48 h. Furthermore, the expression levels of
bothMMP-2 andMMP-9 proteins were decreased inMCF-7 at 24
and 48 h posttreatment. However, the expression levels of both
TIMP1 and TIMP2 were significantly increased in MDA-MB-231
at both 24 and 48 h post vitaminD treatment, whereas a decrease of
MMP-2 and MMP-9 at both time points posttreatment
was observed.

Vitamin D Reduces Activities of
MMP-2 and MMP-9
The effect of vitamin D on MMP-2 and MMP-9 activity levels is
illustrated in Figure 3. As illustrated in Figure 3A, the activity
levels of MMP-2 in MCF-7 were decreased at both 24- and 48-h
posttreatment. At the same time, the activity levels of MMP-9
were reduced at both time points after treatment (Figure 3C).
However, the activity significantly decreased in MDA-MB-231
cells at both 24 and 48 h as compared with the control
(Figure 3B). Additionally, MMP-9 activity increased in MDA-
MB-231 treated cells at 24 h, while the activity level decreased at
48 h post calcitriol treatment (Figure 3D).

Vitamin D Disrupts the Activity of Pro-
Vasculogenic Mimicry Regulators
Intending to evaluate the effect of vitamin D on VM mechanism,
we investigated the regulators of pro-VM, by Proteome Profiler
array analysis, which affirmed that vitamin D treatment has
remarkably reduced the levels of fundamental pro-VM regulators
in MCF-7 and MDA-MB-231 cells. A significant reduction of
VEGF was observed in MCF-7 and MDA-MB-231 cells
posttreatment (Figure 4A). Additionally, the TGF-b1 level was
also significantly reduced in both cell lines compared to the
June 2022 | Volume 12 | Article 918340
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control (Figure 4B). Moreover, there was a significant reduction
of urokinase-type plasminogen activator (uPA) level that was
more consequential in MCF-7 cells in distinction to MDA-MB-
231 cells (Figure 4C), as the level of amphiregulin decreased in
both MCF-7 cells and MDA-MB-231 cells, but more significant
reduction was observed in MCF-7 after treatment as compared
to the control (Figure 4D). The panel of all VM regulating
proteins is shown in Supplementary Figure 1.

The Impact of Vitamin D on Cell
Migration and Invasion
To discern the impact of vitamin D on the dynamics of cell
migration and cell invasion, we quantified the migration/
invasion of untreated and treated MCF-7 and MDA-MB-231
cells (Figures 5A, B). Both cell lines MCF-7 and MDA-MB-231
displayed a significant reduction in the migration level after
vitamin D treatment (Figure 5A). Furthermore, calcitriol
treatment inhibited the invasion ability of both cell lines, with
the MDA-MB-231 cell line displaying a significant reduction in
the number of invading cells (Figure 5B).

The Effect of Vitamin D on
Vasculogenic Mimicry Formation
We next performed the tubular-structure initiation assay, as an
established in vitro assay for VM formation, in the MDA-MB-
Frontiers in Oncology | www.frontiersin.org 5
231 and MCF-7 cells in the control and treated groups
(Figure 6). The Matrigel-based assay was performed to acquire
the evidence of VM by analyzing the tube formation in the seed
cells. This showed a reduced number and mass of MDA-MB-231
and MCF-7 cells when treated with calcitriol (Figure 6A).
Furthermore, the tubular-structure formation was significantly
decreased in the aggressive triple-negative MDA-MB-231 cells in
comparison to the control counterparts (Figure 6B).
DISCUSSION

VM is a novel tumor vascular model that explicitly underpins the
ability of aggressive cancer cells to form vessel-like networks that
supply sufficient blood supply for tumor growth. VM induction is
mediated by several molecular mechanisms and signaling
pathways. Cancer stem cells (CSCs) and epithelial–mesenchymal
transitions have also been linked to VM formation. VM is
associated with tumor invasion, metastasis, and poor oncological
outcomes. Because of the importance of VM in tumor progression,
more VM-related anticancer strategies are being adopted in the
medical field. Our study illustrates the VM properties of vitamin D
in BC cells as vitamin D treatment induced TIMP1 and TIMP2
expression levels and reduced MMP-2 and MMP-9 catalytic
activities. Similarly, the VEGF and TGF-b1 protein contents
A

B

C

FIGURE 1 | Vitamin D signaling differentially regulates key VM-related genes and signaling pathways in BC cells: with the use of Enrichr tool, a publicly available
dataset of MCF-7 cells treated with pharmacological doses of 1,25-dihydroxycholecalciferol (vitamin D3) (GSE27220) was used to identify differentially regulated
genes and pathways. MCF-7 cells used in generating these data were left untreated or treated with 100 nM of 1,25-dihydroxycholecalciferol (calcitriol) (treated, n = 5;
control, n = 5). (A) Top differentially downregulated pathways. (B) Pathways selected for biological validation. (C) Input genes plotted versus enriched terms. VM,
vasculogenic mimicry; BC, breast cancer.
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were significantly downregulated in both groups of BC cells.
Overall, the migration and invasion potential were substantially
downregulated by vitamin D treatment in BC cells. In addition,
vitamin D reduced the cell mass and VM formation in both
groups of BC cells. Finally, MMPs are essential for tumor invasion,
metastasis, and VM formation.

A fundamental prerequisite for VM formation is the
expression of high levels of MMPs. MMPs cleave Laminin5g2
into 5g2x and 5g2′ for dense extracellular matrix protein
deposition, resulting in the formation of de novo blood vessels in
solid tumors (50). Type IV collagens are the primary building
blocks of the extracellular matrix and basement membrane.
Tumor cells can primarily express MMP-2 and MMP-9 to
debase type IV collagens and disrupt these tissue barriers, which
stimulates tumor cell invasion andmetastasis (51). TIMPs inhibit
MMP activity, which is required for extracellular matrix turnover
in both physiologic and pathologic tissue remodeling. In addition
to inhibiting MMP, they are associated with other biological
systems needed for metastasis and VM (52). In this context, our
study has investigated the non-neoplastic functions of vitamin D
on TIMP/MMP systems that stimulate cell invasion and
migration in BC. Our study findings report that MCF-7 and
MDA-MB-231 cells treated with calcitriol (10 µM) resulted in
increased levels of TIMP1 and TIMP2 that were most apparent
Frontiers in Oncology | www.frontiersin.org 6
after treatment for 24 h. In contrast, MCF-7 and MDA-MB-231
cells treated with calcitriol (10 µM) resulted in decreased levels of
MMP-2 and MMP-9. The VEGF signaling is a key modulator of
VM (53). In ovarian cancer, VEGF-A has been linked to VM
formation by elevating the expression of MMP-9, MMP-2, VE-
cadherin, and EphA2. The VEGFR-2 is abundantly expressed in
vascular ECs, resulting in vasculogenesis. VEGFR-1, on the other
hand, is overexpressed in VM-forming tumor cells in malignant
melanoma (54). The elevated levels of VEGF and VEGFR-1, as
well as MMP-9 andMMP-2, have been linked to the formation of
VM in gastric cancer tissues (55). VEGF signaling further activates
the PI3K/PKC and ERK signaling pathways, resulting in cell
migration, invasion, and proliferation (56, 57). In breast and
pancreatic cancer, inhibiting EphA2 reduces VEGF expression
with the resultant angiogenesis in vivo. This finding lends
credence to the theory that VEGF signaling is the activating
event in VM formation (58, 59). Increased VEGFR-2 expression
has been correlated with VM formation in tumors derived from
CSCs and glioma stem-like cells (60, 61). A recent study
demonstrated that siRNA-based VEGF gene silencing reduced
cellmigration, invasion, and proliferation in choroidalmelanoma.
VEGF inhibition reduced the expression of MMPs, AKT, p-AKT,
MMP-9, andMMP-2, and thus the formation of VMwas reduced
through the PI3K/AKT signaling pathway (62).
A

C

B

FIGURE 2 | Expression levels of TIMPs and MMPs in MCF-7 and MDA-MB-231 cell lines treated with calcitriol for 24 and 48 h. (A) qRT-PCR analysis of TIMP1 and
TIMP2 gene expression levels. (B) Western bolt analysis showing TIMP1, TIMP2, MMP-2, and MMP-9 protein levels in MCF-7 and MDA-MB-231 cells treated with
10 µM of calcitriol and cultured for 24 and 48 h. (B) ***p < 0.01, determined using unpaired two-tailed Student’s t-test. Representative immunoblots depicting
protein levels where b-actin was used as loading control. (C) Quantitative analysis of relative protein band density after normalization to b-actin and compared in
MCF-7 and MDA-MB-231 cells treated with 10 µM of calcitriol and cultured for 24 and 48 h and compared to the control. (*) represents statistically significant
change in viability between the indicated treatment groups at given time points. **p < 0.05; ***p < 0.001. TIMPs, tissue inhibitors of metalloproteinases; MMPs,
matrix metalloproteinases.
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Research has shown that TGF-b regulates cell cycle, cell
proliferation, motility, invasion, and apoptosis (63). TGF-b can
either stimulate or inhibit cancer progression in a variety of
cancers. Endoglin (CD105), a TGF-b co-receptor, has been
shown to induce VM formation and neo-angiogenesis in
Ewing’s sarcoma (64). In a study, TGF-b was inactivated by
silencing TGF-R1, with the associated reduction in the
expression of MMP-2, VE-cadherin. In glioma, inhibiting the
TGF-b signaling pathway reduces the expression of MMP-14
and MT1-MMP, leading to a significant decrement in the
formation of VM (65, 66). Previous studies have established
the role of VEGF (67), TGF-b1 (61), uPA (68), and amphiregulin
(69) in VM formation in cancer. Vitamin D has anti-VM
ramifications by decreasing the expression of VM growth
factors in tumor cells’ VEGF (70). Consequently, in our study,
we have elucidated the anti-VM potential of vitamin D in BC by
reducing the level of VEGF. This finding is grounded by a
reduction of fundamental pro-VM regulators VEGF, TGF-b1,
and uPA, in addition to amphiregulin in MCF-7 and MDA-MB-
231 cells treated with calcitriol (10 µM).

In patients with malignant tumors, VM is significantly
correlated with elevated tumor grade, invasion, metastasis, and a
poor prognosis (71, 72). VM emerges in a wide range of cancer
tissues including aggressive melanomas (73), breast cancer (74),
ovarian cancer (75), prostate cancer (76), lung cancer (77), liver
Frontiers in Oncology | www.frontiersin.org 7
cancer (78), and glioblastoma (79). The tumors with a high degree
of overall VM showcase poor prognosis (80), as VM also correlates
with tumor staging (81). Tumor cells that engage in VM exhibit
elevated cancer stemness and endothelial-like gene expression.
Tumor cells are directly adjacent to blood flow during the
development of vascular mimetic vessels, increasing the
likelihood of detachment and intrastation of these cells to
distant sites (82). In our study, we evaluated the levels of cell
migration and invasion following the vitamin D treatment of both
cell lines MCF-7 and MDA-MB-231. The results depicted a clear
reduction of migrating and invading cells. Human BC tumors are
essentially categorized according to the clinicopathological and
histopathologic characteristics along with their molecular markers.
TNBC and HER2 are widely regarded as the most aggressive
phenotypes of BC. The relationship between VM and breast tumor
phenotype has been widely studied. In vitro studies have revealed
that TNBC aggressive cells, as opposed to more differentiated BC
cells, are more susceptible to forming tubular structures (83).
Several studies have reported that TNBC MDA-MB-231 and
HCC1937 cells readily form tubular-like structures (11, 84). In
contrast, the ER-positive cell line MCF-7 has been shown to be
incapable of forming VM (16), but in the availability of VM drivers
such as interleukin 1, MCF-7 cells formed microvessel-like
intersections and cords (7). Accordingly, we further investigated
the effect of vitamin D on VM formation in the vitamin D-treated
A B

C D

FIGURE 3 | Quantitative analysis using ELISA to measure MMP-2 and MMP-9 activities. Enzymatic activity was measured using ELISA in MCF-7 (A, C) and MDA-
MB-231 (B, D) cells following 10 µM of calcitriol treatment. (** and ***) represents statistically significant change (p < 0.05 and p < 0.001) in MMP-2 and MMP-9
enzymatic activity between treated and control (Ctrl) untreated cells at given time points.
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MDA-MB-231 and MCF-7 cells. Both cell lines exhibited a
reduction in the cell mass; in addition, the tubular-structure
formation was substantially reduced in the aggressive MDA-
MB-231 cells. VM triggers tumor growth, progression,
metastasis, invasion, and treatment failure. Numerous studies
(85–87) reported that patients with VM-positive tumors have a
worse prognosis and a poor 5-year survival rate than patients with
Frontiers in Oncology | www.frontiersin.org 8
VM-negative tumors. The prevalence of VM positivity, as well as
its influence on clinicopathological parameters and prognosis in
BC patients, has been extensively researched over the last two
decades (88–90). The current body of literature affirms a negative
correlation between VM and the reported clinical oncological
outcomes. There is now concrete evidence that the formation of
VM is a significant impediment to anti-angiogenic therapy.
A B

C D

FIGURE 4 | VM Proteome Profiler array analysis in MCF-7 and MDA-MB-231 cells after calcitriol treatment. VEGF (A) and TGF-b1 (B), urokinase-type plasminogen
activator (uPA) (C), and amphiregulin (D) protein levels in MCF-7 and MDA-MB-231 cells following calcitriol treatment. (***p < 0.001) represents statistically significant
change in protein levels between treated and control (Ctrl) untreated cells at given time points.
A B

FIGURE 5 | Migration and invasion of MCF-7 and MDA-MB-231 cells after calcitriol treatment. (A) Cell migration assay displays the reduction of the number of
migrating cells in both MCF-7 and MDA-MB-231 cells after treatment with calcitriol (10 µM). Cell invasion assay displays the reduction of the number of migrating
cells in both MCF-7 and MDA-MB-231 cells after treatment with calcitriol (10 µM). (**), (***) represents statistically significant change (p < 0.05) and (p < 0.001),
respectively in number of cells between treated and control (Ctrl) untreated cells at given time points.
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Admittedly, inducing hypoxia may endorse VM, which in turn
promotes distant metastasis (91, 92). In a study of triple-negative
BC cells, the influence of anti-angiogenic treatment on VM
promotion was confirmed (93). Thus, cells treated with sunitinib
(a VEGFR tyrosine kinase inhibitor) showed an increase in VM-
positive cases when compared to control cells. Overexpression of
HIF-1, VE-cadherin, and Twist1 was found to be responsible for
these effects (93). A recent study used trastuzumab, a drug that
engages the receptor tyrosine kinase HER2 in BC cells (94).
Numerous VM markers were highly expressed in trastuzumab-
treated cells, indicating that trastuzumab-resistant HER-2-positive
BC cells can exhibit VM in an angiogenic microenvironment. As a
result, VMmay be recognized as one of the major causative factors
of resistance to anti-angiogenic therapy in solid tumors.
Conclusively, our study established a novel role of vitamin D in
suppressing VM in BC cells.
CONCLUSION

Our study provides compelling evidence that the antitumor and
anti-VM roles of vitamin D is mediated by reducing the VM
growth factor levels and by altering TIMP/MMP systems in BC.
These antitumor effects of vitamin D ultimately have the
potential to reduce the risk of tumor cell migration and
invasion. Moreover, our study findings provide a translational
significance of utilizing vitamin D (25-hydroxyvitamin D (25
(OH)D) or calcitriol) as a supplementary anticancer agent.
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FIGURE 6 | The effect of calcitriol treatment on tube formation assay in MCF-7 and MDA-MB-231 cells after calcitriol treatment. (A) Reduction of the cell mass of
both MCF-7 and MDA-MB-231 cells after treatment with calcitriol (10 µM). (B) Significant inhibition of tube formation in MDA-MB-231 cells after treatment with
calcitriol. (***) represents statistically significant change (p < 0.001) in number of cells between treated and control (Ctrl) untreated cells at given time points.
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Supplementary Figure 1 | Images of the nitrocellulose proteome profiler
membrane showing differences in the protein expression of Pro-VM formation
mediators in the control and treated samples, (A) MCF-7 and (B) MDA-MB-231.
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Supplementary Table 1 | Key VM-related genes and signaling pathways in
Breast cancer cells that are differentially regulated by Vitamin D signaling. The
adjusted p-value, odds ratio, and the combined score are shown for each pathway.
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