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PTH(1–34) treatment and/
or mechanical loading have 
different osteogenic effects on the 
trabecular and cortical bone in the 
ovariectomized C57BL/6 mouse
Bryant C. Roberts1,2 ✉, Hector M. Arredondo Carrera1,3, Sahand Zanjani-pour1,2, 
Maya Boudiffa1,3, Ning Wang1,3, Alison Gartland1,3 & Enrico Dall’Ara1,2,3

In preclinical mouse models, a synergistic anabolic response to PTH(1–34) and tibia loading was shown. 
Whether combined treatment improves bone properties with oestrogen deficiency, a cardinal feature of 
osteoporosis, remains unknown. This study quantified the individual and combined longitudinal effects 
of PTH(1–34) and loading on the bone morphometric and densitometric properties in ovariectomised 
mice. C57BL/6 mice were ovariectomised at 14-weeks-old and treated either with injections of  
PTH(1–34); compressive loading of the right tibia; both interventions concurrently; or both interventions 
on alternating weeks. Right tibiae were microCT-scanned from 14 until 24-weeks-old. Trabecular 
metaphyseal and cortical midshaft morphometric properties, and bone mineral content (BMC) in 
40 different regions of the tibia were measured. Mice treated only with loading showed the highest 
trabecular bone volume fraction at week 22. Cortical thickness was higher with co-treatment than in 
the mice treated with PTH alone. In the mid-diaphysis, increases in BMC were significantly higher with 
loading than PTH. In ovariectomised mice, the osteogenic benefits of co-treatment on the trabecular 
bone were lower than loading alone. However, combined interventions had increased, albeit regionally-
dependent, benefits to cortical bone. Increased benefits were largest in the mid-diaphysis and postero-
laterally, regions subjected to higher strains under compressive loads.

Globally, over 9 million osteoporotic fractures occur annually that may cause permanent disability and increased 
mortality1,2. Annually, the economic burden of osteoporosis (OP) is estimated to exceed €37 billion and $22 
billion in the European Union and USA, respectively3,4. With an aging population effective treatment strategies 
are of paramount importance and both pharmacological and non-pharmacological therapies to improve bone 
properties in OP remain highly sought after5.

Recombinant parathyroid hormone [1–34] (PTH(1–34)) is the basis of two FDA-approved bone anabolics 
prescribed for treatment of OP and associated bone deficits. It is effective for increasing bone mass and strength6,7, 
which clinically corresponded with a 65% and 56% reduction in vertebral8 and hip9 fractures, respectively. 
However, high costs and poor treatment adherence are of concern10. Alternatively, exercise is also effective in 
improving bone mineral density (BMD) at both the axial and appendicular skeletal sites11,12. While exercise also 
benefits poor muscle strength and joint mobility that are factors for increased fracture risk, the bony response 
is reported to be modest at best12. PTH and exercise co-therapy may present a promising strategy to alleviate 
costs and enhance the benefits of each treatment. In a recent randomised controlled trial, PTH with whole body 
vibration (WBV) produced additional benefits to lumbar vertebra BMD than with PTH treatment alone (8.90% 
vs. 6.65% increase over 12 months, respectively)13. The potential benefits with higher-impact exercise, however, 
remain unknown.
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Preclinical research is useful for the rapid testing of novel anti-osteoporotic therapies, to optimize the osteo-
genic benefits of different treatment regimens in ovariectomised (OVX) animal models of OP14. In rodents and 
monkeys, PTH reversed OVX-induced trabecular bone loss in the axial15–18 and appendicular16–20 skeleton. Also, 
PTH enhanced bone formation at endosteal and periosteal surfaces of the cortical bone when administered over 
seven weeks either once daily or daily but only on alternate weeks21, and increasing the bone strength17. Under 
compressive load or WBV an osteogenic response to mechanical stimuli was also found15,22–24. In OVX mice, PTH 
and loading had increased benefits to the vertebral bone15, although in ovary-intact animals, combined treatment 
had conflicting effects. For example, PTH with passive axial loading or treadmill running has shown increased 
benefits to both the 3 and 9 months-old rat vertebra25,26 and 3–4 months old mouse tibia trabecular bone27,28, 
whereas PTH inhibited the anabolic effect of tibia loading in mature (19 months-old) mice29. In cortical bone, 
both synergistic27,29 and neutral effects30 with combined treatments were found.

Preclinical assessment of mouse skeletal health most often employs a cross-sectional study design and, in most 
cases, characterizes bone properties in small regions of interest (e.g. in the tibia metaphysis or cortical midshaft) 
that underrepresents heterogeneous bone adaptations observed along the limb length. PTH and mechanical load-
ing, for example, affect differently the microarchitecture and densitometric properties in different regions of long 
bones29,31. In vivo microCT permits quantification of bone changes, to microns resolution, in the same animal 
and over time, reducing measurement variability due to inter-subject differences with a considerable reduction in 
sample size32,33. Previous in vivo analysis of combined PTH(1–34) and mechanical loading is limited to a single 
study describing an increased benefit to the trabecular bone in the caudal vertebra of the OVX mouse15. However, 
given there are differences in loading and age-related bone loss in the caudal vertebra compared to anatomical 
sites which are more physiologically load-bearing, findings may be less translatable to human disease34.

The aim of this study was to quantify the longitudinal effects of PTH(1–34) alone, and in combination with 
mechanical loading, on the bone morphometric and densitometric properties of the tibia in the ovariectomised 
mouse. The spatiotemporal effects of treatment for four weeks and of treatment withdrawal for two weeks were 
measured with high-resolution in vivo microCT to evaluate detailed early localised changes of the tissue along 
the bone length.

Methods
Animals and treatment.  Twenty-four virgin female C57BL/6 mice were purchased at 13-weeks old 
(Charles River UK Ltd., Margate, UK). Mice were housed, four per cage, in The University of Sheffield’s Biological 
Services Unit at 22 °C, with a twelve-hour dark/light cycle and ad libitum access to 2918 Teklad Global 18% 
protein rodent diet (Envigo RMS Ltd., UK) and water. All the procedures were performed under a British Home 
Office licence (PF61050A3) and in compliance with the Animal (Scientific Procedures) Act 1986. This study was 
reviewed and approved by the local Research Ethics Committee of The University of Sheffield (Sheffield, UK). The 
findings and experiments in this paper were designed and reported in accordance with the ARRIVE guidelines35. 
C57BL/6 female mice were chosen due to documented skeletal responsiveness to mechanical loading, PTH(1–34) 
or OVX27,29,31,36. Peak cortical bone mass was reported in the appendicular skeleton of female C57BL/6 mice at 
3–4 months of age37, thus the mice herein were considered to be skeletally mature at the onset of this study (14 
weeks of age). An a priori estimate of sample size based on large loading effects on the trabecular bone volume 
fraction and cortical thickness after six weeks of loading in PTH-treated mice27, indicated that six mice per group 
was necessary to achieve 80% statistical power and assuming Cohen’s d = 2, α = 0.05.

At age 14 weeks, and following one week acclimatization, all mice underwent OVX and remained untreated for 
4 weeks following surgery to allow oestrogen-deficiency related bone loss36. OVX mice were randomly assigned 
into 4 treatment groups (n = 6 mice/group) and then treated, per schedule in Fig. 1(A), with either (1) PTH(1–34) 
between weeks 18 and 22, subgroup “PTH”, (2) mechanical loading during weeks 19 and 21, “ML”, (3) concur-
rent treatment with PTH(1–34) and mechanical loading, “ML + PTH”, (4) weekly alternating treatment with 
PTH(1–34) during weeks 18, 20 and 22 of age and mechanical loading during weeks 19 and 21, “ML + PTHalt”. 
All mice were withdrawn from treatment for the final two weeks of the study (weeks 23 and 24 of age). We con-
firmed treatment effects of PTH(1–34) and mechanical loading by comparing bone properties within the same 
animals before the treatment started (i.e. relative to week 18 values) and with a group of age-matched C57BL/6 
ovariectomized mice from a previous study in our laboratory36.

Intraperitoneal PTH(1–34) injections.  Mice received either intraperitoneal injection of PTH(1–34) 
(Bachem, Bubendorf, Switzerland) at 100 µg/kg/day29,31, 5 days/week (groups: PTH, ML + PTH) or vehicle 
(group: ML). PTH was prepared in 1% acetic acid and 2% heat inactivated mouse serum in HBSS31.

Mechanical loading.  A minimally invasive method was used for uniaxial compressive loading of the right 
tibia per a previously published protocol38. Briefly, the flexed knee and ankle were fixed between two soft cups 
and the tibia loaded along the superior-inferior axes to a peak load of 12 N. Tibiae were loaded to 12 N peak by 
superimposing a dynamic load of 10.0 N upon a static 2.0 N preload at a rate of 160,000 N/second. Forty trape-
zoidal waveform load cycles were applied (held for 0.2 seconds at 12 N) with a 10 second interval between each 
cycle. A 12 N load was previously shown to promote significant bone apposition in female C57BL/6 mice without 
impairing mobility following treatment38. Mechanical loading was applied to all mice in groups ML, ML + PTH 
and ML + PTHalt, three days per week (Mon, Wed, Fri) at weeks 19 and 21.

In-vivo microCT imaging.  The whole right tibia of each mouse was imaged in vivo with microCT 
(VivaCT80, Scanco Medical, Bruettisellen, Switzerland). A baseline scan (before OVX surgery) was performed 
at 14 weeks of age, then follow up in vivo scans performed every two weeks until week 22 (Fig. 1). At week 24 
mice were euthanized by cervical dislocation and both the left and right tibia were imaged ex vivo using the in 
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vivo imaging protocol. Scanning parameters, optimised in a previous study39, were: 10.4 µm isotropic voxel size, 
voltage of 55 keV, intensity of 145 µA, field of view of 32 mm, 1500/750 samples/projections, integration time 
100 ms. This scanning protocol offered the best compromise between image quality and scanning time39, which 
affect both the ionising radiation and the time in which the animal is under anaesthesia. This scanning protocol 
induced 256 mGy dose to the mouse and was found to have minimal effects on the bone properties evaluated in 
this study40. A third-order polynomial beam hardening correction algorithm based on a 1200 mg HA/cm3 wedge 
phantom was applied to all the scans41. A calibration equation based on weekly quality checks performed on a 
five-rod densitometric phantom was used to convert the Hounsfield Units in each image into tissue mineral den-
sity (TMD) equivalent values.

Image alignment and preprocessing.  From each reconstructed microCT image two analyses were per-
formed (Fig. 1(B)): standard 3D morphometric analysis as defined in the guidelines of the American Society of 
Bone and Mineral Research (ASBMR)39,42 and a spatial densitometric analysis31. The image of one tibia from one 
mouse at week 14 of age was randomly chosen and used as a reference. The longitudinal axis of each reference 
tibia was approximately aligned with the z-axis of the global reference system43. All remaining images (from 
different mice and different time points) were rigidly registered to the reference images prior to the below image 
analyses. The rigid registrations were performed by using a Quasi-Newton optimizer and the Normalised Mutual 
Information as the similarity measure (Amira 5.4.3, Thermo Fisher Scientific, France)44. The registered grayscale 
image datasets were smoothed with a Gaussian filter (convolution kernel [3 3 3], standard deviation = 0.65) in 
order to reduce the high frequency noise and bone voxels were defined using a global threshold, which was calcu-
lated as the average of the grey levels corresponding to the bone and background peaks in each image histogram 
(frequency plot)39.

Standard 3D morphometric analysis.  For trabecular bone analysis a region of interest (ROI) of 1 mm 
height was selected, 0.3 mm below a reference line defined as the most distal image slice that included the growth 
plate and adapted from previous research42,45. This was necessary to minimize analysis of the newly formed (mod-
elled) trabeculae emerging from the growth plate due to continuous longitudinal growth in rodents46. For cortical 

Figure 1.  (A) Study design and treatment schedule in C57BL/6 mice. ⁋Ovariectomy was performed at 14 weeks 
old; *treatment commenced at age 18 weeks and withdrawn after 22 weeks. Treatment groups (n = 6 mice/
group) PTH: PTH(1–34) only; ML: mechanical loading only; ML + PTH: PTH(1–34) and mechanical loading; 
ML + PTHalt: PTH(1–34) and mechanical loading on alternate weeks. (B) trabecular and cortical bone regions 
of interest for (middle) the standard morphometric analysis; and (right) spatiotemporal densitometric analysis.
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bone analysis a region of 1 mm height was selected in the tibia diaphysis and centred at 50% of the tibia bone 
length43. ROIs in the trabecular and cortical bone were manually marked and the following 3D bone parameters 
were computed (CT Analyser v1.18.4.0, Skyscan-Bruker, Kontich, Belgium): trabecular bone volume fraction 
(Tb.BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp) and trabecular number (Tb.N); cortical 
total cross-sectional area (Tt.Ar), cortical bone area (Ct.Ar), cortical area fraction (Ct.Ar/Tt.Ar) and cortical 
thickness (Ct.Th). In the midshaft cortical ROI, minimum (Imin) and maximum (Imax) principal moments of iner-
tia, polar moment of inertia (J) and eccentricity (Ecc) were computed.

Spatiotemporal densitometric analysis.  Densitometric properties were estimated in multiple regions 
within the tibia adapting a previously described procedure31. Briefly, the length of each tibia (L) was measured 
at each time point, computed as the distance between the most proximal and distal bone voxels in the registered 
image stack, and a region 80% of L was cropped starting from the section below the growth plate (MatLab, 2018a, 
The MathWorks, Inc. USA). The tibia was divided longitudinally into ten transverse sections (from most proximal, 
section C01 to most distal, section C10) with the same thicknesses (i.e. 8% of L) and each section was then divided 
into quadrants (anterior, medial, posterior and lateral sectors) for a total of 40 ROIs across the length of the tibia. 
Anterior, medial, posterior and lateral compartments were defined by two perpendicular lines passing through 
the centre of mass of each slice. Bone mineral content (BMC) and tissue mineral density (TMD, mg HA/cm³)  
were measured in each of the 10 sections and in each of the 40 quadrants. This approach provides a reasonable 
compromise between the measurement spatial resolution along the tibia length (number of sections) and the den-
sitometric measurement reproducibility, while accounting for small but still present growth of the tibia between 
weeks 14 and 24 of age43,47.

TMD in each voxel was obtained from its grey level by using the calibration curve provided by the manufac-
turer of the microCT scanner. The BMC was calculated in each voxel as TMD multiplied by the volume of the 
voxel. The BMC in each compartment was calculated as the sum of BMC in each bone voxel, while TMD in each 
compartment was defined as the ratio between BMC and the bone volume (BV)36.

Statistics.  All morphometric and densitometric properties were tested for assumptions of normality 
(Shapiro-Wilks test), homogeneity of variance (Levene’s Test) and sphericity (Mauchly’s Test). To determine 
whether anabolic treatments reverse OVX-induced trabecular bone loss and cortical bone adaptations, data 
were analysed by two-way mixed Analysis of Variance (ANOVA). Where for a given bone property the F values 
were significant for a ‘time by intervention’ interaction, the simple “time effect” was investigated using paired 
t-tests between (1) treatment baseline (week 18) and proceeding time-points (week 20–24) and (2) between 
sequential time-points (e.g. week 20–22, 22–24 comparisons)36,48. Between-group differences in bone properties 
due to treatment and treatment withdrawal (i.e. at weeks 20–24) were analysed using Analysis of Covariance 
(ANCOVA), adjusted for values at 18-weeks-old (treatment onset) and with post hoc pairwise comparisons 
(Bonferroni-adjusted for six comparisons among treatment groups). Adjustment for week 18 values mitigates 
bias due to potential differences in the bone properties at the onset of treatment. Statistical significance was set at 
α = 0.05. All analyses were performed using SPSS Statistics 25 (IBM Corp., Armonk, NY, USA).

Data are presented as mean ± standard deviation (SD) unless otherwise specified. The percentage change in 
morphometric properties were computed per Eq. (1), where “BP” is the mean bone property value (e.g. of Tb.BV/
TV, Ct.Th) and “i” defines a subsequent time point (weeks 20–24):

=
−

×Relative change BP BP
BP

(%) ( ) 100%
(1)

i 18

18

Changes of tibia densitometric properties are presented as the mean relative percentage difference between the 
two treatment groups, normalized for the baseline values of the second group (week 14). See the Supplementary 
Materials for computation of mean relative percentage difference as per Lu et al.31.

Results
All mice completed this study without complications. One mouse in the ML + PTHalt group was removed 
from densitometric analysis as reconstruction of the image data in the distal tibia failed at baseline, but this did 
not affect morphometric analysis. Data collected in this study are accessible at https://doi.org/10.15131/shef.
data.12292787.

Effects of treatments and withdrawal on the trabecular and cortical bone morphometry.  A 
significant “time by intervention” interaction and “time effect” was observed for all trabecular and cortical mor-
phometric parameters. Thus, the patterns of bone changes in response to anabolic treatment differed among the 
groups (Figs. 2, 3 and 4). Individual trends for bone morphometric properties are reported in the Supplementary 
Materials (Fig. S1 and S2).

At week 18 a significant reduction in Tb.BV/TV and Tb.N, and increase in Tb.Sp, relative to week 14 baseline 
was observed in all groups (Table 1, p < 0.05), and consistent with OVX-induced patterns of bone loss observed 
previously in C57BL/6 mice (See Supplementary Materials, Fig. S3 and Roberts et al.36). In PTH, a small and 
transient, albeit non-statistically significant, increase in Tb.BV/TV was observed at week 20 (12% increase relative 
to week 18) corresponding with a significant increase in Tb.Th (+27%, p=0.002). Tb.BV/TV returned to base-
line at week 22 (2% reduction relative to week 18). In ML, ML + PTH and ML + PTHalt, Tb.BV/TV values were 
significantly higher at week 22 than week 18 (+66–89%, p < 0.01), attributed to a significant increase in Tb.Th 
(+57–62%, p < 0.02). Individual or combined treatments with mechanical loading did not improve Tb.Sp nor 
Tb.N, relative to week 18 values. In cortical bone, a detectable (significant) change in morphometric properties 
was observed within two weeks from treatment onset (week 20). With loading (individually or combined with 
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PTH), a significant and persistent increase in Ct.Ar and Ct.Th was observed from weeks 18 to 20 to 22 (6–20% 
increase/week, p < 0.01), but only from weeks 18 to 20 with PTH alone (+17–18%, p < 0.001).

Significant intervention effects were observed among treatment groups (Fig. 2). At week 22, Tb.BV/TV, 
adjusted for week 18 values, significantly differed among all treatment groups and was higher in ML, ML + PTH 
and ML + PTHalt than PTH (76–148% higher, p < 0.05), and higher in ML than ML + PTH and ML + PTHalt 
(14–60%, p < 0.05). Tb.Th and Tb.N were significantly lower in PTH than all other groups (−20%, −22%, and 
−24% for Tb.Th, and −58%, −50%, and −50% for Tb.N compared to ML, ML + PTH, and ML + PTHalt, respec-
tively); and Tb.N was 17% lower with combined treatments than ML. In cortical bone, Ct.Th was 14–16% higher 
with combined treatment than PTH. Ct.Ar was 12% higher in ML + PTH than PTH.

Figure 2.  Mean percentage change in (top) trabecular and (bottom) cortical bone 3D morphometric 
properties in the four treatment groups, relative week 18 values. Treatment commenced at 18 weeks old and was 
withdrawn at 22 weeks old. Statistically significant differences between groups are noted (p < 0.05; ANCOVA, 
adjusted for week 18 values with post hoc Bonferroni adjustment): aML vs. PTH; bML vs. ML + PTH; cML vs. 
ML + PTHalt; dPTH vs. ML + PTH; ePTH vs. ML + PTHalt; fML + PTH vs. ML + PTHalt. Data from untreated 
ovariectomized mice from a previous study in our laboratory is shown in grey band (±1 SD) highlighting the 
marked treatment effects of individual and combined treatment with PTH(1–34) and loading on the bone 
morphometry in C57BL/6 mice.
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Significant changes in trabecular bone morphometry were observed following treatment withdrawal (Table 1 
and Figs. 2 and 3). In PTH, a significant reduction in Tb.BV/TV (31%) and Tb.Th (17%), with corresponding 
increase in Tb.Sp (8%) was observed between weeks 22 and 24; Tb.BV/TV reductions being similar to change 
in untreated OVX mice. With combined treatment, significant thinning of the trabecular bone was observed, 
corresponding with a significant reduction in Tb.BV/TV in ML + PTHalt. In ML, changes in trabecular morpho-
metry were not significant following treatment withdrawal. No significant change in cortical bone morphometry 
(Table 2) was evident between weeks 22 and 24 in PTH, nor ML. In ML + PTH and ML + PTHalt, a significant 
increase in the Tt.Ar persisted following treatment withdrawal.

With PTH and/or loading, a persistent increase in the cortical midshaft moments of inertia (Imax, Imin and J) 
and eccentricity were observed (10–49% increase at week 22 compared with week 18 values, p < 0.05), which 
were retained two-week following treatment withdrawal (Supplementary Table S1). Whereas, in untreated mice, 
no change in bone properties were observed with ovariectomy over time. At week 22, Imax and J were significantly 
higher in ML + PTH than PTH alone (Fig. S4).

Figure 3.  Trabecular bone in the tibia metaphysis of representative mice from the four treatment groups. 
Figures highlight bony response to individual or combined treatment with PTH(1–34) and mechanical loading 
in ovariectomized C57BL/6 mice. *Treatment onset commenced at week 18 and was withdrawn after week 22. 
#OVX changes from an untreated mouse in Roberts et al.36.
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Effects of treatment on the bone densitometric properties.  At week 20, BMC significantly increased 
between 7% and 26% along the tibia length in all treatment groups (Fig. 5). With PTH, a significant and persistent 
increase in BMC, from weeks 18–20–22, were observed in the most proximal (C01, 25% increase from week 18 to 
22), the mid (C03, + 17%) and in the distal tibia (C06-C10, + 23 to +25%). In ML and co-treated mice, persistent 
increments in BMC (from 18 to 20 to 22) were observed in the proximal to mid-tibia (C01-C08, + 17 to +45%). 
BMC remained above week 18 values following treatment withdrawal. Sub-regionally, the greatest osteogenic 
benefits of loading and co-treatment were observed posteriorly and laterally, particularly in the most proximal 
(C01, up to +71%, Fig. 6) and mid-tibia (C03-C06; up to +63%), whereas in PTH a more homogeneous response 
among quadrants was observed. Every treatment increased slightly the TMD (up to 7% in the most proximal 
region of the PTH treated mice at week 22 of age) in most regions of the tibia (Fig. 5). While PTH increased the 
TMD homogeneously across the tibia and among all quadrants, for all loaded mice the central portion of the tibia 
was less affected particular in the anterior and medial regions (Fig. S6). In most cases small effects on TMD were 
maintained after treatment withdrawal.

Treatment effects differed among groups (Fig. 7). In ML, the increase in BMC was significantly higher prox-
imally (C01; 10% difference) than PTH at week 22. With PTH, the increase in BMC was significantly higher in 
the distal tibia (C08-C10; 5–13% difference) than ML at weeks 20 and 22, with differences persisting following 
treatment withdrawal (week 24; C08-C10; 9 to 14%). By subregional analysis, greater osteogenic benefits of ML 
than PTH were observed in the mid-tibia postero-laterally, whereas PTH had greater benefit to the medial and 
more distal portions of the bone (Fig. S5, Supplementary Materials).

Compared with PTH, ML + PTH induced a greater increase in BMC at week 20 in the mid-tibia (C03-C04; 
4–5% difference), extending proximally at week 22 (C01-C05; 6–17% difference) and persisting with treatment 
withdrawal (C01, C03-C06; 13 to 18%). With ML + PTHalt, the increase in BMC was higher in the mid-diaphysis 
at weeks 22 and 24 (C04-C05; 5 to 12% difference) than PTH; and higher in PTH than ML + PTHalt distally (C09; 
9% difference). Greater osteogenic benefits of combined treatments were observed in the proximal (C01-C05) 
postero-lateral compartments than PTH, whereas in the medial and anterior regions of the tibia similar or oppo-
site (in C02-C03) results were found (Fig. S5, Supplementary Materials).

Compared with ML, a greater increase in BMC with ML + PTH was observed in both the proximal and distal 
tibia from week 20 (C01-C04, C10; 5 to 8% difference). Differences persisted at week 22 (C02-C04, C08-C10; 6 to 
9% difference) and following treatment withdrawal (C02-C04, C08; 11 to 14%). At week 20, ML + PTHalt induced 
a greater anabolic response than ML in the midshaft (C03-C04; 4 to 5% difference), but differences did not persist 
thereafter. ML + PTH induced a greater anabolic response in the proximal tibia than ML + PTHalt, but not until 
week 22 (C01-C04; 5–9% difference).

For TMD, the differences were small (less than 5%) and significantly differed only between PTH and com-
bined treatment groups in the most proximal tibia region (C01; 4% lower in the combined treatments compared 
to PTH, Fig. 8).

Discussion
In this study we quantified for the first time the longitudinal effects of PTH(1–34) and mechanical loading on 
bone morphometric and densitometric properties in an ovariectomised mouse model of osteoporosis. The 
results herein suggest a dominant effect of mechanical loading compared to injections of PTH, with increased 
and regionally-dependent benefits of combined treatments to the tibia cortical bone, but limited benefits for the 
trabecular bone.

PTH monotherapy had no significant anabolic benefit to metaphyseal trabecular bone consistent with neutral 
effects in intact mice29,31,49, but in contrast to increasing bone mass shown in OVX rodents elsewhere17,19,20. PTH 

Figure 4.  Cortical bone cross-sections at (top row) 37% and (bottom row) 50% of tibia length (L) at 18 weeks 
old (treatment onset; purple-blue) and 22 weeks old (red). The 37% and 50% reference lines correspond with a 
bone cross-section in C04 and C06 of the tibia, respectively.
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inhibited further OVX-induced bone loss by trabecular thickening, a characteristic adaptive response17,19,20, in 
the presence of declining trabecular number. Interestingly, in 50% of the mice examined the trabecular changes 
were characterised by a small increase in Tb.BV/TV to week 20 and then bone loss thereafter (Supplementary 
Materials, Fig. S1), supporting a transient response to ongoing treatment described cross-sectionally17. Anabolic 
effects of PTH depend on its ability to stimulate osteoblast, osteocyte and osteoclast activities50. While typi-
cally favourable to osteoblastic activity, benefits may be compromised in mice with very low (<5%) baseline 
Tb.BV/TV as in C57BL/6 mice herein and reported elsewhere17. This is in line with the limited efficacy of PTH 
in the less trabecular rich femoral neck, relative to benefits in the lumbar vertebra shown clinically51. Brouwers 

Treatment

Age (weeks)

14⁋ 16 18* 20 22 24

BV/TV (%)

PTH 7.07 ± 1.22 5.61 ± 1.02 3.70 ± 0.47 4.13 ± 0.85 3.64 ± 0.37 2.51 ± 0.46

ML 8.60 ± 1.79 6.26 ± 1.58 4.76 ± 1.85 5.97 ± 1.13 9.02 ± 0.86 7.54 ± 1.48

ML + PTH 7.38 ± 0.99 5.79 ± 0.97 3.87 ± 0.45 5.08 ± 0.48 6.43 ± 0.47 6.01 ± 0.76

ML + PTHalt 8.27 ± 0.87 6.11 ± 0.97 4.51 ± 0.20 5.66 ± 0.73 7.92 ± 0.56 5.80 ± 1.06

OVX‡ 6.27 ± 1.19 5.56 ± 1.18 4.26 ± 0.91 3.11 ± 0.43 2.92 ± 0.53 2.49 ± 0.30

CTRL‡ 6.75 ± 1.13 6.53 ± 0.79 6.00 ± 0.80 5.72 ± 0.99 5.28 ± 0.53 4.50 ± 0.85

Time-effect:
PTH
ML
ML + PTH
ML + PTHalt

(1.000)
(0.584)
(0.005)
(0.238)

(1.000;1.000)
(0.005;0.001)
(0.001;0.086)
(0.001;0.003)

(0.033;0.016)
(0.131;0.631)
(0.002; 1.000)
(0.613;0.024)

Tb.Th (µm)

PTH 47 ± 2 46 ± 2 48 ± 2 61 ± 1 58 ± 5 48 ± 4

ML 47 ± 3 44 ± 4 46 ± 3 59 ± 5 73 ± 7 64 ± 5

ML + PTH 50 ± 3 48 ± 2 47 ± 4 62 ± 5 74 ± 7 58 ± 4

ML + PTHalt 48 ± 2 45 ± 3 47 ± 4 62 ± 4 76 ± 5 59 ± 4

OVX‡ 45 ± 3 42 ± 2 44 ± 3 46 ± 3 48 ± 6 49 ± 6

CTRL‡ 45 ± 5 47 ± 5 49 ± 4 52 ± 4 52 ± 5 52 ± 4

Time-effect:
PTH
ML
ML + PTH
ML + PTHalt

(0.002)
(0.028)
(0.001)
(0.002)

(0.053;1.000)
(0.011;0.045)
(<0.001;0.016)
(<0.001;<0.001)

(1.000;0.017)
(0.022;0.090)
(0.010;0.006)
(0.032;0.003)

Tb.Sp (µm)

PTH 273 ± 21 336 ± 48 449 ± 46+ 416 ± 73 445 ± 78 481 ± 74

ML 258 ± 29 299 ± 46 362 ± 54+ 369 ± 53 385 ± 66 380 ± 73

ML + PTH 292 ± 43 342 ± 30 420 ± 56 398 ± 44 405 ± 37 403 ± 40

ML + PTHalt 271 ± 16 321 ± 12 385 ± 46+ 375 ± 29 383 ± 35 382 ± 38

OVX‡ 331 ± 29 390 ± 35 411 ± 64 450 ± 75 483 ± 73 535 ± 86

CTRL‡ 325 ± 58 342 ± 61 362 ± 62 364 ± 55 388 ± 78 409 ± 70

Time-effect:
PTH
ML
ML + PTH
ML + PTHalt

(1.000)
(1.000)
(1.000)
(1.000)

(1.000;0.630)
(0.283;1.000)
(1.000;1.000)
(1.000;1.000)

(1.000;0.007)
(1.000;1.000)
(1.000;1.000)
(1.000;1.000)

Tb.N 1/mm)

PTH 1.5 ± 0.2 1.2 ± 0.2 0.8 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 0.5 ± 0.1

ML 1.8 ± 0.4 1.4 ± 0.4 1.0 ± 0.4 1.0 ± 0.3 1.3 ± 0.2 1.2 ± 0.3

ML + PTH 1.5 ± 0.2 1.2 ± 0.2 0.8 ± 0.1 0.8 ± 0.1 0.9 ± 0.1 1.0 ± 0.1

ML + PTHalt 1.7 ± 0.2 1.4 ± 0.2 1.0 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 1.0 ± 0.2

OVX‡ 1.4 ± 0.2 1.3 ± 0.3 1.0 ± 0.2 0.7 ± 0.1 0.6 ± 0.1 0.5 ± 0.1

CTRL‡ 1.5 ± 0.3 1.4 ± 0.2 1.2 ± 0.2 1.1 ± 0.2 1.0 ± 0.3 0.9 ± 0.2

Time-effect:
PTH
ML
ML + PTH
ML + PTHalt

(0.644)
(1.000)
(1.000)
(1.000)

(0.362;1.000)
(0.375;0.017)
(1.000;1.000)
(1.000;0.109)

(0.004;0.227)
(1.000;1.000)
(0.100;0.176)
(1.000;1.000)

Table 1.  Tibial metaphyseal trabecular 3D bone morphometry over time for each treatment group with 
ovariectomy (values reported as mean ± standard deviation). BV/TV: trabecular bone volume fraction, Tb.Th: 
trabecular thickness, Tb.Sp: trabecular separation, Tb.N: trabecular number. The p-values for a “time-effect” 
are reported in parentheses as (comparison to baseline (week 18) values; comparison previous time point). 
Bold values indicate a statistically significant difference between time points. Superscript: ⁋Ovariectomy was 
performed at week 14; *treatment commenced, per Fig. 1(a), at the beginning of week 18 and was withdrawn at 
the end of week 22. +Tb.Sp was significantly higher in PTH than in ML (p=0.013) and ML + PTHalt (p=0.036) 
at the onset of treatment. Remaining morphometric parameters did not significantly differ among the four 
treatment groups at week 18 following randomisation. ‡3D morphometry of untreated ovariectomized mice 
(group “OVX”) and intact controls (“CTRL”) from Roberts et al.36 are reported for comparison of trends in bone 
adaptation.
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et al.19 report, in OVX rats, strong positive interrelationships between baseline Tb.BV/TV and bony adapta-
tions to PTH, though relationships were not confirmed by our current data (Tb.BV/TV18 vs. ∆Tb.BV/TV18–22; 
Spearman’s ρ=−0.657, p=0.156, see Supplementary Materials). In the midshaft, PTH treatment lead to an imme-
diate increase (from week 18–20) in cortical thickness and bone area consistent with cross-sectional findings on 
OVX mice17,20, although osteogenic benefits, except in Tt.Ar, desisted thereafter. This finding in Ct.Th is contrary 
to the constant linear increase observed in OVX rats19, and in 19-months-old intact mice where PTH exacerbated 
age-related thinning of the cortical bone over time29. PTH had relatively homogeneous benefits along the bone 
length, increasing BMC with constant benefits to the mid- to distal tibia, and contrary to intact mice, where ben-
efits propagated proximal to distally and in postero-medial sectors31.

Age (weeks)

14⁋ 16 18* 20 22 24

Tt.Ar (mm2)

PTH 0.95 ± 0.03 0.97 ± 0.03 0.96 ± 0.02 1.05 ± 0.03 1.09 ± 0.03 1.10 ± 0.04

ML 0.91 ± 0.04 0.94 ± 0.03 0.95 ± 0.03 1.02 ± 0.05 1.08 ± 0.04 1.10 ± 0.05

ML + PTH 0.95 ± 0.03 0.98 ± 0.03 1.00 ± 0.04 1.10 ± 0.03 1.16 ± 0.02 1.18 ± 0.02

ML + PTHalt 0.91 ± 0.05 0.95 ± 0.04 0.96 ± 0.04 1.04 ± 0.04 1.10 ± 0.04 1.14 ± 0.04

OVX‡ 0.84 ± 0.03 0.88 ± 0.03 0.89 ± 0.02 0.90 ± 0.03 0.90 ± 0.04 0.90 ± 0.04

CTRL‡ 0.83 ± 0.05 0.86 ± 0.04 0.87 ± 0.04 0.88 ± 0.05 0.89 ± 0.04 0.88 ± 0.04

Time-effect:
PTH
ML
ML + PTH
ML + PTHalt

(0.002)
(0.062)
(0.002)
(0.001)

(<0.001;0.002)
(0.001;0.006) 
(<0.001;0.011)
(<0.001;0.002)

(<0.001;0.875)
(0.005;0.491)
(<0.001;0.022)
(<0.001;0.002)

Ct.Ar (mm2)

PTH 0.58 ± 0.02 0.58 ± 0.02 0.58 ± 0.02 0.68 ± 0.03 0.70 ± 0.03 0.69 ± 0.04

ML 0.56 ± 0.01 0.57 ± 0.02 0.57 ± 0.01 0.65 ± 0.03 0.71 ± 0.02 0.71 ± 0.04

ML + PTH 0.58 ± 0.02 0.60 ± 0.02 0.60 ± 0.02 0.72 ± 0.02 0.76 ± 0.01 0.77 ± 0.03

ML + PTHalt 0.56 ± 0.03 0.58 ± 0.03 0.59 ± 0.03 0.69 ± 0.03 0.74 ± 0.03 0.75 ± 0.03

OVX‡ 0.50 ± 0.03 0.51 ± 0.03 0.52 ± 0.02 0.53 ± 0.02 0.54 ± 0.02 0.53 ± 0.02

CTRL‡ 0.48 ± 0.05 0.51 ± 0.05 0.52 ± 0.05 0.53 ± 0.05 0.54 ± 0.04 0.53 ± 0.04

Time-effect:
PTH
ML
ML + PTH
ML + PTHalt

(<0.001)
(0.010)
(0.001)
(0.002)

(0.001;0.411)
(<0.001;0.001) 
(<0.001;0.023)
(0.002;0.015)

(0.006;1.000)
(0.006;1.000)
(0.001;1.000)
(0.002;0.162)

Ct.Ar/Tt.Ar (%)

PTH 60.9 ± 0.6 59.9 ± 0.5 59.8 ± 0.6 65.0 ± 0.7 64.1 ± 1.4 62.2 ± 2.4

ML 61.5 ± 1.4 60.4 ± 1.4 60.3 ± 1.4 64.1 ± 2.2 65.9 ± 2.2 64.9 ± 2.9

ML + PTH 61.0 ± 0.9 60.9 ± 1.2 60.3 ± 1.7 65.6 ± 1.9 66.0 ± 1.8 64.9 ± 2.5

ML + PTHalt 61.7 ± 0.8 61.3 ± 1.0 61.2 ± 1.1 65.8 ± 1.5 66.9 ± 1.6 66.1 ± 1.5

OVX‡ 58.7 ± 0.6 58.5 ± 1.4 58.6 ± 1.4 59.4 ± 1.1 59.7 ± 1.2 59.3 ± 1.4

CTRL‡ 57.5 ± 3.3 58.6 ± 3.2 60.0 ± 2.7 60.3 ± 2.7 60.4 ± 2.3 60.3 ± 2.1

Time-effect:
PTH
ML
ML + PTH
ML + PTHalt

(<0.001)
(0.003)
(0.001)
(0.008)

(0.007;1.000)
(0.001;0.013)
(0.003; 1.000)
(0.015; 0.500)

(0.962;0.259)
(0.013;1.000)
(0.068;1.000)
(0.036;0.253)

Ct.Th (µm)

PTH 223 ± 3 221 ± 4 219 ± 4 258 ± 8 262 ± 10 253 ± 13

ML 222 ± 3 220 ± 6 220 ± 5 255 ± 14 279 ± 14 284 ± 18

ML + PTH 224 ± 3 226 ± 6 225 ± 7 271 ± 11 290 ± 12 289 ± 17

ML + PTHalt 223 ± 8 226 ± 8 226 ± 9 267 ± 11 287 ± 10 293 ± 9

OVX‡ 201 ± 6 205 ± 9 206 ± 8 209 ± 7 211 ± 7 208 ± 8

CTRL‡ 196 ± 16 203 ± 16 210 ± 16 212 ± 15 213 ± 13 212 ± 12

Time-effect:
PTH
ML
ML + PTH
ML + PTHalt

(<0.001)
(0.008)
(0.001)
(0.002)

(0.001;1.000)
(0.001;<0.001) 
(0.001;0.011)
(0.001;0.012)

(0.024;0.835)
(0.002;1.000)
(0.003;1.000)
(0.002;0.706)

Table 2.  Tibial cortical midshaft 3D bone morphometry over time for each treatment group with ovariectomy 
(values reported as mean ± standard deviation). Tt.Ar: Total cross-sectional area, Ct.Ar: cortical bone area, 
Ct.Ar/Tt.Ar: cortical area fraction, Ct.Th: cortical thickness. The P Values for a “time-effect” are reported in 
parentheses as (comparison to baseline (week 18) values;comparison to previous time point). Bold values 
indicate a statistically significant difference between time points. ⁋Ovariectomy was performed at week 14; 
*treatment commenced, as per Fig. 1(A), at the beginning of week 18 and was withdrawn at the end of week 22. 
Morphometric parameters did not significantly differ among the four groups at onset of treatment (p > 0.05). 
‡3D morphometry of untreated ovariectomized mice (group “OVX”) and intact controls (“CTRL”) from Roberts 
et al.36 are reported for comparison of trends in bone adaptation.

https://doi.org/10.1038/s41598-020-65921-1


1 0Scientific Reports |         (2020) 10:8889  | https://doi.org/10.1038/s41598-020-65921-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Tibia loading had anabolic benefits to both the secondary trabecular and cortical bone shown previously 
in intact and orchidectomised mice23,24,27,29. In age-matched C57BL/6, OVX and age-related changes in trabec-
ular metaphyseal bone are characterised by a significant decline in Tb.BV/TV (12–31% bone loss from 18- to 
22-weeks-old)36. Whereas, bone adaptations after loading were characterised by a persistent increase in Tb.BV/
TV (89% increase from week 18 to 22) due to trabecular thickening particularly in posterior regions (Fig. 3). 
In the mid-tibia, loading increased the cortical thickness and total cross-sectional area, and led to a constant 
increase in BMC in the proximal to mid-tibia, agreeable with cross-sectional23,24,27,52 and recent longitudinal find-
ings53 in intact mice. Notably, the largest loading induced increase occurred posterior to laterally at the mid-shaft 
(Figs. 4 and 6), consistent with higher bone formation and decreased resorption processes at the periosteal sur-
face of these sites documented elsewhere, and where the compressive strains are greatest under uniaxial load54. 
Compared with PTH, loading showed greater benefits to trabecular, but not cortical bone morphometry, except a 
higher cortical thickness two weeks after treatment withdrawal. PTH had greater benefit to distal BMC, whereas 
loading was more beneficial to the proximal and mid-tibia, consistent with heterogeneous strain distribution in 
this loading model55.

Both concurrent and alternating co-treatment had anabolic benefits to morphometric and densitomet-
ric properties of the mouse tibia. In general, owing to dominant loading effects as discussed above, combined 
treatment induced longitudinal adaptations in morphometric properties similar to loading alone, e.g. increased 
Tb.BV/TV with trabecular and cortical thickening. Interestingly, with co-treatment, PTH appeared to limit the 
osteogenic benefits of loading on the trabecular bone, confirming a possible antagonistic interaction on metaphy-
seal trabeculae observed cross-sectionally in intact 19-months-old C57BL/629, though contrary to additive bene-
fits on both appendicular or axial trabecular bone observed in 3–4 months-old intact27 and OVX C57BL/6 mice15. 
Combined treatments had increased benefits to cortical thickness than PTH alone, but not loading monotherapy 
which is consistent with short (2 weeks), but not with prolonged (3–6 weeks) tibia loading previously shown27,29. 
In BMC, PTH(1–34) enhanced loading effects in the proximal tibia, particularly in posterolateral regions that are 
subjected to higher compressive strain under controlled mechanical load, while conferring osteogenic benefits to 
the distal portion where mechanical effects were low. Compared with PTH, loading had increased benefits only 
to the proximal tibia and confirmed by site-specific analysis of cortical morphometry elsewhere29. Meanwhile, 
alternating PTH lead to a lower anabolic response at 22 weeks of age in the most proximal part of the tibia (signif-
icantly lower Tb.BV/TV and in C01-C04 BMC compared with ML + PTH).

An appropriate animal model of the human disease is recommended for preclinical testing of novel 
anti-osteoporotic treatment strategies. In C57BL/6, OVX-induced changes are characterized by rapid and 

Figure 5.  Mean percentage change, relative to week 18 values, in (left) bone mineral content (BMC) and (right) 
tissue mineral density (TMD) in 10 regions of interest along 80% of the tibia length in the four treatment 
groups. Sections are C01, most proximal to C10, most distal. Ovariectomy was performed at 14 weeks old and 
treatment commenced at 18 weeks old and was withdrawn at 22 weeks old. *Statistically significant difference 
compared with week 18 and ‡between sequential timepoints (p < 0.05; ANOVA with post hoc pairwise 
comparisons).
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persistent bone loss with concomitant reductions in circulating oestrogen36, the latter of which is not typical in 
aging rodents, though are cardinal features of human OP56. We selected skeletally mature, yet relatively young, 
mice to quantify adaptive response in absence of aging and related comorbidities that could confound the find-
ings, though aging can affect the bone mechano-adaptation and responsiveness to co-therapy29, thus should be 
considered in future studies. With ovariectomy, our data highlights generally positive effects of combined bone 
anabolics to the cortical bone, but potentially antagonistic effects to trabecular bone in this mouse model. This 

Figure 6.  Mean percentage change, relative to week 18 values, in bone mineral content in 40 subregions of 
interest along 80% of the tibia length in the four treatment groups. Sections are C01, most proximal to C10, 
most distal. Ovariectomy was performed at 14 weeks old and treatment commenced at 18 weeks old and was 
withdrawn at 22 weeks old. *Statistically significant difference compared with week 18 and ‡between sequential 
timepoints (p < 0.05; ANOVA with post hoc pairwise comparisons).

https://doi.org/10.1038/s41598-020-65921-1


1 2Scientific Reports |         (2020) 10:8889  | https://doi.org/10.1038/s41598-020-65921-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

variable response along the tibia, and often contrary to outcomes elsewhere, highlights the need for caution 
when extrapolating findings from young or old intact animals or otherwise positive anabolic benefits reported in 
axial bones15. Using comprehensive subregional assessment with longitudinal study design our results also pro-
vide meaningful additional information on bone’s dynamic response to treatments that can be underrepresented 
by standard morphometric analyses. For example, characterization of mid-shaft cortical morphometry failed to 
capture the increased and highly region-dependent benefits of combined PTH and loading that we demonstrate 
by BMC partitioning in quadrants along the bone length. This spatial analysis, applied to high-resolution in vivo 
microCT images, represents important methodological refinements by contributing to a substantial reduction in 
the number of animals used for preclinical assessment of novel anti-osteoporotic treatment strategies32. Further, 
the longitudinal data could provide invaluable information for mechanistic models of bone remodeling with 
anabolic therapies, e.g. references57–59.

There were limitations to this study. First, PTH(1–34) was administered approximately 2–3 hours following 
loading. While clinically, timing of the PTH(1–34) dose, e.g. morning than in evening, can enhance its effi-
cacy51, the timing to optimise treatment synergies is yet to be resolved. Regardless, increased benefits were still 

Figure 7.  Longitudinal effects of PTH(1–34) and mechanical loading on the bone mineral content (BMC) in 
10 sections along the tibia length in ovariectomized C57BL/6 mice. Sections are C01, most proximal to C10, 
most distal. Values are reported as the relative percentage difference between two treatment groups (g1 vs. g2), 
normalised for week 18 values of the latter group (g2). *p < 0.05, indicates statistically significant differences 
between groups (ANCOVA, adjusted for baseline values at week 18). Positive and negative values indicate 
greater increases in BMC in g1 and g2, respectively.
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shown and post-loading administration may be clinically relevant given drug side-effects, e.g. cramping and 
nausea/dizziness, which may be contraindications to exercise8. Second, the applied (12 N) load was matched 
across time-points and the intervention groups. Due to the PTH effects on cortical morphology, given at week 
18 and one week before the first application of mechanical load, potential differences in local strains among the 
treatment groups may occur. Nevertheless, injections of PTH have shown not to significantly affect the cortical 
bone and to induce only small differences (7–9%) in BMC change in the proximal medial and posterior sectors31. 
Thus, the difference in local strain under the same axial load for the different groups of mice in week 19 should 
be minimal. Third, the in vivo study design precludes microCT scanning at smaller voxel size without increasing 
the radiation dose. Thus, we could not reasonably evaluate the effects of treatment on intra-cortical remodeling 
given that the mean cortical pore diameter in C57BL/6 mice is often less than the voxel size (i.e. <10 µm)60. 
Fourth, although sufficiently powered per our a priori sample size estimation, the heterogeneous response of the 
mice (see Supplementary Materials) may confound group trends and limit our ability to detect further significant 
intervention effects. However, the longitudinal design is advantageous to reduce risk of study bias while improv-
ing statistical power32. Finally, C57BL/6 mice, particularly following OVX have very low trabecular bone mass 

Figure 8.  Longitudinal effects of PTH(1–34) and mechanical loading on tissue mineral density in 10 sections 
along the tibia length in ovariectomized C57BL/6 mice. Sections are C01, most proximal to C10, most distal. 
Values are reported as the relative percentage difference between two treatment groups (g1 vs. g2), normalised 
for week 18 values of the latter group (g2). *p < 0.05, indicates statistically significant differences between 
groups (ANCOVA, adjusted for baseline values at week 18). Positive and negative values indicate greater 
increases in BMC in g1 and g2, respectively.
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at treatment onset. Thus, in the tibia metaphysis there is often very few trabeculae on which to reliably assess 
treatment efficacy.

In conclusion, combining PTH(1–34) and tibia loading has increased, albeit highly regionally-dependent, 
benefits to the tibia cortical bone properties in ovariectomized mice, whereas co-treatment had lower osteogenic 
benefits on the trabecular bone than loading alone. While PTH(1–34) has relatively homogeneous benefits along 
the tibia length, loading increased BMC more focally in the mid-diaphysis and postero-laterally, which is sub-
jected to higher stresses and strains under compressive loads. This data reinforces the need for comprehensive 
spatial analysis along the bone length when testing effects of novel treatment strategies.
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