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A QUBO Formulation of Minimum 
Multicut Problem Instances in Trees 
for D-Wave Quantum Annealers
William Cruz-Santos1, Salvador E. Venegas-Andraca2* & Marco Lanzagorta3

Quantum annealing algorithms were introduced to solve combinatorial optimization problems by 
taking advantage of quantum fluctuations to escape local minima in complex energy landscapes typical 
of NP − hard problems. In this work, we propose using quantum annealing for the theory of cuts, a field 
of paramount importance in theoretical computer science. We have proposed a method to formulate 
the Minimum Multicut Problem into the QUBO representation, and the technical difficulties faced when 
embedding and submitting a problem to the quantum annealer processor. We show two constructions 
of the quadratic unconstrained binary optimization functions for the Minimum Multicut Problem and we 
review several tradeoffs between the two mappings and provide numerical scaling analysis results from 
several classical approaches. Furthermore, we discuss some of the expected challenges and tradeoffs in 
the implementation of our mapping in the current generation of D-Wave machines.

Quantum Annealing algorithms (QA) constitute a paradigm of quantum computation focused on solving com-
binatorial optimization problems1–9. QA are based on quantum effects in order to escape local minima of a cost 
function by the effect of tunneling through barriers separating local minima. An example of physical realiza-
tions of quantum annealing are the D-Wave quantum computers which have proved to be advantageous to solve 
instances of some NP − hard problems10.

To solve a problem using the D-Wave architecture, we must express it as a quadratic unconstrained Boolean 
optimization problem (QUBO) or an equivalent Ising function defined on logical variables. Then, we embed the 
logical problem in the physical architecture of the quantum annealer by mapping logical variables and qubits. 
The final step consists of performing an annealing process and obtaining the results. There are some limitations 
of the D-Wave hardware such as the maximum number of physical qubits available (which is 2000 qubits in its 
most recent computer, the D-Wave 2000Q system); this limitation imposes a restriction on the size of the logical 
problem that can be embedded into the hardware. Another limitation is the connectivity of the current architec-
ture which is in the form of a Chimera graph as, in order to represent a logical variable, it is necessary to use a 
chain of physical qubits. Finally, numerical precision is another key feature in the mathematical definition and 
computation of Ising model parameters due to the analog nature of the device and the presence of additive noise.

In this article, we present a QUBO transformation of a family of graphs, to be later used on a QA approach, in 
order to solve the Minimum Multicut Problem (MCC problem) which is of paramount importance in theoretical 
computer science and other disciplines such as computer vision. The MMC problem is defined as follows: given a 
graph G = (V, E) with associated positive weights to the edges and a list of vertex pairs (si, ti), 1 ≤ i ≤ k, a minimum 
weight set of edges separating each pair of vertices in the list must be found.

The MMC problem is an NP − hard problem. In this paper, we study a QUBO formulation of the MCC prob-
lem on a family of connected trees, being this variant also NP − hard. We show two QUBO constructions for the 
studied problem. The first one is based on an intuitive linear programming formulation used to obtain a function 
of degree equal to the largest unique path between each pair (si, ti), 1 ≤ i ≤ k in a tree. The second one is based on 
the basic idea that in order to separate each path between terminals si and ti, it is necessary to remove at most k 
edges. This basic observation was used to define a QUBO function of degree at most k − 1. Also, a general penalty 
approach for the QUBO function based on Boolean circuits is shown.
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Results
Quantum annealing, pseudo boolean functions and QUBO formulations.  The D-Wave hardware 
is a physical realization of QA which solves instances of the classical Ising problem on a transverse field. The Ising 
model problem is NP − hard11 and it is defined as follows: given a set of weights (called fields) hi and Jij (called 
couplers), find an assignment to the set of Ising spin variables s = {si: 1 ≤ i ≤ N}, with si ∈ {−1, +1}, so as to mini-
mize the energy function

∑ ∑= +
≤ ≤ ≤ < ≤
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|hi| ≤ 2 and |Jij| ≤ 1. Finding an assignment = ∈ − +
⁎ Es sarg min ( )s { 1, 1}N  is equivalent to finding the ground state of 

the corresponding Ising classical Hamiltonian,
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where σi
z is the Pauli matrix z acting on the ith particle. One of the schemes to realize QA is through adiabatic 

quantum evolution from the ground state of an initial Hamiltonian to a ground state of a final Hamiltonian5. 
According to this scheme a time-dependent Hamiltonian takes the form

τ τ τ= +H A H B H( ) ( ) ( ) p0

where τ = t/ta for 0 ≤ t ≤ ta, is ta is the total annealing time, and the initial Hamiltonian H i N i
x

0 1 σ= −∑ ≤ ≤  
responsible for quantum tunneling among the localized classical states corresponding to the eigenstates of 
Hamiltonian Hp. Functions A(τ) and B(τ) are defined so that, at time τ = 0, the influence of Hamiltonian H0 is 
predominant against Hp. As time evolution goes from τ = 0 to τ = 1, the influence of Hamiltonian Hp increases 
while H0 fades away.

Consider the Hamiltonian H t H t t H( ) ( / ) ( )a τ= =
∼ ∼  such that 0 ≤ τ ≤ 1, and let us denote by |l; τ〉 the instanta-

neous eigenvector of τ∼H( ) corresponding to the instantaneous eigenvalue λl(τ). We find that

τ τ λ τ τ| 〉 = | 〉
∼H l l( ) ; ( ) ;l

with
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The Adiabatic theorem asserts that for sufficiently large ta,
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for some solution ψ(t) to the Schrödinger equation with Hamiltonian H(t). Consequently, state ψ(ta) will be very 
close to the ground state of Hamiltonian Hp with high probability. A sufficient condition for the algorithm run-
ning time needed to satisfy the Adiabatic theorem is
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Pseudo-boolean maps.  Let x = {xi: 1 ≤ i ≤ N} be a set of N Boolean variables. A pseudo-Boolean function is a map 
f : {0, 1}N →  represented as multi-linear polynomials:

f c S xx( ) ( ) ,
(4)S N j S

j
{1, , }
∑ ∏=

⊆ … ∈

where ∈ c S( ) .
The degree of f, denoted as deg(f), is the cardinality of the largest subset S ⊆ {1, …, N} for which c(S) ≠ 0. 

Similarly, the size of f denoted as size(f) is the total number of variable occurrences in it, i.e., size(f) = ΣS:c(S)≠0|S|.
Of our particular interest are the quadratic pseudo-Boolean functions f : {0, 1}ue

N →  with deg(fue) ≤ 2 
expressed by polynomials of the form:

f u x e x xx( )
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where ∈u e,i ij . The quadratic unconstraint binary optimization problem (QUBO) thus consists in finding an 
assignment = ∈ fx xarg min ( )uex {0,1}N

⁎ . Also, the quadratic pseudo-Boolean map coincides with the Ising model 
via variable substitution xi = (1 + si)/2 for i = 1, …, N.

It is often the case that a problem can be formulated in terms of pseudo Boolean expressions of degree 
greater than two, which can subsequently be reduced to a QUBO function. However, this reduction commonly 
implies adding new variables to the former problem12–14 (an introduction to NP−hard problems and quantum 
annealing-based algorithms can be found in15).

In the following sections, we address the QUBO formulation of the MMC problem which is of utmost theo-
retical and practical importance in the computer science community.

Quantum formulation of the MMC problem.  An undirected weighted graph has the form G = (V, E, w) 
where V is a finite set of vertices, E ⊆ V(2) = {{u, v}|u, v ∈ V} is a set of unordered pairs of vertices or edges and 

w E: {0}∪→ +  is a weighted map. Let us now define the MCC problem.

Problem 1 (MMC problem) Given a weighted graph G = (V, E, w) and a list of vertices pairs (si, ti), 1 ≤ i ≤ k, find a 
multicut with minimum weight, i.e., a subset E′ ⊆ E such that the removal of E′ from E disconnects si from ti for every 
pair (si, ti), where the weight of E′ is given as w u v( , )u v E{ , }∑ ∈ ′ .

For k = 1, the MMC problem reduces to the min-cut/max-flow problem that can be solved in polynomial 
time16. The problem is also tractable when k = 2, by using two applications of the min-cut/max-flow algorithm17. 
It becomes NP − hard when k ≥ 3 for general graphs, but can be solved in polynomial time for planar graphs for 
any fixed k18. It has been proved that the MMC problem is NP − hard and MAXSNP − hard on trees18,19. The 
MAXSNP − hardness of the MCC problem implies that no polynomial time approximation scheme exists unless 
P = NP.

The MMC problem can be applied in many areas such as telecommunication, routing, VLSI design and circuit 
partitioning20,21. In the following, we study the QUBO formulation of the MMC problem for the case when G is 
a tree.

A direct mapping of MMC into QUBO.  Let G = (V, E, w) be a weighted graph and (si, ti), 1 ≤ i ≤ k a list of vertex 
pairs. For each edge e ∈ E, we introduce a Boolean variable xe such that xe = 0(1), if e is (not) considered for a 
MMC in G. If graph G is restricted to be a tree, then there exists a unique path in G for every pair of vertices. We 
define the unique path from si to ti in G as pi where its length li is equal to the number of edges that it crosses. The 
diameter of a tree T = (V, E), denoted as diam(T), is equal to the maximum path length between every pair of 
vertices in T.

Let P pi
k

i1∪= =  be the union of all edges in the paths pi for i = 1, …, k. Let us to define the following 
function,
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In (6), Hw expresses the weight of the selected edges to be removed and Hpen serves to add a penalty value when 
the considered edges do not correspond to a MMC. Based on this construction, the MMC problem on trees is 
equivalent to minimizing H over all possible assignments to the Boolean variables xe.

The penalty term satisfies 0 ≤ Hpen ≤ kλP, where λP is a positive constant. In particular, when all paths are dis-
connected, Hpen = 0 which means that at least one edge was removed in every path pi for i = 1, …, k. We must 
ensure that λP is big enough so that the weight of an invalid multicut is greater than the weight of any valid mult-
icut. The value of λP can be upper bounded by λ = ∑ ∈ w e( )P e P . The degree of Hpen is equal to the maximum 
length of the paths pi for i = 1, …, k. In other words,

= | = … .H l i kdeg ( ) max { 1, , }pen i

In order to optimize (6) via QA, we need to write it in QUBO form (possibly by using section 1.1). For 
instance, assume that each path pi does not have a trivial length, i.e. li > 2; using the reduction method in14, the 
penalty term Hpen can be transformed into a quadratic function adding a total of i

k l
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−  new variables. This 
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•	 If li is odd then we find that

∏ = + − + − +
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The proposed QUBO function obtained from (6) using the Ishikawa reduction method presented in14 has as 

main advantage that its coefficients are small. This is a highly desirable property when programming the D-Wave 
quantum annealer because of its limited hardware precision to specify the values of Ising model parameters hi and Jij.

A disadvantage of function H given in (6) is that its degree depends on the length of the paths. In subsection 
2.2 we present another method to build a low degree Hpen, based on the number of edges shared between paths.

Construction of Hpen based on crossing paths.  Although several techniques exist for degree reduction of an arbi-
trary pseudo-Boolean function into a quadratic one, it is preferable to construct an initial expression of degree as 
low as possible. In this method, the key idea behind buliding a low degree function Hpen is to notice that a multicut 
consists of a subset of edges of cardinality of at most k. This condition imposes a restriction on the number of 
edges that could be removed in order to disconnect each path. Based on this observation, our goal will be to con-
struct a new penalty function Hpen

′  such that it will penalize all subsets of edges of cardinality larger than k.
For any i, j ∈ {1, …, k}, let ζij be a characteristic function defined as

p p i j1 if ,

0 otherwise (12)ij
i j∩ζ =






≠ ∅ ≠

.

We say that two paths pi and pj intersect if ζij = 1. In particular, if i = j then ζij = 0. For each j ∈ {1, …, k}, the 
quantity ζ= ∑ =cj i

k
ij1  is equal to the number of paths pi that intersect with path pj. Thus, the maximum number 

of paths than can intersect with a path pj is k − 1. It is assumed that the number of intersections cannot be greater 
than the length of a given path.

For any j ∈ {1, …, k} and η ∈ {1, …, k − 1}, let Cηj be given by

∑η=

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where Cηj = 0 if the number of edges to be removed from path pj equals η, and Cηj > 0 otherwise. The new penalty 
term is

∑ ∏λ=
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H C
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where ′ =c 1j  if cj = 0, 1, and ′ =c cj j if cj > 1.
Function H pen′  has as objective to penalize sets of edges of cardinality greater than k rather than penalizing 

sets of edges that do not correspond to a multicut as the term Hpen does. H 0pen′ =  if and only if every path pj is 
disconnected, and ′ >H 0pen  otherwise. The degree of H pen′  is at most twice the maximum number of intersec-
tions in all paths, i.e.

′ ≤ ′ | = … ≤ −H c j k kdeg ( ) 2 max { 1, , } 2( 1)pen j

which does not depend on the length of paths pi in G.
The penalty function H pen′  can be reduced into a QUBO function using the method in12, producing a quad-

ratic expression, the size of which is polynomially bounded in size( ′H pen) and the number of new variables is 
O(n2logd) where d = deg( ′H pen) and n = |P|. A disadvantage of this method is that the resulting quadratic function 
has many large coefficients and also introduces many positive quadratic terms. These two effects make the mini-
mization of the resulting function a hard problem22,23.

A Boolean circuit construction for H pen′ .  Let x = {xi|1 ≤ i ≤ N} be a set of N Boolean variables, and let b be a pos-
itive integer. Based on section 2.2, the penalty term H pen′  can be written in terms of a pseudo Boolean function φcj 
as follows

∑λ φ′ =
=

′H x x( ) ( )
(15)

pen P
j
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c
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j
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Function φcj can be constructed if we consider a Boolean circuit g: {0, 1}N → {0, 1} such that g(x) = 1 when 
φcj(x) > 0, and g(x) = 0 otherwise. This Boolean circuit can always be expressed as a pseudo Boolean function 
φg =  c j

φ ′  such that they both have the same values at every point. Let us formalize this result. A disjunctive form 
(DF) is an expression of the form

x x
(17)k

m

i A
i

j B
j

1 k k

∨ ∧ ∧ϕ =

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∧ ¬
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where ∩ =A B 0k k  for k = 1, …, m.
A DF is said to be orthogonal if ∩ ∪ ∩ ≠A B A B( ) ( ) 0k l l k  for all k, l ∈ {1, …, m} with k ≠ l. An orthogonal 

DF ϕ represents a Boolean circuit g : {0, 1}N → {0, 1} if the truth value points of g coincide with the truth value 
points of ϕ. Furthermore, every Boolean circuit g : {0, 1}N → {0, 1} represented by an orthogonal DF has an asso-
ciated multilinear polynomial introduced in24 and presented in (18),

x xx( ) (1 )
(18)
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The Boolean circuit g: {0, 1}N → {0, 1} can be constructed using the standard Karnaugh map procedure25. 
This technique receives as input a truth table on N Boolean variables and returns a Boolean circuit expressed as 
a sum of products (SOP) of the involved variables which can be implemented using AND, OR and NOT gates. 
After obtaining the Boolean formulae in terms of the elementary Boolean gates, the NOT gate is interpreted as 
¬x = 1 − x.

For instance, the corresponding pseudo-Boolean function obtained through Karnaugh maps as SOP can be 
expressed as

x xx( ) (1 )
(19)

c
i

c

A p A l i e A
e

e p
e

1 ,
j

j

j j j

∑ ∑ ∏ ∏φ = − + .′
=

′

⊆ | |= − ∈ ∈

As it can be seen in (19), the degree of function φ ′c j
 is equal to the length of path pj. This penalty function has 

the same degree as the expression given in (8), however, the former has the property that penalizes multicuts of 
cardinality greater than k.

Experiments and Discussion.  We now present our algorithms and corresponding outcomes, as well as the 
limitations of our proposal. First, let us review the road map (steps) for solving an optimization problem using a 
quantum annealing approach:

	 (i)	 Select an optimization combinatorial problem (in our case, the MMC problem).
	(ii)	 Construct a pseudo-Boolean function on binary variables for the selected optimization problem, so that 

those assignments that minimize the expression also correspond to solutions of the given problem. Since 
the D-Wave quantum processor has a specific architecture, it only supports pairwise interaction between 
qubits. Hence, the constructed pseudo-Boolean function must be of degree two, i.e., a QUBO expression. It 
is not always possible to directly obtain a QUBO expression for a given optimization problem, so in prac-
tice we have a high degree pseudo-Boolean function which is to be transformed into a QUBO expression at 
a later stage.

	(iii)	 Once we have computed a QUBO expression for the selected problem, the next step is to embed the logical 
problem into the fixed architecture of the quantum processor. This architecture is represented as a Chimera 
graph which has a limited interconnectivity (see Fig. 1 for an example of a Chimera graph).
At this step, a key feature to remember is physical resources vs logical variables as, in order to embed a 
logical problem with arbitrary interconnectivity, we will frequently need a larger number of physical qubits 
than the number of logical variables; moreover, if the number of logical variables scales up rapidly, we may 
run out of physical qubits.
The estima tion of the minim um number of physical qubits required to embed a logical problem is an ac-
tive area of research26,27. The Chimera graph architecture implements an Ising model, hence the embedding 
process maps logical variables into Ising variables. Another important consideration is that the D-Wave 
processor has limited precision to represent Ising coefficients; consequently, the c oefficients of the Q UBO 
expression should not be too large so that they can be correctly mapped into the quantum pro cessor and 
results can be discriminated from noise level.

	(iv)	 Finally, the annealing proc ess is initiated to find the minimum energy configuration in which the solutio n 
of the problem is codified.
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For steps (i) and (ii), we consider the QUBO formulations of the MMC pr oblem present ed in section 2: the 
formulatio n with direct reduction, the one base d on crossing of paths and the one based on logical circu its. For 
the last two cases, the reduction methods cited in Section 1.1 are use d to obtain the QUBO functions.

In the following section, we consider the mapping problem presented above in step (iii), namely mapping 
logical variables in a QUBO function to physical qubits in the actual hardware architecture.

Minor embedding.  The D-Wave processor can be represented by an architecture known as a Chimera graph 
which consists of an M × N-lattice of blo cks each one having 2L physical qubits for a total of 2MNL qubits (see 
Fig. 1). Each block in the Chimera graph is a L-bipartite graph and each physical qubit is connected with at 
most six other qubits. To solve a problem using a D-Wave processor, it is necessary to represent an Ising/QUBO 
problem as a subgraph of the Chimera. However, it is seldom possible to find a one-to-one mapp ing of logical 
variables with physical qubits.

The method to find an equivalent subgraph into the Chimera to a given logical problem expressed as an Ising/
QUBO function is called minor embeddi ng and it is stated as follows:
Problem 2:(Minor embedding) Given a Chimera graph M N L, ,  and a logical graph G = (V, E), find a subgraph in 

M N L, ,  such that

	 1.	 Each vertex j ∈ V is mapped to a connected subtree Tj in M N L, , .
	 2.	 Each edge {i, j} ∈ E must be mapped to at least one coupler in M N L, , .

Figure 1.  Chimera graph topology of 4 × 4 blocks.

Figure 2.  Example random trees: (left) using the Erdös-Rényi model for n = 50 and p = 0.3, and (right) using 
the Watts-Strogatz model with n = 50, r = 2 and β = 0.12.
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Finding a minor embedding which uses the minimum number of qubits is a hard problem in general26. 
However, there are heuristic algorithms that obtain approximated minor embeddings in polynomial time. One of 
these techniques is the one proposed in28 which maps a logical variable to a chain of qubits. The main disadvan-
tage of these techniques is that they create long chains of qubits to allow the connectivity of the logical problem 
into the Chimera.

In this paper, we use the D-Wave solver application programming interface (SAPI) which provides heuristic 
algorithms for minor embedding. Heuristic algorithms are constrained by a peculiar property: their time com-
plexity (i.e., their worst and average runtime) is usually lower than exhaustive search algorithms at the cost of 
producing approximative solutions most of the time and optimal results only rarely. In our case, SAPI heuristic 
algorithms produce different embeddings that are not always optimal with respect to the number of physical 
qubits. For each or our experiments, we have run the heuristic embedding algorithms twenty times and have 

Figure 3.  (a) ER random graph G(50, 0.3), (b) corresponding spanning tree, (c) logical graph of the QUBO 
reduction of functions (20) and (22), and (d) logical graph of the QUBO expression given in (21).

Figure 4.  Comparison of the number of quadratic terms generated using the direct, intersection and Karnaugh 
methods.
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chosen only those embeddings that have shorter qubit chains. This process is carried out on a conventional digital 
computer, before the adiabatic process.

Instance problem generation.  For this paper, we have generated random instances of the MMC problem, namely 
random trees, according to the following procedure: (1) generate a connected random graph16, (2) compute their 
corresponding spanning tree (ST) and (3) assign integer positive weights to the edges of the obtained ST. Here, we 
consider the generation of connected random graphs using the Erdös-Rényi (ER) and the Watts-Strogatz (WS) 
models. In the ER model, a random graph G(n, p) with n vertices is constructed by including each possible edge 
with a probability p independently from every other edge. In the WS model, a random graph G(n, r, β) with n 
vertices is constructed by creating an initial ring of vertices with each vertex connected to its r nearest neighbors. 
Thus, replace every possible edge {u, v} with a new edge {u, v′} with probability β, duplicated edges are forbidden, 
but original edges may end up being reinstated.

Figure 2 shows some examples of trees generated using the ER and WS models. We chose the ER and WS 
models because they allow us to generate trees with small and large diamete rs, respectively. For instance, Fig. 2 
(left) shows a tree with a diameter of 4 using the ER model and Fig. 2 (right) shows a tree with a diameter of 10 
using the WS model, in both cases the number of vertices in the random graph are the same.

Let us consider an example of how the QUBO formulations given in Section 2 for the MMC problem are 
constructed. Figure 3(a) shows a random ER graph for 50 vertices and probability p = 0.3, and Fig. 3(b) shows its 
corresponding random spanning tree. Assume an instance of the MMC problem with unitary weights for k = 3 
and set of pairs {(s1, t1), (s2, t2), (s3, t3)}; from Fig. 3(b), it can be seen that paths pj, j = 1, 2, 3 contain edges {1, 3, 4}, 
{4, 5, 6} and {2, 6, 7}, respectively. Notice that the length of paths pj is lj = 3 for j = 1, 2, 3, and paths p1 and p2 share 
the edge 4, and paths p2 and p3 share the edge 6.

The direct mapping given in (6) for the instance of the MMC problem in Fig. 3(b) is

H x x x x x x x x x x x x x x x x7 7 7 7 (20)1 2 3 4 5 6 7 3 4 1 4 5 6 2 6 7= − − − − − − − + + + .

The logical graph obtained from the QUBO reduction of (20) can be seen in Fig. 3(c) where the blue color 
vertices are the original problem variables and the brown color vertices are the introduced new variables. Notice 
that the induced subgraphs from vertices {1, 3, 4} and {4, 5, 6} share vertex 4, and the induced subgraphs from 
vertices {4, 5, 6} and {2, 6, 7} share vertex 6. Also, notice that vertices {1, 3, 4} together with the new variable 8 
form a complete graph; the same is also true for vertices {4, 5, 6} and {2, 6, 7} together for new variables 9 and 10, 
respectively. From the above, it can be concluded that if the paths do not intersect each other, then their corre-
sponding logical graphs will be disconnected.

On the other hand, the mapping based on crossing paths given in (14) for the instance of the MMC problem 
in Fig. 3(b) is

Figure 5.  Descriptive comparison of the number of quadratic terms and number of variables generated using 
the direct, intersection and Karnaugh methods.
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H x x x x x x x x x x x
x x x x x x x x x x x x x x

91 22 22 22 43 22 43 22 14 14
14 14 14 14 14 14 14 (21)

1 2 3 4 5 6 7 3 1 4 1

3 4 4 5 2 6 4 6 5 6 2 7 6 7

= − − − − − − − + +
+ + + + + + +

which is already in QUBO form since we penalize cuts of cardinality at most three. In other words, each path pj, 
j = 1, 2, 3 will be disconnected by removing at most one edge. Figure 3(d) shows the logical graph of expression 
(21) where no new variables are used. Notice that only the induced subgraphs of vertices {1, 3, 4}, {4, 5, 6} and {2, 
6, 7} are shown.

Finally, the Karnaugh mapping given in (19) for the instance of the MMC problem in Fig. 3(b) is

H x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x

70 15 15 15 29 15 29 15 7
7 7 7 7 7 7 7
7 7 7 7 (22)

1 2 3 4 5 6 7 3 1

4 1 3 4 4 5 2 6 4 6 5 6 2 7

6 7 3 4 1 4 5 6 2 6 7

= − − − − − − − +
+ + + + + + +
+ + + +

whose logical graph coincides with the QUBO reduction of (20).

Problem scaling.  Figure 4 shows a comparison of the number of quadratic terms generated by the proposed 
QUBO formulations presented in sections 2.1, 2.2 and 2.3, that will be named as the direct, intersection and 
Karnaugh methods, respectively. We generated random trees using the ER and WS models with probabilities 
p = 0.3 and β = 0.12, for n = 50 and number of pairs k = 3, 4, 5. We generate random WS trees with paths between 
the pairs (si, ti) of length less than 8. For each random tree model used, the corresponding QUBO function was 
constructed using the direct, intersection or Karnaugh methods. The energy function given in (6) was used for 
the three methods with different penalty terms. The direct method corresponds to the penalty term as presented 
in (8), the intersection method has as penalty term the expression shown in (14), and the Karnaugh method has 
as penalty term the expression given in (19). We use the reduction method of Ishikawa14 explained in section 2.1 
as well as Freedman’s method13, to obtain the corresponding QUBO function.

Figure 4(a) presents is the average number of quadratic terms over 100 ER random trees, generated using the 
direct, intersection and Karnaugh methods for k = 3, 4, 5. Figure 4(b) shows their corresponding average number 
of variables after the degree reduction of the constructed QUBO functions shown in Fig. 4(a). The vertical lines in 
Fig. 4(b,d) indicate a standard deviation. As it can be seen in the Fig. 4(a,b), the intersection method uses the min-
imum number of variables to represent the MMC problem and the Karnaugh method requires more variables to 
represent the same problem. It is important to mention that the average diameter of the generated ER random trees 
was 4. We choose n = 50 since the number of quadratic terms is an increasing function with respect to n. Similarly, 

Figure 6.  Sorted energy solutions obtained using the qbsolv and D-Wave simulator over 80 random 
instances using the direct, intersection and Karnaugh QUBO constructions.
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Fig. 4(c,d) show the average number of quadratic terms using WS random trees for the direct, intersection and 
Karnaugh methods. It is remarkable that Karnaugh’s method requires a huge number of quadratic terms and var-
iables in comparison with the direct and intersection methods. On the other hand, the direct method uses the 
minimum number of quadratic terms. In this case, the average diameter of the generated WS random trees was 10.

Figure 5 presents an even more descriptive comparison of the number of quadratic terms and number of var-
iables obtained after degree reduction, for the direct, intersection and Karnaugh methods. The area in each box 
represents the interquartile range, the statistical median as a horizontal line in the box, and its vertical lines the 
lower and upper whiskers. The data shown in Fig. 5(a–d) correspond to the same data shown in Fig. 4. As can be 
noted from Fig. 5, the lower and upper whiskers for the Karnaugh method are distant from their median, which 
explains the standard deviation in Fig. 4(b,d).

In view of these scaling results, it can be seen that Karnaugh’s construction given in (19) has terms of degree 
equal to the length of the paths between pairs (si, ti). Thus, when applying a reduction method on (19), the num-
ber of quadratic terms increases, as opposed to the method given in (14) whose degree depends on the number of 
crossing paths. As a consequence, the dimension of the search space of its corresponding optimization problems 
also increases.

Figure 7.  Visualisation of the number of quadratic terms based on the sorted energies shown in Fig. 6 over 80 
random instances using the direct, intersection and Karnaugh QUBO constructions.
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Classical solution performance.  In order to test the performance of obtaining solutions using the proposed for-
mulations, the qbsolv tool was used to solve large QUBO problems by partitioning into subproblems targeted 
for execution on a D-Wave system29. The qbsolv tool returns approximated solutions of large QUBO problems. 
The experiments were performed on a Desktop computer MacBook Air with a Intel Core i5 processor at 1.3 GHz 
and 4 GB of RAM. We generated 80 random trees for n = 50 and k = 3 using the ER and WS models, and for each 
random tree, their corresponding QUBO functions were constructed using the direct, intersection and Karnaugh 
methods.

Before mapping a QUBO expression to Ising, constant terms are omitted without changing the original prob-
lem because constant terms cannot be represented in the graph topology. For the D-Wave SAPI software, an 
auto-scaling mode is used which utilizes the largest possible parameter ranges. In the case of the qbsolv tool we 
do not have precision limitations on the parameters, so each QUBO instance is directly submitted.

Figure 6(a,b) show the energy solutions obtained using qbsolv for ER and WS random trees, respectively. 
To compare the approximated energies solutions, they were sorted in an increasing order over the same set of 
instances for the direct, intersection and Karnaugh methods. Figure 6(a,b) show that the direct and intersection 
methods have similar energy solutions for the ER and WS random trees. On the other hand, the Karnaugh method 
has larger energy solutions. The latter can be explained since the large number of used variables in the Karnaugh 
method, as can be seen in Fig. 4. We were unable to calculate the optimal energy solutions of the random instances 
since the large number of variables. The cases for k = 4, 5 were omitted since they have similar behavior.

The D-Wave SAPI also provides classical algorithms to solve QUBO/Ising problems by using simulated quan-
tum annealing (SQA)3 on a Chimera graph of dimension 4 × 4 blocks. Figure 6(c,d) show the energy solutions 
obtained using D-Wave SAPI for ER and WS random trees, respectively. In this case, we use the same 80 random 
trees for n = 50 and k = 3 as in Fig. 6(a,b). For each instance of the MMC problem, 1000 readouts was requested 
to the SQA algorithm. Figure 6(c) shows the minimum energies among the requested 1000 readout per instance, 
for ER random trees. As can be seen in Fig. 6(c), the obtained energies have a similar behavior as in Fig. 6(a). 
Figure 6(a) also shows the energies for the case of WS random trees using the SQA algorithm. In this latter case, 
it was not possible to obtain the energies for the Karnaugh method since the embedding algorithm fails to embed 
large QUBO functions in a Chimera graph of a 4 × 4 dimension.

Figure 7 shows how the sorted energies in Fig. 6 are correlated with respect to the number of quadratic terms 
in the set of instances. Figure 7(a,b) present the distribution of quadratic terms for the direct, intersection and 
Karnaugh methods using random ER and WS trees in Fig. 6. Also, Fig. 7(c–f) show the number of quadratic 
terms of the direct, intersection and Karnaugh methods, where the instances were arranged based on the same 
energy sorting shown in Fig. 6(a–d), respectively. For instance, the higher energies in Fig. 6(a) are correlated with 
the higher number of quadratic terms generated by the Karnaugh method. The same correlation is observed for 
the classical solvers qbsolv and D-Wave simulator.

We have proposed QUBO formulations of the MMC problem restricted to the family of trees. Our simulation 
results show that the direct and intersection methods have a similar scaling, in the number of quadratic terms, 
and performance. On the other hand, the Karnaugh method has the worst results, mainly by the required large 
number of variables and quadratic terms in its construction.

Discussion
We have proposed a method to formulate the Minimum Multicut Problem into the QUBO representation, and 
the technical difficulties faced when embedding and submitting a problem to the quantum annealer processor. 
We have considered a special NP − hard case of the Minimum Multicut problem based on random trees rep-
resentations. This special case allows us to formulate a QUBO expression that can be embedded into the Chimera 
graph using a moderate number of qubits after the degree reduction of the high degree expression. Moreover, we 
have proposed the Karnaugh method to analytically construct instances of the MMC problem and the prelimi-
nary results of our algorithms are promising.
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