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Abstract

Angiogenesis is an essential process for correct development and physiology. This 
mechanism is tightly regulated by many signals that activate several pathways, which 
are constantly interacting with each other. There is mounting evidence that BMP9/ALK1 
pathway is essential for a correct vessel maturation. Alterations in this pathway lead to 
the development of hereditary haemorrhagic telangiectasias. However, little was known 
about the BMP9 signalling cascade until the last years. Recent reports have shown that 
while BMP9 arrests cell cycle, it promotes the activation of anabolic pathways to enhance 
endothelial maturation. In light of this evidence, a new criterion for the classification 
of cytokines is proposed here, based on the physiological objective of the activation of 
anabolic routes. Whether this activation by a growth factor is needed to sustain mitosis 
or to promote a specific function such as matrix formation is a critical characteristic that 
needs to be considered to classify growth factors. Hence, the state-of-the-art of BMP9/
ALK1 signalling is reviewed here, as well as its implications in normal and pathogenic 
angiogenesis.

Introduction

Vessel formation is essential for the transport of oxygen 
and nutrients to the tissues, and for the removal of waste 
substances. Several mechanisms of vessel formation have 
been described in normal and pathological conditions 
depending on the physiological context. However, 
sprouting angiogenesis is the most studied and relevant 
type (1).

Angiogenesis is defined as the formation of new 
vessels from preexisting ones (2). It is a multistep process 

that can be grouped into four different phases: initiation, 
proliferation, maturation, and quiescence. Angiogenesis 
is initiated by the selection of a tip cell that leads to the 
formation of the new vascular sprout. This cell is highly 
mobile and polarized, and it is characterized by several 
filopodia, which sense different signals that indicate the 
direction of the migration. Behind the tip cell, there are 
several stalk cells that support the elongation of the new 
vessel by an active proliferation, which contributes to 
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the lumen formation of the vessel (3). The stalk cells that 
progressively get more distant from the tip cell, start a 
gradual phenotypical transformation. These maturating 
cells enter to cell-cycle arrest and, at the same time, keep 
an active metabolism to synthetize new matrix and cell 
contacts, among others, contributing to the consolidation 
and maturation of the newly formed vessel. When the 
maturating phase is complete and the vessel is fully formed 
and functional, the endothelial cells receive the name of 
quiescent cells (4).

Sprouting angiogenesis is a tightly regulated process 
controlled by several cytokines. These cytokines can 
compete or collaborate, resulting in a mixed effect, 
for instance, in the tip cell selection (5, 6). Classically, 
these cytokines are classified as angiogenic initiators or 
angiogenic maturating factors. Angiogenic signals such 
as hypoxia, vascular endothelial growth factor (VEGF), 
or fibroblast growth factor 2 (FGF-2) promote matrix 
degradation, tip cell formation, and proliferation (7). 
Maturating factors such as Notch, bone morphogenetic 
protein 9 (BMP9), or transforming growth factor β (TGF-
β) promote cell cycle arrest, formation of cell–cell contacts, 
pericytes recruitment, and matrix formation (8). As a 
general principle, growth factors have been associated 
with cell division. However, some of them can maintain an 
active metabolism to promote several functions regardless 
of cell division, being the case of BMP9. Therefore, a 
distinction between mitogenic factors and growth factors 
must be made. On the other hand, these growth factors 
could present a synergistic effect with mitogens (e.g. 
insulin) or an antagonistic effect by blocking cell division 
(e.g. BMP9).

Since the discovery of Activin receptor-like kinase 1 
(ALK1) as the BMP9 highly affinity receptor (9), BMP9/ALK1 
signalling has attracted interest. Here, the state-of-the-art 
of the BMP9 role in angiogenesis is reviewed, providing a 
new perspective on its activity as a growth factor.

BMP9/ALK1 signalling cascade

BMP9, also known as growth differentiation factor 2 (GDF-
2), is a cytokine of the TGF-β superfamily. It is mainly 
produced in the liver as a proprotein that is cleaved before 
its secretion (10). BMP9 participates in several processes, 
including angiogenesis as a maturating factor (11). Acting 
as a homodimer, it binds to its high-affinity receptor ALK1 
(9), which is expressed mainly in the endothelium (12). 
BMP10 is a closely BMP9-related cytokine with which 
it shares 65% of the aminoacidic identity (9). It is also 

synthetized as a proprotein and acts as a homodimer to 
activate ALK1 (9, 13). However, BMP10 is produced in the 
right atria (13) and participates in cardiac development 
(14). Despite this, recent studies have shown that both 
BMPs have redundant roles in vessel maturation (15, 16). 
In addition, it has been described that an heterodimer 
formed by BMP9 and BMP10 could be responsible for the 
major BMP activity in endothelial cells (17). Nevertheless, 
the heterodimer structure has not been characterized yet, 
requiring further investigation (18).

Other BMPs also have a role in the regulation of vessel 
formation. BMP4/ALK3 signalling has been reported to be 
essential to vessel remodelling during the development 
of the circulatory system in mice (19, 20). BMP2/ALK3 
signalling has a role in angiogenesis initiation or in 
chemotaxis promotion, depending on the cell model used 
(21, 22, 23). Moreover, a study has recently proven that 
BMP6 binds to ALK2 and promotes vessel formation by 
regulating the Hippo pathway, which can modulate VEGF 
and Notch signalling (24).

BMPs bind to a tetrameric signalling complex formed 
by two homodimers, one of bone morphogenetic protein 
receptor 1 (BMPRI) (ALK1-3, ALK6) and one of BMPRII 
(BMPRII Activin receptor IIA (ActRIIA) or ActRIIB) (25, 
26). Moreover, to activate downstream messengers, a 
coreceptor might be needed, and depending on the 
complexity, different coreceptors might intervene (27). For 
example, in order to start its signalling cascade, ALK1 could 
be modulated by the presence of its coreceptor, endoglin 
(28). Therefore, the signalling complex is composed of 
two subunits of BMPRI, two subunits of BMPRII, and two 
subunits of the coreceptor.

The presence of the ligand increases the formation 
and stabilization of the receptor signalling complex (27). 
The BMPRII serine/threonine activity is constitutively 
active, and once the oligomer is formed, it phosphorylates 
the BMPRI receptor, which is a critical step in this signal 
transduction mechanism (29). Upon phosphorylation, 
BMPRI can activate receptor-regulated small mothers 
against decapentaplegic (R-SMAD) proteins (30). To act as 
transcription factors, R-SMADs need to form a heterotrimer 
structure, which is composed of two R-SMAD and one 
SMAD-4. When the trimer is formed, it can translocate to 
the nucleus and regulate gene expression. In the case of 
BMP9, it can activate SMADs 1/5/8, which promote the 
expression of different genes such as inhibitor of DNA 
binding 1 (ID1), endoglin (ENG), or Transmembrane 
Protein 100 (TMEM100) (31, 32, 33).

However, there is still another level of complexity 
regarding the regulation of this cascade. Other SMADs 
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such as SMAD-6 and -7 act as inhibitors of R-SMADs (34) by 
competing for SMAD-4 (35). In addition, some members 
of the TGF-β family have been described to activate other 
effectors excluding SMAD signalling. For instance, it is 
known that TGF-β can activate TGF-β activated kinase 1 
(TAK-1) independently of SMADs (36, 37). Despite this, 
little is known about non-canonical signalling in BMPs, 
which has only been described in bone. In osteoblasts, 
other members of the BMP family, such as BMP2 and 7 
(38), regulate different processes like osteogenesis (36, 39, 
40). Nonetheless, SMAD-independent signalling has not 
been described to be directed by the BMP9 cascade in the 
endothelium.

Regulation of vessel maturation by BMP9

Inducing vessel maturation is a key step of the angiogenic 
process. It involves several processes such as cell cycle 
arrest, new matrix formation, reestablishment of cell 
junctions, blood flow, and pericyte recruitment (Fig. 1). All 
these elements are essential to produce a functional vessel. 
Therefore, the role of BMP9/ALK1 signalling in each of 
them will be further discussed.

Proliferation arrest

Proliferation can be induced by different pathways and 
needs the activation of several mechanisms related to 
DNA replication and protein production, among others. 
However, the blockage of only a few key elements is enough 
to stop cell division. For instance, TGF-β blocks proliferation 
by inhibiting cycle-dependent kinases, which directly 
regulate cell cycle (41). Instead, BMP9 downregulates 
upstream signalling cascades. In endothelium, two major 
pathways have been described to be involved in enhancing 
proliferation during angiogenesis: the phosphoinositol 3 
kinase (PI3K)/Rac-alpha serine/threonine protein kinase 
(AKT) pathway and the (mitogen-activated protein 
kinase (MAPK)/extracellular signal-regulated kinase (ERK) 
pathway.

On one hand, PI3Ks are a family of lipid kinases 
that catalyse the production of phosphatidylinositol 
trisphosphates that activate several effectors. The most 
widely expressed PI3Ks in endothelium are class I PI3Ks, 
and especially the catalytic subunit p110α (42), which 
is key for the regulation of endothelial migration (43). 
When activated, class I PI3Ks can rapidly activate AKT. 
AKT is a well-known kinase that can regulate survival, cell 
metabolism, and protein synthesis, among others (44). 

AKT can activate mammalian target of rapamycin complex 
1 (mTORC1), a complex that promotes protein synthesis 
via the direct activation of p-70-S6 kinase (S6K), which 
in turn activates the ribosomal protein S6 (S6) subunit of 
the ribosome (45). Moreover, mTORC1 promotes other 
anabolic pathways, enhancing de novo lipid synthesis. 
In addition, AKT downregulates forkhead box O (FOXO) 
transcription factors. These factors, especially FOXO1 in 
endothelium, promote cell cycle arrest by downregulating 
c-Myc signalling and produce a metabolic switch by 
reducing glycolysis and respiration (46, 47).

Some studies have shown that BMP9 is responsible for 
downregulating PI3K/AKT signalling and that it can reverse 
vascular endothelial growth factor (VEGF) effects (48, 49). 
PI3K signalling was found to be upregulated in patient 
samples with mutations in ALK1 or endoglin, and in in 
vivo and in vitro ALK1-defective mice models, increasing 
endothelial cell proliferation and causing aberrant vessel 
growth. These effects were reverted when PI3K inhibitors 
were administered both in vivo and in vitro. Physiologically, 
PI3K inhibition is regulated by BMP9 signalling. ALK1/
BMP9 can induce the expression of phosphatase and tensin 
homolog (PTEN), a phosphatase that dephosphorylates 
phosphatidylinositol-3,4,5-triphosphate (PIP3), inhibiting 
the PI3K/AKT axis and, as a consequence, negatively 
regulating endothelial cell proliferation (50).

On the other hand, MAPK is found in a highly 
conserved group of pathways that are activated by many 
cytokines. The most studied one is the MAPK/ERK pathway, 
which is involved in proliferation (51). It is composed of 
three different effectors: rapidly accelerated fibrosarcoma 
kinase, mitogen-activated protein kinase kinase, and ERK 
1/2. When phosphorylated, ERK is translocated to the 
nucleus, where it activates several cellular programmes 
related to protein synthesis and proliferation (52), 
among others. For a long time, it has been established 
that this pathway is activated in endothelial cells by 
angiogenic initiators such as VEGF. BMP9 has been 
shown to downregulate ERK activation in a transcription-
dependent manner. Hence, using SMAD1/5/8, BMP9/
ALK1 can induce serum and glucocorticoid activated 
kinase 1 (SGK1) expression (53), and through a not yet 
described mechanism, this kinase downregulates ERK 
activation (54). SGK1 is one of the three members of the 
serum glucocorticoid kinases, which forms part of the 
AGC family of serine/threonine protein kinases (55). 
Distinctly from other SGKs, SGK1 is tightly regulated at 
both transcriptional and posttranscriptional levels (56), 
and its half-life is estimated to be around 30 min long (57). 
Besides regulating proliferation, SGK1 has been described 
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Figure 1
Schematic illustration of the maturating phase of angiogenesis. For clarity purposes not all relations are shown. Segmented arrows represent signalling 
pathways downregulated by BMP9/ALK1 axis.
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to be involved in other hallmarks of the maturation 
process that will be discussed below, proving its relevance 
as a signalling hub that vehiculates the effects of BMP9 
signalling in endothelium.

However, some works have described that BMP9 
has a proangiogenic effect, increasing cell number and 
the number of sprouts. Interestingly, both works use 
endothelial cells derived from stem cells and use low doses 
and long-term incubations (58, 59). Further research is 
needed in order to fully elucidate if this proangiogenic 
effect is due to long-term exposure to BMP9, or a dose-
dependent biphasic effect on endothelial cells.

Extracellular matrix, cell–cell contacts, and 
protein synthesis

In the first step of angiogenesis, matrix and cell–cell 
junctional components are degraded in order to allow 
migration. However, in the maturating phase, the 
reconstitution of these structures is needed and, in order 
to produce them, protein synthesis must be highly active. 
BMP9 has a role in this process by contributing to the 
arrest of VEGF-induced vascular endothelial cadherin 
(VE-Cadherin) degradation, thus stabilizing adherent 
junctions (60). BMP9 also promotes the synthesis of 
proteins involved in cell–cell junctions such as occludin 
(60). In other cell types like fibroblasts, BMP9 can 
increase the production of matrix components (61), and 
its role as a key regulator of fibrosis is under discussion 
(62). In endothelial cells, by upregulating SGK1, BMP9 
promotes the activation of mTORC1/S6K/S6 axis, which 
results in an increase in protein synthesis (54). The 
increase of SGK1 expression is essential for vessel correct 
development. SGK1 KO mouse is embryonic lethal due 
to angiogenic defects and cardiovascular malformations 
(63). Closely related to AKT (64), it has been described 
that SGK1 can be activated, at least partially, when AKT 
is inhibited and activate the same effectors as AKT (64, 
65, 66, 67, 68). Therefore, SGK1 allows cell proliferation 
blockade while maintaining an active metabolism. 
The use of these alternative pathways that promote cell 
growth but block proliferation at the same time has been 
recurrently reported to happen in different physiological 
processes in which cell division is counterproductive. It 
has been assumed that cell growth and division act in 
parallel. Nevertheless, some factors such as BMP9 act 
as antimitogenic and, at the same time, promote cell 
growth. These implications will be further discussed 
below, and also why the concept of growth factor should 
be re-evaluated.

The role of metabolism

It should come as no surprise that a cell phenotype change 
from a proliferative to a maturating one is accompanied 
by metabolic changes. In the last years, endothelium 
metabolism has attracted increased attention, and 
some groups have tried to characterize the endothelial 
metabolism in the different stages of the angiogenic 
process. Tip cell, stalk cell, and quiescent endothelial 
cell metabolism are indeed well characterized, and 
reviewed elsewhere (69, 70, 71), but little is known about 
the metabolism of a maturating endothelial cell. This 
metabolism might be supposed to be a transition from a 
highly glycolytic VEGF-influenced metabolism (72) to a 
reactive oxygen species-protective metabolism derived 
by the influence of Notch pathway (73). However, some 
evidence supports the hypothesis that BMP9 could have 
a role in regulating endothelial cell metabolism. Several 
reports link BMP9 to the regulation of glucose metabolism, 
reduction of gluconeogenesis in liver (74), and the reduction 
of glucose blood levels also in liver (75, 76). In endothelium, 
hyperglycaemia has been reported to downregulate ALK1 
signalling (60) and AMP-activated protein kinase (AMPK), 
a protein that is well-known for sensing the energy state of 
the cell, to inhibit SMAD 1/5/8 phosphorylation by BMP9/
ALK1 axis (77). Moreover, BMP9 activates mTORC1, also 
well known for its role in regulating metabolism (45, 78, 
79) and for its crosstalk with AMPK (80, 81, 82), in an SGK1-
dependent manner.

Blood flow and shear stress

Biomechanical forces also have a role in BMP9/ALK1 
signalling. Endothelium is directly exposed to blood flow 
that produces a frictional force, parallel to the flow, in the 
surface of the endothelium. This force is associated with 
shear stress, which depends on the structure of the vessel, 
blood viscosity, and velocity (83). Therefore, shear stress is 
used by endothelial cells as a signal, and different blood flow 
regimes can induce the expression of different genes (84, 
85). Thus, shear stress contributes to regulate endothelial 
identity, vascular development, and remodelling (86).

Regarding BMP9, ALK1 signalling cascade have been 
put forward to be induced by an increase of fluid flow (87) 
and by oscillatory shear stress, independently of ligand 
(88). Shear stress increases endoglin–ALK1 interaction 
by strengthening BMP9 affinity to ALK1 and reducing its 
EC50 (89). Therefore, loss of blood flow would reduce ALK1 
activation, and therefore vessel maturation would not be 
completed, enhancing the appearance of arteriovenous 
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malformations (90). Interestingly, endoglin has been 
described as critical mediator between sensing blood flow 
(91) and ALK1 signalling (92).

Mural cell recruitment

Mural cells coat endothelial cells and help to establish 
the newly formed vessel. Depending on their location, 
mural cells differ. In capillaries, where angiogenesis 
take place, pericytes are the predominant type of mural 
cells (93). Several cytokines such as platelet-derived 
growth factor (PDGF), sphingosine 1 phosphate (S1P), 
and angiotensin (ANG)/TEK Receptor Tyrosine Kinase 2 
(Tie2) are involved in pericyte attraction and blood vessel 
maturation (94). Depending on the stage of the angiogenic 
process, pericytes adopt an immature phenotype in the 
sprouting front and a mature phenotype in the maturating 
plexus. This phenotype is accompanied by different  
molecular traits that regulate shape or proliferation, among 
others (95).

The continuous crosstalk between pericytes and 
endothelium is necessary to form a functional vessel (94, 96, 
97). The TGF-β family is involved in pericyte differentiation. 
The activation of ALK5 in mesenchymal cells promotes its 
differentiation (98, 99, 100). ALK1 has been reported to 
be able to downregulate ALK5 in endothelium by directly 
inhibiting SMAD 2/3 phosphorylation (100) and therefore, 
influencing the mural recruitment. However, other 
evidences suggest that, for a proper signalling, ALK1 needs 
to form a complex with ALK5 (100).

Crosstalk with other maturating cytokines

As mentioned above, the interplay between different 
cytokines is critical in order to develop a functional 
vessel. Here the crosstalk of BMP9 with other well-known 
maturating cytokines will be reviewed.

Crosstalk between TGF-β family members

TGF-β and BMP9 are both maturating cytokines of the 
TGF-β family. For a long time, both of them were assumed 
to have the same effect on angiogenesis. However, it is 
not the case. TGF-β signals through ALK5 and activates 
SMAD 2/3, while BMP9 uses ALK1 and activates SMAD 
1/5/8 (101), stimulating different gene expression patterns 
(102). Moreover, some works have reported that the 
inhibition of BMP9/10 directly produces arteriovenous 
malformations (AVM) in vivo (48, 103). Interestingly, the 

specific endothelial knockout of SMAD 2/3 produces 
incomplete vessel maturation and mural cell recruitment 
(104). Therefore, TGF-β is not capable of substituting the 
BMP9 function and vice versa.

Some studies have suggested that ALK1 can inhibit 
ALK5 signalling pathway (99). Others have observed 
that the disruption of intermediate steps in this crosstalk 
conducts to overactivation of ALK5 (105). In addition, 
BMP9 has been described to be able to enhance TGF-
β expression in endothelium (106). This has led to the 
assumption that for proper maturation, both pathways 
need to be in balance (99).

Crosstalk with Notch signalling

Notch pathway is an essential regulator of cell 
differentiation. This pathway is based on the interaction 
of adjacent cells, where one of them carries the ligand 
and the other one bears the receptor. When this pathway 
is activated, the intracellular domain of the receptor is 
proteolyzed and translocated to the nucleus, where it acts 
as a transcription factor (107). In the angiogenic process, it 
regulates tip cell selection and maturation. Depending on 
the localization and the ligand, the Notch pathway might 
have different effects (108, 109) whereas Notch-Delta Like 
Canonical Notch Ligand 4 (Dll4) enhances maturation, 
Notch-Jagged1 activates initiation.

Notch signalling has been involved in the formation 
of AVM (110, 111), and in cell-cycle arrest (112), which 
has been proven to be essential in vessel differentiation 
(113). Some works have studied the crosstalk between 
BMP9 and Notch. They have stablished that, through 
SMAD 1/5/8, BMP9 can promote the expression of Hairy/
enhancer-of-split related with YRPW motif protein 1 
(HEY1)/HEY2 and hairy and enhancer-of-split (HES) 
(114, 115), the canonical targets of Notch, which have 
a critical role in vessel development (116). In addition, 
HEY1 has been described as a p53 upregulator, which 
arrests proliferation (117, 118, 119). Moreover, it has also 
been reported that Notch-Dll4 can interact with SMAD 
1/5, enhancing their activity and their expression (120, 
121). Another work depicts that both Notch-Dll4 and 
BMP9 signalling are interdependent (106). However, 
other works claim the opposite, suggesting that the 
interaction between Notch and SMADs is not synergic, 
whereas they show evidences of a downregulatory 
crosstalk (122). These differences can be explained by 
the ligand that is contributing to this response, as it has 
been mentioned above.
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Crosstalk with Angiopoietins

Angiopoietin 1 (Ang1) is another key maturating factor. 
It interacts with Tie2 receptor and promotes vascular 
stabilization. In addition, some studies have proven that 
Ang1 is capable of promoting a signalling cascade using 
integrins (123, 124, 125). Transgenic mice with Ang1 
deficiencies are embryonic lethal and present defects on 
the endothelial extracellular matrix (126). Angiopoietin 
1 functions in vasculature are wide, but they are mostly 
directed to the promotion of quiescence and cell survival 
(127). For instance, they do it by enhancing Notch-Dll4 
signalling (128), although some of these aspects are 
controversial and discussed elsewhere (129). Even though a 
crosstalk between BMP9 and Ang1 would be of great interest 
if unravelled, until now, only one study has suggested a 
possible interaction between Ang1 and the TGF-β family. 
Therefore, further investigation is still required on this 
matter (130).

Regarding angiopoietin 2, some works have described 
an implication in the ALK1/SMAD signalling pathway. 
Reduced levels of Ang2 in blood were suggested as a 
biomarker for facilitating the diagnosis of possible HHT 
patients (131), a disease produced by mutations in ALK1 
signalling pathway. However, other works describe that 
SMAD4 is a repressor of the Ang2 gene. Thus, the loss 
of SMAD4 increased the levels of expression of Ang2, 
which induced arteriovenous malformations. The in vivo 
inhibition of Ang2 in SMAD4 endothelial KO mice restored 
the original phenotype (132).

When ALK1/BMP9 signalling is 
disrupted HHT

Since many years ago, it is a well known fact that mutations 
that affect the ALK1 signalling cascade produce abnormal 
growth and wrong maturation of vessels in animals 
models (reviewed elsewhere (26, 133, 134)) and in patients 
(135). This disease, known as hereditary haemorrhagic 
telangiectasia (HHT) or Rendu-Olser-Weber syndrome 
(ORPHA774), highlights the importance of BMP9/ALK1 in 
the regulation of maturation.

HHT is a rare autosomal dominant vascular disease 
characterized by telangiectases and larger vascular 
malformations (VMs) (136). The hallmark of HHT is 
telangiectasis, which is an abnormal communication 
between an arteriole and a dilated and tortuous venule in 
the capillary bed. HHT can be diagnosed either through 
molecular genetic test or using the Curaçao clinical criteria 
(recurrent epistaxis, cutaneous/mucosal telangiectasia, 

visceral VMs, and a first-degree family member with HHT) 
(137, 138). Therapeutic strategies aim at reducing potential 
complications caused by VMs, but there is currently no 
curative treatment for HHT.

Mutations in the endoglin (ENG) and activin A receptor-
like type 1 (ACVRL1) genes are detected in approximately 
90% of cases submitted for molecular diagnosis and cause 
HHT1 and HHT2, respectively (137, 139). ACVRL1 gene 
encodes for ALK1 and ENG gene encodes for endoglin 
(139, 140). Although ALK1 and endoglin are components 
of the same BMP9 receptor complex, pathogenic variants 
in their genes are related to different clinical phenotypes. 
Pulmonary arteriovenous malformations (AVMs) and 
brain VMs are more common in patients with HHT1, while 
hepatic VMs are more common in HHT2 (137). Other 
mutations have been described to affect the SMAD4 gene 
MADH4 in less than 2% and cause juvenile polyposis/
HHT overlap syndrome (8) (141) and even less frequently, 
in the BMP9 gene GDF2 (142), and one patient with a 
BMPR2 pathogenic variant and suspected HHT has been  
reported (143).

Despite the good knowledge of the clinical aspects 
of the disease, the molecular mechanisms underlying 
the pathology have not emerged until the publication of 
recent studies (144).

Although many HHT features have been elucidated, 
increasing understanding of HHT is vital for providing 
insights into molecular regulation of vascular development 
and improving the care of patients (144, 145). When ALK1/
BMP9 signalling is disrupted, the maturation process 
is affected, PI3K/AKT and MAPK/ERK pathways remain 
active, and therefore, endothelial cells keep proliferating in 
the AVMs (48, 49, 146). In fact, it has been detected several 
intermediates of the PI3K/AKT signalling pathway on 
paraffin-embedded skin samples from patients with both 
HHT1 and HHT2 (49, 146).

These studies have opened the door to alternative 
treatments with PI3K inhibitors (48, 49, 146) and SMAD 
1/5/8 activators (147). Moreover, casein kinase 2 (CK2) 
has also been proposed as a pharmacological target. CK2 
is responsible for the inhibitory phosphorylation of 
PTEN. In normal conditions, SMAD4 can inhibit CK2 
expression. However, in SMAD4 mutated models, CK2 
remains activated. Therefore, upon pharmacologically 
inhibition of CK2, PTEN activity is restored and AVM 
formation is reduced (148). Alternatively, some studies 
have tried other ways to reproduce the impairing effect 
in VEGF signalling that in physiological conditions 
is performed by BMP9. The use of VEGF inhibitors  
has been successful to some extent in HHT patients 
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(149, 150, 151, 152, 153). Furthermore, a recent study in 
mice reduced AVM formation using mTORC1 and VEGF 
inhibitors (103). Although more extensive clinical trials 
are needed, these promising therapies become the first 
opportunity to directly act in the source of the disease, that 
is, the vascular malformations.

Redefining growth factors keeping the 
purpose in mind

In the present article, the effect of several cytokines 
in endothelial maturation has been reviewed. The use 
of common pathways by initiating (e.g. VEGF) and 
maturating factors (e.g. BMP9) has followed a recurrent 
pattern regarding some events during angiogenesis. For 
instance, the activation of mTORC1/S6K/S6 axis is used 
by both initiating and maturating factors, although 
by different pathways: PI3K-AKT for mitogenic growth 
factors (e.g. VEGF) or by SGK1 for antimitogenic growth 
factor (e.g. BMP9). This emphasizes that initiating and 
maturating factors are not opposite to each other but rather 
complementary. As a general principle, growth factors 
have been assumed to promote proliferation and, so as to 
maintain cell division, they must activate several anabolic 
pathways, such as protein and nucleotide synthesis. 
However, some growth factors can induce the activation 
of these pathways and still not promote cell division. 
Therefore, growth factors should be classified as mitogenic 
or non-mitogenic. One example of these factors is the 
nerve growth factor (NGF), which although activates the 
ERK signalling, indeed promotes differentiation instead 
of proliferation through the activation of cAMP response 
element binding (CREB) in nervous cell types (154, 155). 
Considering this, another aspect of growth factor biology 
that is essential for their classification is proposed here, 
which is a distinction between growth factors that actively 
act as antimitogenic, and those neutral non-mitogenic 
factors that neither block proliferation nor promote it. 
Antimitogenic factors must activate alternative routes 
in order to maintain cellular growth or differentiation 
and at the same time inhibit cell division. For instance, 
Notch blocks proliferation in endothelial cells while it 
promotes arterial differentiation and vessel stabilization 
(156). Besides, neutral non-mitogenic growth factors 
can act synergistically with mitogenic factors to boost 
proliferation. A paradigmatic case for that is insulin, which 
promotes many anabolic routes such as glycogenesis and 
lipogenesis in several cell types. Moreover, insulin does 
not always promote proliferation (157), in fact, in some 

cell types, the blockade of the insulin receptor does not 
impair cell division, despite it impairs the metabolic 
effects mediated by insulin (158). Thus, neutral non-
mitogenic growth factors can be used as a complement 
of a mitogenic growth factor to enhance proliferation by 
the overactivation of anabolic pathways, whereas they 
cannot activate cell division alone. In brief, growth factors 
should be differentiated by keeping the objective of the 
activation of these pathways in mind. From mitogenic 
growth factors, which use these anabolic pathways to 
maintain replication, to growth factors that activate 
these mechanisms to promote a specific function, such as 
differentiation, maturation, or nutrient storage.

Therefore, in the context of angiogenesis, mitogenic 
growth factors, such as VEGF, and antimitogenic growth 
factors, such as BMP9, should be distinguished. As it 
has been exposed, VEGF uses anabolic pathways, such 
mTORC1/S6, as a platform to sustain mitosis. On the 
other hand, BMP9 activates alternative routes in order 
to maintain the mTORC/S6 axis active, while in turn 
inhibiting cell proliferation.

Concluding remarks

Angiogenesis is a complex and dynamic process. It is 
regulated by many cytokines with, sometimes, still 
not well-understood effects. BMP9 has a critical role in 
endothelium maturation, enhancing cell cycle arrest 
and promoting cell-cell contacts and protein synthesis. 
From our perspective, several pieces of evidence such 
as the in vivo BMP9/BMP10 inhibition, support that 
the BMP9 effect cannot be replaced by TGF-β. Due to its 
remarkable complexity, more light needs to be shed on 
this matter so as to fully understand the whole process of 
angiogenesis. However, in the last years, some works have 
proposed a breakthrough perspective on the regulation 
of this mechanism, which gives some new alternative 
explanations to the topic and offers new therapeutic 
opportunities for HHT patients.

Taking endothelial maturation as an example, the 
concept of growth factor has been discussed here. Inducing 
cellular growth is not always accompanied by division. 
Cellular growth can have other purposes, for instance, 
to store nutrients or to form a proper cellular structure 
for the performance of a specific function. Thus, another 
classification of growth factors has been proposed here, 
based on the purpose of the activation of the anabolic 
pathways. Both non-mitogenic and mitogenic factors can 
use the same pathways because they all need anabolic routes 
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to be activated. Nevertheless, their ultimate objectives are 
different, and so are their outcomes.
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