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investigation of antimicrobial peptides
with various functional classes

Chia-Ru Chung,1 Jhen-Ting Liou,1 Li-Ching Wu,2 Jorng-Tzong Horng,1,3,* and Tzong-Yi Lee4,5,6,*

SUMMARY

The challenge of drug-resistant bacteria to global public health has led to increased attention on antimi-
crobial peptides (AMPs) as a targeted therapeutic alternative with a lower risk of resistance. However,
high production costs and limitations in functional class prediction have hindered progress in this field.
In this study, we used multi-label classifiers with binary relevance and algorithm adaptation techniques
to predict different functions of AMPs across a wide range of pathogen categories, including bacteria,
mammalian cells, fungi, viruses, and cancer cells. Our classifiers attained promising AUC scores varying
from 0.8492 to 0.9126 on independent testing data. Forward feature selection identified sequence order
and charge as critical, with specific amino acids (C and E) as discriminative. These findings provide valuable
insights for the design of antimicrobial peptides (AMPs) with multiple functionalities, thus contributing to
the broader effort to combat drug-resistant pathogens.

INTRODUCTION

The abuse of antibiotics leading to drug-resistant bacteria has created a global health crisis. The development of new antibiotics has become

increasingly challenging, and there is an urgent need to explore alternative therapeutics.1,2 Antimicrobial peptides (AMPs) are natural com-

pounds that exhibit antimicrobial properties and are potential candidates for drug development. Unlike antibiotics, AMPs do not readily

cause resistance.3,4 They are produced by various living organisms, ranging frommicroorganisms to humans, and play a crucial role in innate

immunity.5,6 AMPs are typically positively charged, containing cationic and hydrophobic amino acids, and are usually helical polypeptides.2,7,8

Their antimicrobial activity is rapid, either directly killingmicroorganisms by disrupting cell membranes or translocating acrossmembranes to

act on intracellular targets.5,9 The electrostatic interaction between the positively charged AMPs and the negatively charged bacterial cells is

the primary mechanism of antimicrobial activity.10,11 AMPs possess various functional classes or activities. These include, but are not limited

to, antimicrobial activities against bacteria, viruses, and fungi, as well as antitumor properties and effects onmammalian cells.12–16 In addition,

AMPs also play important roles in immunomodulation, including innate immune defense, inflammation regulation, chemokine induction, and

wound healing.2,11 Yet, the high cost of manufacturing AMPs limits their development.17 Therefore, detailed investigation and accurate pre-

diction of AMPs’ functional classes can effectively reduce manufacturing costs and provide valuable information for developing new drugs.

Recently, considerable efforts have been made to predict the functional classes of AMPs.18–32 These efforts can be divided into two cat-

egories. The first category consists of studies that have focused on the prediction of a single functional class, usingwhat is commonly known as

a binary classifier.20,21,31,32 Such classifiers have advantages in simplifying understanding and illustrating the relationship between features

and labels. In addition, a comprehensive review of the various current approaches to AMP identification and the differences among them

is provided by Xu et al.19 However, our primary interest is in the second category, which is the prediction of multiple functional classes. In

this case, the classifiers used are known as multi-label classifiers. There are two standard methods for constructing multi-label classifiers: bi-

nary relevance and algorithm adaptation.33 Binary relevance involves building a classifier for every label, whichmeans that the number of clas-

sifiers equals the number of labels. This method is advantageous as it considers the relationship between features and labels, similar to binary

classifiers. However, it can be relatively slow to build a large number of classifiers. Algorithm adaptation, on the other hand, involves adapting

the algorithm to build a multi-label classifier directly or using original algorithms that support multi-label classification. Representative algo-

rithms includemulti-label k-nearest neighbor (ML-KNN),34 collective multi-label classifier (CML),35 neural network36 and random forest (RF).37

By using these methods, it is possible to predict multiple functional classes of AMPs, which can provide valuable information for developing

new drugs.
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While both binary relevance and algorithm adaptation methods offer distinct advantages, they also have certain limitations. One of the

main challenges is the insufficient exploration of the physicochemical properties of AMPs. This aspect, if thoroughly analyzed, could pro-

vide significant insights into the identification of AMP functional classes and even enable the design and synthesis of novel AMPs. Several

studies have ventured into using binary relevance to predict the functional classes of AMPs.18,23,26–29,32 Zhang and Li presented Pep-CNN,

a deep learning model for predicting therapeutic peptides.29 This involved constructing eight different binary classification models, each

assigned to a different functional class, such as anti-angiogenic, antibacterial, anticancer, anti-inflammatory, antiviral, cell-penetrating,

quorum sensing, and surface-binding peptides. Similarly, Yan et al. proposed TPpred-ATMV, an adaptive multi-view model based on a

tensor learning framework.26 The model was developed to predict the same eight functional classes that were addressed in the study

by Zhang and Li.29 Zhang and Zou contributed to the field by proposing an RF prediction method, PPTPP, also designed to identify these

eight functions.23 Tools such as iAMPpred32 and AMPfun18 are major contributors to this effort through the incorporation of extensive col-

lections of peptides categorized into different functional classes. They use a variety of peptide features, such as compositional, physico-

chemical, and structural aspects, as inputs to support vector machine (SVM) algorithms. MultiPep,38 on the other hand, applies algorithm

adaptation to predict AMP functional classes and builds a deep learning multi-label classifier capable of predicting 20 functional classes.

The features derived from the convolutional layer help MultiPep outperform other leading peptide bioactivity classifiers in benchmarking

multi-label datasets.

Despite these efforts, there is still a lack of research on identifying patterns or critical features for AMPs with several functional classes.

Therefore, it is crucial to find effective features through different machine learning methods to understand the characteristics of AMPs

and predict their functional classes. The main objective of this study is to investigate and analyze the important and effective features

used in different methods, such as binary relevance and algorithm adaptation. By comprehensively analyzing these features, we aim to recon-

structmodels that outperform existing approaches using a selected set of crucial features that can effectively distinguish functional classes. To

achieve our research goals, we followed a systematic workflow as illustrated in Figure 1. First, we applied rigorous preprocessing steps to

ensure that only high-quality data were included by obtaining peptide sequence data from the dbAMP database.39 We then extracted rele-

vant features for each peptide sequence and applied variousmachine learning algorithms during themodel development phase. To improve

model performance and interpretability, we performed feature selection, carefully selecting a subset of features for further analysis. This

comprehensive approach allowed us to accurately analyze the functional classes of AMPs and identify the critical features essential for this

analysis. With this study, we aim to contribute to the advancement of AMP research by providing valuable insights into the characterization

Figure 1. The workflow of this study

First, we retrieved peptide sequences from the reliable source, dbAMP, and subjected it to rigorous preprocessing steps to remove any erroneous or non-

qualifying data. Secondly, we extracted essential features, and leveraged machine learning algorithms to build robust models capable of predicting the

functional classes of AMPs. The final stage involved feature selection and analysis, aimed at identifying the most relevant and informative features that could

be used to investigate the characteristics and properties of AMPs further.
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of multifunctional AMPs. By identifying critical features and refining predictive models, we aim to improve our understanding of AMPs and

facilitate the development of effective strategies for their classification and functional annotation.

RESULTS

Basic properties of AMPs

In total, we have collected 6,845 AMPs. Stratified random sampling was used to partition our dataset, which included 6,160 sequences for

training and 685 sequences for independent testing. The stratified random sampling method was chosen to ensure that each functional ac-

tivity was proportionately represented in both the training and independent test sets, effectively maintaining the overall distribution of classes

found in the entire dataset. The similar proportions of each functional activity in the training and independent test sets, as demonstrated in

Table 1. Number of peptides in each functional class

Functional class Training set Independent testing set

Antibacterial 4685 531

Targeting Mammalian Cells 2514 276

Antifungal 2007 223

Antiviral 977 102

Anticancer 814 90

Figure 2. Distribution of sequence length for different functional classes of AMPs

An overview of sequence length distributions for AMPswith different functional classes is presented. The functional classes include (A) Antibacterial, (B) Targeting

Mammalian Cells, (C) Antifungal, (D) Antiviral, and (E) Anticancer. Comparing these distributions can provide insights into the length requirements for each

functional class, which would be significant for designing different functions of AMPs.
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Table 1, attest to this strategy’s success. The distribution of various properties of peptide sequences (training data) was investigated. Figure 2

depicts the distribution of peptide sequence length for different functional classes; most classes consisted of relatively short peptides, which

is consistent with the finding that AMPs are generally short peptides. Considering the perspective of a wider peptide length distribution

range, most functional classes showed a higher proportion of positives than negatives for shorter peptide length. In contrast, the proportion

of negatives was higher than that of positives in the case of longer peptide length. However, the observation was exceptionally opposite for

the antifungal class but less evident for the antiviral class. In addition, the difference between the negative and positive proportions of each

class was observed to be higher for the peptide length of about 12 and 20 amino acids. The most significant difference was visible in the anti-

fungal and antiviral classes; the percentage of negative proportions at a peptide length of 20 was increased by nearly 10% and more in anti-

fungal and antiviral classes, respectively.

The average composition ratio of 20 natural amino acids is shown in Figure 3, with K, L, and R observed as the top three proportions in the

composition distribution of each functional class. Moreover, the difference between positive and negative was also evident in almost all func-

tional classes; however, the difference was relatively small in antifungal and anticancer classes. In addition, the antibacterial, targeting

mammalian cells, and anticancer classes exhibited an enhanced proportion of positives than negatives for the amino acid K with the highest

compositional ratio, whereas it was the opposite for antifungal and antiviral classes.

Performances of models and feature selection

Five RF and 5 CNN models with binary relevance, along with 1 RF and 1 CNN model with algorithm adaptation, were constructed with their

respective classifiers named RF_binary, CNN_binary, RF_multi, and CNN_multi. Using the 245 features as input, the performance of each

functional class is shown in Table 2. In addition, the performance of adaptive methods with the macro-averaged score is presented in

Figure 3. Averages of 20 natural amino acid composition ratios for different functional classes of AMPs

The average ratios of amino acid composition for AMPs with different functional classes are shown in this figure: (A) Antibacterial, (B) Targeting Mammalian Cells,

(C) Antifungal, (D) Antiviral, and (E) Anticancer. Understanding these average compositions improves the predictive accuracy of computational models in

classifying AMP functions, which is essential for the development of novel AMP-based therapeutics, especially in the fight against drug-resistant pathogens.
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Table S1. The 6 RF classifiers displayed improved performance than the 6 CNN classifiers in each label; however, the CNN classifiers still

showed an acceptable performance in distinguishing functional classes. The reason for this difference in the performance of RF and CNN

classifiers could be the high dependency of CNN models on spatial features, with sequential input being the amino acid composition

(AAC), pseudo amino acid composition (PAAC), and composition, transition, and distribution descriptor (CTDD)-related features. This indi-

cates that AAC features aremainly affected by theAAC features only, also applicable to PAACandCTDD features. Still, a specific ACC feature

may have a strong correlation with a particular CTDD feature, which has been ignored in the current study. This implies that a meaningful or

usefully arranged input for CNN may likely improve the performance.

After building classifiers using the 245 features, theGini index and gradient-weighted class activationmapping (Grad-CAM) were adopted

for computing the importance of features for RF and CNN models, respectively. Because the convolutional layer in the CNN model selects

features through the training process itself, feature selection using another method is not necessary for the performance of the CNNmodel.

Therefore, mainly RF classifiers were focused on in this study. The feature importance, also called Gini importance or MDI, was obtained

through the RF classifier. To analyze the correlation between features and functional classes directly, only the feature importance of RF_binary

classifiers was considered. The top 10 important features for each functional class are shown in Table S2. The difference between antifungal

and anticancer classes was relatively small in the top 10 important features, similar to the amino acid composition distribution. Moreover, the

amino acid K was not observed in the top 10 important features of antifungal and anticancer classes, whereas it was the third most important

feature of other functional classes. Similarly, another amino acid (E) could be noted as the second and most important feature in the antibac-

terial and antiviral classes, respectively. This result corroborates with the amino acid composition distribution showing a relatively higher pro-

portion of amino acid E in the antibacterial and antiviral classes. Additionally, the percentage (positive or negative) of amino acid E was more

than twice compared to other amino acids in all functional classes except the antifungal class. This indicates that although amino acid E ap-

peared only in two functional classes, it is the most important amino acid. Other amino acids in the top 10 important features included L, C,

and Q, which appeared in targeting mammalian cells, and antifungal and antiviral classes, respectively. These important features of specific

classes could also be observed in the amino acid composition distribution.

In addition to AAC-related features, other feature types provided informative features for each functional class. For the antibacterial class,

all the features were charge-based except the PAAC-related amino acids, indicating charge as an important feature for this class. This may

also be related to the physicochemical properties of AMPs and theirmechanismwith bacteria. The twomost important features for the class of

targetingmammalian cells were PAAC lambda related to the sequence order. In addition, 3 featureswere charge-related, and a single feature

was related to the secondary structure. Thus, the sequence order information might be required for this class to classify effectively compared

with the antibacterial class. Besides, the charge feature could also play an essential role, followed by the secondary structure feature. The

Table 2. 10-fold cross validation on training set

Functional Class Classifier Accuracy Precision AUC MCC

Antibacterial RF_binary 0.8698 0.8767 0.9080 0.6163

RF_multi 0.8677 0.8688 0.9110 0.6078

CNN_binary 0.8184 0.8580 0.8355 0.4696

CNN_multi 0.8159 0.8534 0.8308 0.4587

Targeting Mammalian Cells RF_binary 0.7795 0.7627 0.8568 0.5382

RF_multi 0.7781 0.7598 0.8561 0.5348

CNN_binary 0.7078 0.6527 0.7713 0.3907

CNN_multi 0.7157 0.6504 0.7781 0.4128

Antifungal RF_binary 0.7745 0.7736 0.8239 0.4530

RF_multi 0.7713 0.7826 0.8249 0.4441

CNN_binary 0.7083 0.5782 0.7162 0.2964

CNN_multi 0.7018 0.5654 0.7097 0.2719

Antiviral RF_binary 0.8969 0.8833 0.8988 0.5545

RF_multi 0.8969 0.9445 0.9018 0.5554

CNN_binary 0.8753 0.6778 0.8307 0.4709

CNN_multi 0.8716 0.6654 0.8355 0.4393

Anticancer RF_binary 0.8964 0.8662 0.8215 0.4364

RF_multi 0.8938 0.8848 0.8292 0.4132

CNN_binary 0.8747 0.6871 0.7150 0.2242

CNN_multi 0.8735 0.6098 0.7136 0.2558

AUC, area under the receiver operating characteristic curve; MCC, Matthew’s correlation coefficient.
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antifungal class was observed to be significantly different, perhaps having an exceptional existence, from other functional classes with top

features, including hydrophobicity and sequence order. However, the charge feature was relatively unimportant among the top 10 features.

Similarly, the anticancer class was a comparatively different functional class with the most special composition of the top 10 features

comprising 8 sequence-related and 2 hydrophobicity features. Notably, features related to AAC, AAC-PAAC, and charge were not observed.

Further, in this study, there are only 10 features related to sequence order, and the lowest importance ranking of these 10 features for anti-

cancer 14, this result shows that anticancer class is strongly related to sequence order. Meanwhile, the composition of the top 10 important

features of the antiviral class was similar to the antibacterial class, mainly including AAC, PAAC-related amino acids, and charge.

Figure 4. 10-fold cross validation on forward feature selection for different functional classes of AMPs

This illustration shows theAMP classification optimization process using forward feature selection from the first feature to the 245th. Classifiers are selected based

on achieving an AUC that is comparable to or exceeds the AUC obtained when all features are used. The functional classes represented are (A) Antibacterial, (B)

Mammalian cell targeting, (C) Antifungal, (D) Antiviral, (E) Anticancer, and (F) Multi-functional class.

ll
OPEN ACCESS

6 iScience 26, 108250, December 15, 2023

iScience
Article



Furthermore, the features were arranged in increasing ranking order from 1 to 245 using forward feature selection to reconstruct classifiers.

Note that we chose forward selection for its straightforward nature, simplicity, and ability to sequentially add features that contribute most to

the model’s predictive performance. It has the advantage of adding features to the model in a sequential manner, which minimizes redun-

dancy and ensures that each feature that is selected makes a significant contribution to the performance of the model. Due to its simplicity

and effectiveness, this method has been widely adopted by the bioinformatics community. After feature selection, the classifier was chosen

depending on AUC (or macro-AUC), which was equal to or more than the AUC obtained from the classifier constructed using all 245 features.

The forward feature selection process for each classifier is shown in Figure 4, and the performance on training data is demonstrated in

Tables S3 and S4. Additionally, the performanceon independent testing data after feature selectionwas also determined, as shown in Table 3.

Themacro-average scores for accuracy, precision, AUC, andMCC for algorithm adaptationmethods using RF_multi classifier on independent

testing data after feature selection were 0.8502, 0.8609, 0.8778, and 0.5300, respectively. The performance of RF_binary and RF_multi classi-

fiers on training and independent data was observed to be similar and almost the same as before feature selection. Thus, the difference be-

tween the performance of binary relevance and algorithm adaptationmethods in RFmodels is insignificant. However, the reconstructed clas-

sifiers exhibited similar or enhanced performance after feature selection using these fewer but specific important features to distinguish

functional classes effectively. Moreover, the selected features make the classifiers better and more stable, which can be used for further

analysis.

Analysis of informative features

In order to gain a comprehensive understanding of the selected features, we were subjected to a thorough analysis based on various aspects.

One of the key findings from this analysis was that themajority of the selected features belonged to the CTDD category for all RF classifiers as

clearly demonstrated in Table 4. This was mainly due to the fact that CTDD had the highest number of dimensions among all the feature cat-

egories which are shown in Table S5. Note that ‘‘dimension’’ refers to the total number of features within each feature type. The CTDD cate-

gory has 195 features which is the most compared to other feature types, and therefore has the highest number of dimensions. However, it is

important to note that the CTDD features should not be underestimated solely based on their dimensions, as they were initially selected as

Table 3. Performance on independent testing data after feature selection

Functional Class Classifier Accuracy Precision AUC MCC

Antibacterial RF_binary 0.8803 0.8904 0.8950 0.6312

RF_multi 0.8745 0.8790 0.9066 0.6089

Targeting Mammalian Cells RF_binary 0.7796 0.7551 0.8571 0.5358

RF_multi 0.7854 0.7529 0.8568 0.5495

Antifungal RF_binary 0.7927 0.8240 0.8436 0.5026

RF_multi 0.7927 0.8293 0.8492 0.5029

Antiviral RF_binary 0.9007 0.8696 0.9065 0.5431

RF_multi 0.8993 0.9231 0.9126 0.5343

Anticancer RF_binary 0.8905 0.7419 0.8733 0.3935

RF_multi 0.8993 0.9200 0.8639 0.4543

AUC, area under the receiver operating characteristic curve; MCC, Matthew’s correlation coefficient.

Table 4. The distribution of features after feature selection

Functional class Number of selected features

Types of features

AAC PAAC CTDD

Antibacterial 177 14(8%, 70%) 24(14%, 80%) 139(79%, 71%)

Targeting Mammalian Cells 73 7(10%, 35%) 21(29%, 70%) 45(62%, 23%)

Antifungal 106 6(6%, 30%) 17(16%, 57%) 83(78%, 43%)

Antiviral 147 12(8%, 60%) 24(16%, 80%) 111(76%, 57%)

Anticancer 114 5(4%, 25%) 16(14%, 53%) 93(82%, 48%)

all 110 8(7%, 40%) 24(22%, 80%) 78(71%, 40%)

The first percentage represents the ratio between the number of selected features and the total number of features being considered. The second one refers to

the ratio between the number of selected features and the total number of features of a particular type.

AAC, Amino Acid Composition; PAAC, Pseudo Amino Acid Composition; CTDD, Composition, Transition, and Distribution Descriptor.
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important features. In fact, In addition to the CTDD category, the PAAC-related features exhibited the second highest proportion for RF clas-

sifiers in terms of specific feature type. This clearly indicates the significance of most of the PAAC-related features, highlighting their potential

importance in the overall analysis.

We then conducted an analysis of the composition of selected features by comparing RF_binary and RF_multi classifiers in Table 5. This

analysis revealed that the RF_multi classifier comprised some degree of important features selected in each RF_binary classifier. The percent-

age of commonly selected features divided by the number of selected features for RF_binary classifiers in each functional class was found to

be as low as 56% (100/177), indicating that there was a considerable degree of difference between the two classifiers. However, the number of

common features appearing in all six RF classifiers was 26, including 2 (8%, 10%) in the AAC category, 11 (42%, 37%) in the PAAC category, and

13 (50%, 7%) in the CTDD category. These 26 common features would be considered as core features since they appeared in all RF classifiers.

Among these features, the percentage of PAAC-related features was significantly higher at 37% than other feature types, implying the impor-

tance of one-third of PAAC features in all RF classifiers. Interestingly, only 1 feature selected by the RF_multi classifier was not selected by any

RF_binary classifiers in the CTDD category, indicating that RF_multi classifiers share many features with RF_binary classifiers. However, the

RF_multi classifier may have a different perspective on features based on the association between classes that RF_binary classifiers do not

consider. Overall, the study’s findings suggest that the RF_multi classifier is a more comprehensive tool for predicting protein-protein

interactions.

We conducted an analysis on individual features in addition to the different feature types analyzed earlier. Specifically, we focused on the

top 10 important features and evaluated their value distributions in the training dataset across 5 RF_binary classifiers and 1 RF_multi classifier

in Figures 4 and 5, respectively. Figure 5 displays the distribution of values for positive and negative samples in RF_binary classifiers, while

Figure 6 shows the distribution for subsets in the RF_multi classifier. Our analysis found that the value distributions for some features varied

between positive and negative samples in specific functional classes. For example, in the antibacterial class, there were notable differences in

the value distributions for PAAC.E, PAAC.C, and PAAC.D. Similarly, in the targetingmammalian cells class, there were differences in the value

distributions for charge_C3_100, PAAC.E, and PAAC.Q. In the antifungal class, differences were observed for PAAC.C and amino acid C,

while in the antiviral class, amino acid E and PAAC.E showed differences. Interestingly, there was no clear difference between positive

and negative data in the anticancer class.

For the RF_multi classifier, we mainly considered subsets with larger samples since subsets with smaller samples may not provide enough

information. The distribution of the subset with only antifungal function differed from other subsets, similar to the RF_binary classifiers. Spe-

cifically, there were differences in the value distributions for PAAC.C and amino acid C in Figure 6. However, the difference was more evident

between subsets, as observed for the subset with antiviral function (amino acid E, PAAC.E, and charge_C1_075). Most samples of the subset

having antibacterial and function with targeting mammalian cells were distributed at 0 for amino acids C and E, and PAAC.C and PAAC.E.

Furthermore, the distributions of subsets with combinations of antibacterial, targeting mammalian cells, and anticancer function or antibac-

terial, targetingmammalian cells and antifungal function, or antibacterial, targetingmammalian cells, antifungal and anticancer function were

almost the same, except for the charge_C3_001 feature. Notably, the subset acquiring all functions had a relatively higher value for the char-

ge_C1_075 feature. Overall, our analysis suggests that different functional classes may have different value distributions for individual fea-

tures, and the RF_multi classifier considers the association between classes, which may result in different perspectives on feature importance

compared to RF_binary classifiers.

Comparisons with other studies

In this study, we conducted a comprehensive comparison of the RF_multi classifier with the recently studied multi-label classifiers iAMPpred,

AMPfun, and MultiPep, for predicting functional classes of AMPs using the independent testing data. To ensure a fair comparison, we

excluded the peptide sequences present in MultiPep from our independent testing data. Detailed comparative information on previous

studies is provided in Table S6. The performance of the RF_multi classifier was evaluated using the AUC metric, which was the primary focus

Table 5. The distribution of common features

Functional class Number of common features Number of AAC Number of PAAC Number of CTDD

Antibacterial 100(177, 110) 6(6%, 30%) 21(21%, 70%) 73(73%, 37%)

Targeting Mammalian Cells 59(73, 110) 5(8%, 25%) 19(32%, 63%) 35(59%, 18%)

Antifungal 73(106, 110) 5(7%, 25%) 15(21%, 50%) 53(73%, 27%)

Antiviral 94(147, 110) 8(9%, 40%) 21(22%, 70%) 65(69%, 33%)

Anticancer 69(114, 110) 4(6%, 20%) 15(22%, 50%) 50(72%, 26%)

The first value indicates the number of selected features from the RF_binary method that are used to predict a particular functional class, while the second value

represents the number of selected features from the RF_multi method. Additionally, two percentages are provided to offer further insight into the significance of

these features. The first percentage shows the ratio of the number of selected features to the total number of common features, while the second percentage

demonstrates the ratio of the number of selected features to the total number of features of that specific type.

AAC, Amino Acid Composition; PAAC, Pseudo Amino Acid Composition; CTDD, Composition, Transition, and Distribution Descriptor.
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Figure 5. Boxplots of top 10 important features for different functional classes of AMPs

The key features that are most predictive for each functional class of AMPs are highlighted, providing insight into the underlying biology. The identification of

these critical features can be used as a basis for the design of more effective AMPs and the improvement of predictive models.
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of this study, and the results are presented in Table 6. The RF_multi classifier showed decent performance compared to the previously re-

ported iAMPpred, AMPfun, and MultiPep classifiers for each functional class. Moreover, we compared the performance of the RF_multi clas-

sifier with subsets based on the SA metric, which was calculated based on the corresponding functional classes of the compared classifiers,

and the results are presented in Table 7. To define each subset, we first considered the specific functional classes targeted by the prediction

tools we were comparing, such as iAMPpred. For example, since iAMPpred primarily identifies antibacterial, antiviral, and antifungal pep-

tides, we limited our comparison to these labels, effectively creating a subset. The subsets were defined by the intersection of the functional

activities considered by our study and those of the comparison tool. Considering three binary classes (antibacterial, anti-viral, and anti-fungal),

the total number of subsets used for comparison is 8. This approach allowed us to make a fair and focused comparison, ensuring that the

classes considered were relevant to both our classifier and the one we were benchmarking against. To further adapt the RF_multi classifier

with other classifiers, we calculated SA for each functional class.We found that the RF_multi classifier performedbetter than other classifiers in

subsets with large samples, as shown in Figure 7. Notably, all classifiers failed to predict accurately when the number of samples for a specific

subset was less than 3. Overall, our results demonstrate the superiority of the RF_multi classifier in predicting functional classes of AMPs,

particularly in subsets with a large number of samples.

Figure 6. Boxplots of top 10 important features for the multi-functional prediction model

Characteristic distributions for different AMP functional classes are shown in the figure. Distinct distributions can be seen for the antiviral subset and for the amino

acids C and E. The all-function subset has uniquely elevated values for charge_C1_075. Compared to binary classifiers, the RF_multi classifier captures nuanced

feature importance.
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DISCUSSION

In this study, we aimed to create a diverse set of classifiers to predict five different functional classes of AMPs, including antibacterial, anti-

fungal, antiviral, targeting mammalian cells, and anticancer. Both RF and CNNmodels were used, along with binary relevance and algorithm

adaptationmethods. Amajor contribution of this study is our careful forward feature selection process. This process identified critical features

such as AAC, PAAC, and CTDD. These features not only improved the performance and stability of our classifiers but also provided valuable

biological insights. Importantly, a previous study19 confirmed the importance of these features in tree-based classifiers, supporting the validity

of our findings.

It is important to interpret these results in a nuanced context, although our RF_multi classifier showed superior performance in certain

functional subsets. We would caution against viewing our performance metrics as being universally superior to all of the existing models.

Direct comparisons are complicated by factors such as the specificity of our test set and the inherent differences in datasets between

studies. Our analysis delved into the nuanced behavior of classifiers beyond simple performance metrics. For example, other classifiers

we studied also achieved up to 80% accuracy in some subsets. Several factors, including the richness of the dbAMP database and the

diverse patterns of newer peptide sequences, which specifically benefited the RF_multi classifier, may account for the difference in

performance.

The features that were selected for our study contributed to the performance of the classifiers and provided a nuanced understanding of

the mechanisms of AMP. Characteristics associated with AACs, PAACs, and CTDDs, and their distribution among different subgroups, sug-

gest that the biological functions of AMPs are tightly coupledwith specific amino acid properties or sequence patterns. These findings can be

used to inform the design of new AMPs and to serve as potential targets for further experimental validation.

Table 6. Comparisons of RF_multi (proposed in this study) and previous studies

Functional Class Classifier Accuracy Precision AUC MCC

Antibacterial iAMPpred 0.7328 0.8234 0.6180 0.2211

AMPfun 0.8277 0.8817 0.8391 0.4946

MultiPep 0.7755 0.6667 0.8799 0.5377

RF_multi 0.8745 0.8790 0.9066 0.6089

Targeting Mammalian Cells AMPfun 0.6511 0.5801 0.6822 0.2577

RF_multi 0.7854 0.7529 0.8568 0.5495

Antifungal iAMPpred 0.5358 0.3937 0.6734 0.1994

AMPfun 0.6526 0.4790 0.7325 0.3416

MultiPep 0.3061 0 0.3181 �0.3351

RF_multi 0.7927 0.8293 0.8492 0.5029

Antiviral iAMPpred 0.3518 0.1166 0.3827 �0.1240

AMPfun 0.7022 0.3068 0.7945 0.3513

MultiPep 0.9388 – 0.3478 –

RF_multi 0.8993 0.9231 0.9126 0.5343

Anticancer AMPfun 0.6380 0.2238 0.7161 0.2315

MultiPep 0.9184 0 0.7754 �0.0369

RF_multi 0.8993 0.9200 0.8639 0.4543

AUC, area under the receiver operating characteristic curve; MCC, Matthew’s correlation coefficient. ‘‘–’’ means that the tool did not provide the valid results.

Table 7. Information and performance of subset-related results comparing with previous studies

Functional classes Number of subsets Classifier SA

(Antibacterial, Antifungal, Antiviral) 8 iAMPpred 0.1066

RF_multi 0.6628

(Antibacterial, Targeting Mammalian Cells,

Antifungal, Antiviral, Anticancer)

25 AMPfun 0.2263

RF_multi 0.4978

(Antibacterial, Antifungal, Antiviral, Anticancer) 7 MultiPep 0.1633

RF_multi 0.7347

SA, Subset Accuracy.
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In conclusion, our workmakes a significant contribution to the classification of AMPs. Our classifiers showed robust performancewithin our

specific study parameters; however, they are only a small part of a larger spectrum of predictive models. Future research can address limi-

tations and expand the applicability of our models across various conditions.

Limitation of the study

The limitations of the available multi-label classification data for AMPs are acknowledged in our study. Limitations such as incomplete anno-

tation and inherent species biases present challenges that need to be addressed in future research. However, our methodology has been

developed to identify generalizable patterns, which are adaptable to new data availability. Comparing our results with other studies such

as AMPfun and MultiPep is critical. However, there are several challenges. Direct comparisons are difficult due to differences in functional

categories, availability of trained models, and dataset composition between studies. In spite of these limitations, we believe that careful

comparative analyses can provide valuable insights and help to direct future research efforts.
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Figure 7. Performance of subset-related results compared with iAMPpred (top), AMPfun (middle), and MultiPep (bottom)

This illustration shows a comparative analysis of our RF_multi classifier with iAMPpred, AMPfun, and MultiPep across 8 defined subsets of functional classes such

as antibacterial, antiviral and antifungal. For each functional class, the performance is evaluated based on the SA. RF_multi performs better on larger subsets,

while all the others struggle with subsets smaller than 3.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Prof. Tzong-Yi Lee (leetzongyi@

nycu.edu.tw).

Materials availability

No new unique reagents were generated in this study.

Data and code availability

The datasets used in this study are available on Github: https://github.com/chungcr/multiAMP. We have also shared the key codes. Addi-

tional information to reanalyze the data reported in this paper is available from the lead contact.

METHOD DETAILS

Data source and preprocessing

Various AMP-related databases have been reported recently, providing detailed information, such as physicochemical properties and func-

tional classes of AMPs. In this study, we chose dbAMP39 as the data source because this database is comparatively newer, with data collected

from other standard databases also, such as APD343, DBAASP,44 CAMP,45 LAMP,46 ADAM,47 UniprotKB/Swiss-Prot48 and several other inte-

grated resources. Thus, the dbAMP database possesses more sufficient and diverse data with a collection of peptides for different functional

classes of AMPs (Table S7).

In this study, our research focused on the identification and analysis of peptide sequences obtained from dbAMP. Note that all data were

retrieved from the dbAMPv2 on March 23, 2022. Specifically, we selected only those peptides consisting of the 20 basic amino acids

commonly found in biological systems. These amino acids are Alanine (A), Arginine (R), Asparagine (N), Aspartic Acid (D), Cysteine (C), Gluta-

mine (Q), Glutamic Acid (E), Glycine (G), Histidine (H), isoleucine (I), leucine (L), lysine (K), methionine (M), phenylalanine (F), proline (P), serine

(S), threonine (T), tryptophan (W), tyrosine (Y) and valine (V). To ensure the accuracy and relevance of our analysis, peptides containing amino

acids B, J, O, U, X and Z were excluded from our investigation. By focusing only on the 20 canonical amino acids, we aimed to increase the

reliability of our findings and provide a comprehensive understanding of the peptide sequences obtained. Additionally, peptides containing

more than 100 or less than 11 amino acids were not selected because AMPs are usually short peptides with the chosen range of length

commonly reported in previous studies.49,50 Next, CD-HIT51 was used to reduce homology bias and redundancy between peptides. It should

be noted that CD-HIT uses a hierarchical clustering algorithm to group similar sequences based on a user-defined sequence identity

threshold. Within each cluster, CD-HIT selects a representative sequence, known as the centroid, to represent the cluster. The centroid is

typically the longest sequence in the cluster or the first sequence in the input file. In our study, we used CD-HIT with a sequence identity

threshold of 90% to eliminate redundant peptides. This means that any two peptides with a sequence identity of 90% or higher were grouped

into the same cluster, and one representative (the centroid) was selected to represent that cluster. Consequently, a total of 6845 quality pep-

tides were obtained, and 5 functional classes (antibacterial, targeting mammalian cells, antifungal, antiviral, and anticancer) were chosen for

prediction because the number of peptides in these classes is relatively enough and usually more prevalent in this field.

It is important to clarify that each peptide in our dataset is inherently an AMP with at least one known function, since our study focuses on

multifunctional AMPs. When we refer to "negative" instances, we are in fact referring to AMPs that do not have the specific function under

consideration in a particular binary classification task. For example, if we are training a binary classifier to predict a specific function, such as

anticancer, the positive instances will be those peptides known to be anticancer peptides, while the negative instances will be those AMPs

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Dataset used in this study Jhong et al.39 https://awi.cuhk.edu.cn/dbAMP/

Software and algorithms

Python version 3.8.12 Python Software Foundation https://www.python.org

iFeature Chen et al.40 https://ifeature.erc.monash.edu/

scikit-learn version 1.0.1 Pedregosa et al.41 https://scikit-learn.org/stable/

Tensorflow version 2.3.0 Abadi et al.42 https://pypi.org/project/tensorflow/
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known to perform other functions but not anticancer. This approach allows us to delineate the intricate differences between different func-

tionalities of AMPs.

Feature extraction

The peptide sequences were first converted into numerical vectors as features and used as inputs for machine learningmodels. Therefore, the

platform iFeature40 was used to generate features related to composition and physicochemical properties (Table S5), and the definition of

these features are described below. Note that iFeature is a Python toolkit. It is widely used in the bioinformatics community for extracting

a wide range of features from proteins and peptides. Compared to other feature extraction tools, iFeature offers a wider range of feature

types and is particularly effective in dealing with peptide sequences, making it well suited for the scope and purpose of our study.

Amino acid composition (AAC)52 represents the ratio of each amino acid in a protein or a peptide sequence. The proportions of all 20

natural amino acids can be calculated as

pðaÞ =
NðaÞ
N

whereN(a) is the number of a specific natural amino acid, and N is the total length of the protein or peptide sequence. For example, given a

peptide sequence ‘‘AAPAACQGVL’’ comprising a total of 10 amino acids, the calculated proportion of ‘‘A’’ in this peptide is 0.4; accordingly,

the proportions of other amino acids can be determined

Pseudo amino acid composition (PAAC)53,54 mainly uses a matrix of amino acid frequencies similar to AAC to characterize the protein.

Moreover, PAAC includes additional physicochemical-related factors, such as hydrophobicity values, hydrophilicity, side chain masses,

and sequence order information. Therefore, PAAC represents a set of more than 20 features, where the first 20 are similar to AAC with addi-

tional information, and the others are mainly related to sequence order, also called sequence order-correlated factors.

Composition, transition, and distribution (CTD) represent the amino acid distribution patterns of a specific structural or physicochemical

property in a protein or peptide sequence.55–59 In the present study, the distribution descriptor was included as part of our feature set, consid-

ering the following seven physicochemical properties: hydrophobicity, normalized van derWaals volume, polarity, polarizability, charge, sec-

ondary structure, and solvent accessibility. The 20 amino acids were divided into three groups for each of the 13 attributes derived from the

different physicochemical properties, as shown in Table S8. For each group, the occurrence (25/50/75/100%) and position of a residue was

divided by the length of the sequence.

Machine learning models

The models used in this study to determine the importance of features for further analysis should be compatible with binary relevance and

algorithm adaptation methods. Therefore, RF and convolutional neural network (CNN) were selected as compatible models. For all training

processes, 10-fold cross-validation was applied to decrease the probability of overfitting or selection bias.

RF is an ensemble learning method consisting of many decision trees that assign the training data randomly and combines the votes from

decision trees to produce the final prediction. RF usually provides a better generalization performance because of combining weak learners,

which are models slightly better than random guessing. The core concept of a decision tree is to gain detailed information at every step, and

the amount of information can be calculated using the formula of entropy or Gini impurity. Gini impurity can be calculated as:

Gini impurity = 1 �
Xc

i = 1

�
pi

�2

where c is the number of classes and p represents the ratio of a specific class at the node. Gini impurity at every node in a decision tree can be

calculated using the formula with simultaneous determination of the weighted Gini impurity for splitting the decision trees. Every splitting

accompanies a decrease in impurity value for selected features. After completion of decision tree splitting, the mean decrease in impurity

(MDI) can be calculated to evaluate the importance of each feature. In this study, we used a fixed number of 100 trees for all RF models.

This was done to ensure the robustness of our results and to avoid overfitting. This parameter was chosen based on the integration of several

literature guidelines, which indicate a sufficient number of trees to allow stable and reliable prediction performance. In addition to the number

of trees, the RFmodels include several other hyperparameters that, if not specified, take default values as set in scikit-learn. These include, for

example, the split quality criterion (’gini’ in our case), themaximum tree depth (unbounded in our case), and theminimumnumber of samples

required to split an internal node (default 2). These parameters remained at their default values throughout our study, as our extensive pre-

liminary testing showed that the default setup provided us with satisfactory and robust results for our specific problem and dataset.

We built binary relevance and algorithm adaptation-based RF models using scikit-learn,41 a pythonmodule for machine learning. Accord-

ingly, we constructed 5 binary relevance models for 5 functional classes and a single algorithm adaptation model to predict 5 functional clas-

ses at once. The 245 featuresmentioned in Table S7 were used as inputs for all 6 models, and the feature importance could be determined by

calculating MDI. Following the binary relevance approach, we constructed five different models, each dedicated to one of the five functional

classes of AMPs identified in our study. By treating each class label as an independent entity, this method essentially transformed our multi-

label problem into five separate binary classification tasks. In contrast, the algorithmic adaptationmethodproduced a singlemodel that could

predict all five functional classes simultaneously. This approach did not require separating the problem into individual binary classification

tasks, but instead directly addressed the multi-label nature of our problem. Both approaches used the same set of 245 features, as listed
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in Table S7, to train the models. Each feature serves as an input to the models, and their relative importance was quantified usingMDI, which

provides an indicator of the contribution of each feature to the prediction of the functional classes.

CNN is a specific type of deep neural network that mainly uses a convolutional layer instead of a fully connected layer. Unlike the fully

connected layer, the convolutional layer connects locally and shares the weight of all neurons in a particular feature map, which helps to

reduce the number of parameters for easy optimization and avoiding overfitting. The typical CNN architecture comprises three types of

layers: convolutional, pooling, and fully connected layer. The convolutional layer contains a set of filters, the parameters of which are being

learned, and after learning, the feature maps can be observed as extracted features. Meanwhile, the pooling layer reduces the size of images

or feature maps to reserve the most important part of feature maps and also lessens the parameters for the next layer, making the neural

network learn efficiently. The fully connected layer plays the role of ‘‘classifier’’ for CNN and can map the feature space, learned using the

convolutional layer, to label space. Therefore, the entire neural network learns to classify in a directed manner.

Gradient-weighted class activation mapping (Grad-CAM)60 is applied to evaluate the importance of features in CNN. Grad-CAM uses the

gradient of any target label (antivirus in this study) flowing into the final convolutional layer to produce a heatmap that can be mapped to the

original image or features. A more positive number in a specific pixel or feature implies a proportional significance for the target label.

Conversely, a bigger negative number is significant for other targets. Therefore, the absolute value of the heatmap can be regarded as a

feature contribution, which can be used to calculate the importance of each feature.

To develop our CNNmodels, we used TensorFlow,42 a well-established open-source library for high-performance numerical computation,

specifically tailored for machine learning applications. The structure of thesemodels consisted of two convolutional layers, followed by a fully

connected layer. The convolutional layers were responsible for feature extraction, while the fully connected layer performed the final classi-

fication based on the extracted features. The Adam optimizer was used in our models due to its effective and computationally efficient

gradient descent optimization, which is suitable for dealing with large-scale problems. We used binary cross-entropy as the loss function,

a common choice for binary classification problems, as it quantifies the dissimilarity between the predicted and actual results. To address

overfitting, a common machine learning problem where the model performs well on the training data but poorly on unseen data, we

used early stopping. This technique stops training if the model’s performance does not improve on the validation set after a certain number

of epochs. For the five identified functional classes, we constructed five individual binary relevance models and one algorithm adaptation

model capable of predicting all five classes simultaneously, as in the case of our RF models. The same 245 features mentioned above

were used as inputs for these six models. To understand the contribution of each feature to the prediction, we used Grad-CAM, a method

that provides visual explanations of CNN models without requiring architectural changes. This helps us identify the regions that are most

relevant to a particular prediction, and thus sheds light on how the model makes its decisions.

Evaluation metrics

Four metrics were used to evaluate the performance of the present prediction models: accuracy, subset accuracy (SA), precision, area under

the receiver operating characteristic curve (AUC), and Matthew’s correlation coefficient (MCC). The formulae for accuracy, precision, and

MCC are listed below:

Accuracy =
TP+TN

TP+FP+TN+FN

Precision =
TP

TP+FP

MCC =
ðTP3TNÞ-ðFP3 FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP+FPÞ3 ðTP+FNÞ3 ðFP+TNÞ3 ðTN+FNÞp

SA =
1

n

Xn

i = 1

1ðby i = yiÞ

where TP is true positive denoting the number of positive samples predicted correctly; FP is false positive, depicting the number of negative

samples predictedwrongly; TN is true negative, meaning the number of negative samples predicted correctly; FN is false negative represent-

ing the number of positive samples predicted wrongly; n is the number of samples; 1ðby i = yiÞ with a value of 1 signifies exact match of the

predicted labels of ith sample with the true labels, whereas a value 0 indicates mismatch of predicted labels; SA is the exact match ratio, i.e.,

the number of samples with exact match labels divided by the total number of samples.

AUC is the area under the receiver operating characteristic (ROC) curve. The ROC curve is a graphical plot that illustrates the diagnostic

ability of a classifier systemwith variable threshold values; the x axis of the ROC curve denotes a false positive rate, and the y axis depicts a true

positive rate. Considering that the threshold values of 0 and 1 represent positive or negative predictions, the point on the plot would be (1,1)

and (0,0). Likewise, all the possible points can be obtained on the plot by changing the threshold value, and the area under the curve can be

calculated. Unlike metrics using the confusion matrix values (TP, FP, TN, FN), AUC is constant and not affected by changing the threshold.

Therefore, AUC was chosen as the metric for feature selection in this study.
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For adaptive algorithms, the macro-averaged method was also employed, which computes the metric value independently for each class

and subsequently takes an unweighted average to represent comprehensive performance.

QUANTIFICATION AND STATISTICAL ANALYSIS

All computations were performed in the Python programming language. The graphic abstract and Figure 1 were generated by Microsoft

PowerPoint, other plots appearing in this study were generated by the Python package.
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