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Abstract: Aconitum pseudo-laeve var. erectum (APE) has been widely shown in herbal 

medicine to have a therapeutic effect on inflammatory conditions. However, there has been 

no evidence on whether the extract of APE is involved in the biological bone metabolism 

process, particularly osteoclast-mediated bone resorption. In this study, we confirmed that 

the administration of APE could restore normal skeletal conditions in a murine model of 

lipopolysaccharide (LPS)-induced bone loss via a decrease in the receptor activator of 
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nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio and osteoclast 

number. We then investigated the effect of APE on the RANKL-induced formation and 

function of osteoclasts to elucidate its underlying molecular mechanisms. APE suppressed 

the formation of tartrate-resistant acid phosphatase (TRAP)-positive cells, as well as the 

bone-resorbing activity of mature osteoclasts. Furthermore, APE attenuated nuclear factor 

of activated T-cells, cytoplasmic 1 (NFATc1) and c-Fos without affecting any early signal 

pathway of osteoclastogenesis. Subsequently, APE significantly downregulated the 

expression of various genes exclusively expressed in osteoclasts. These results demonstrate 

that APE restores LPS-induced bone loss through a decrease of the serum RANKL/OPG 

ratio, and inhibits osteoclast differentiation and function, suggesting the promise of APE as 

a potential cure for various osteoclast-associated bone diseases. 

Keywords: Aconitum pseudo-laeve var. erectum; osteoclast; bone; osteoporosis 

 

1. Introduction 

With a rapidly aging society, metabolic bone disorders including osteoporosis, periodontitis, Paget’s 

disease, and rheumatoid arthritis have become major health problems [1]. Of these, osteoporosis, leading 

to the deterioration of skeletal condition, is directly associated with excessive osteoclast bone resorption 

activity and is particularly common in postmenopausal women [2,3]. Therefore, various studies have 

been undertaken to identify novel therapeutic agents for the treatment of osteoporosis, targeting the 

functions of two main specific types of bone cells: resorption of old bone by osteoclasts and formation 

of new bone by osteoblasts. 

To modulate the differentiation of multinucleated bone resorbing osteoclasts, the induction of 

several early signaling cascades, which are dependent on the receptor activator of nuclear factor kappa-B 

ligand (RANKL)-RANK axis, is required [4–6]. By activating these signaling pathways—which 

consist of mitogen activated protein kinases (MAPKs) comprising p38, c-Jun N-terminal kinase (JNK), 

and extracellular signal-regulated kinase (ERK), as well as NF-κB, Akt, and phospholipase Cγ2 

(PLCγ2)—both c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), as two main 

transcription factors of osteoclastogenesis, translocate into the nucleus of osteoclast precursors [7–10]. 

Thereafter, the expression of osteoclast-specific marker genes—including osteoclast-associated 

receptor (OSCAR), tartrate-resistant acid phosphatase (TRAP), Atp6v0d2, cathepsin K, as well as, 

osteoclast stimulatory transmembrane protein (OC-STAMP), dendritic cell-specific transmembrane 

protein (DC-STAMP), calcitonin receptor (CTR), and matrix metallopeptidase 9 (MMP-9)—is finally 

induced to develop characteristic osteoclasts via interaction between c-Fos and NFATc1 [10–15]. 

Previously, both c-Fos and NFATc1 were proven to have a critical role in osteoclast formation and 

differentiation. c-Fos, which is a component of the transcription protein complex AP-1 cooperates with 

NFATc1—a member of the transcriptional NFAT family—by binding to the promoter region of 

specific genes in order to regulate osteoclastogenesis. It has been demonstrated that c-Fos−/− mice 

display the osteopetrotic phenomenon, owing to the impairment of osteoclastic activity [16]. Moreover, 

the ectopic expression of NFATc1 efficiently induces bone marrow macrophages (BMMs) to 
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differentiate into mature osteoclasts despite of the absence of RANKL [10]. Because of the pivotal role 

of these transcription factors, it is important to regulate the activation of both c-Fos and NFATc1 in the 

treatment of bone-related diseases, such as osteoporosis. 

Based on previous research, which identified the potential value of natural plants in the prevention 

of osteoporosis [17,18], we selected the ethanol extract of Aconitum pseudo-laeve var. erectum (APE) 

using analysis with TRAP staining. Previously, APE has been demonstrated to have pharmacological 

effects on blood circulation and inflammation [19,20]. However, there is no evidence that it has any 

therapeutic effects in relation to bone metabolism. In the present study, we demonstrated the inhibitory 

effect and mechanism of action of APE on RANKL-induced osteoclastogenesis, as well as the in vivo 

effect of APE in a murine model of lipopolysaccharide (LPS)-induced bone erosion. 

2. Results and Discussion 

2.1. Administration of APE Restores LPS-Induced Bone Loss in Vivo 

To determine the effect of APE on bone mass in vivo, we examined the effect of APE in murine 

models of LPS-mediated bone erosion. It was reported that injection of LPS, which regulates 

inflammatory responses in the immune system, induced an increase in osteoclast surface and number, 

as well as excessive osteoclastic bone resorption, resulting in a loss of bone density in vivo [21,22].  

In accordance with previous studies, mice were intraperitoneally injected with PBS as a control and 

LPS as a bone erosion model. After 8 days, the left femurs of sacrificed mice were used for  

micro-computerized tomography (micro-CT) analysis. Although a greater reduction of bone mass was 

observed in the femurs of LPS-injected mice compared to the vehicle-treated mice, a partial recovery 

of bone density of both LPS- and APE-treated mice was observed in 3-dimensional visualization 

(Figure 1A). Morphometric analysis of the femurs of LPS-injected mice showed a decrease of bone 

volume per tissue volume (BV/TV) and trabecular number (Tb.N), and an increase of trabecular 

separation (Tb.Sp). We observed that the reduction of BV/TV, Tb.N, and Tb.Sp following LPS 

injection was recovered in the APE-treated, LPS-induced mice (Figure 1B). These results indicate that 

APE inhibits inflammatory-induced bone loss in vivo (Figure 1). Although oral administration of APE 

could have anti-osteoprotic effect on the short-term LPS-induced bone loss, it is still considered to 

investigate the possibility of APE has recovery effect on other bone loss mice model during long-term. 

Thus, our further investigation is needed to clarify the effects of APE in other long-term in vivo bone 

loss model, such as ovariectomized (OVX) or immobilized model, except the short-term LPS-induced 

bone loss model.  

2.2. APE Restores LPS-Induced Bone Loss by Inhibiting the RANKL/OPG Ratio and Osteoclast Formation 

To investigate the mechanism of the inhibitory effects of APE on LPS-induced bone loss, we 

examined the effect of APE on the RANKL/OPG ratio and osteoclast formation. As shown in Figure 2A, 

APE reduced bone erosion and osteoclast formation in the trabecular bone region. As expected, the 

number of osteoclasts located in the femur was significantly suppressed in LPS and APE-treated mice. 

Furthermore, to confirm whether the APE alteration of RANKL/OPG production contributed to this 

effect, we performed an enzyme-linked immunosorbent assay (ELISA) using the serum of mice in the 
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experimental group. Surprisingly, APE reduced the increase in the levels of RANKL and ameliorated 

the decrease in the level of OPG in LPS-treated mice.  

Figure 1. Aconitum pseudo-laeve var. erectum (APE) regulates lipopolysaccharide  

(LPS)-induced bone erosion in a mouse model. (A) Mice were sacrificed 8 days after the 

first LPS injection and radiographs of the longitudinal and transverse section of the 

proximal femurs were obtained using a micro-computed tomography (micro-CT) 

apparatus; (B) The bone volume per tissue volume (BV/TV), trabecular separation (Tb.Sp), 

Tb.Th, and trabecular number (Tb.N) of the femurs were determined using the micro-CT 

data as analyzed with INFINITT-Xelis software. 

 
*: p < 0.05; **: p < 0.01 versus control; #: p < 0.05 versus lipopolysaccharide (LPS) group. 
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As anticipated, the ratio of RANKL/OPG was significantly reduced in response to treatment with 

APE (Figure 2B). RANKL is a transmembrane protein expressed in osteoblast and stromal cells, 

playing a role as an initiator of osteoclast differentiation by binding to its receptor, RANK [6,23]. OPG, 

which is considered a decoy receptor of RANKL, is generally expressed in tissues, including the heart, 

kidney, and bone marrow and inhibits the differentiation of osteoclast precursors by binding to 

RANKL [6]. Previous reports have verified that an increase in the RANKL/OPG ratio is the main 

cause for enhancement of osteoclast activity, leading to excessive bone resorption and subsequent low 

density of bone mass [24,25]. In summary, APE partially recovers bone destruction through an 

increase in osteoclast formation in the region of trabecular architecture by modulating the 

RANKL/OPG ratio, down-regulating RANKL, and up-regulating OPG expression (Figure 2). 

Figure 2. (A) Dissected femora were fixed, decalcified, embedded, and sectioned. Sections 

were stained with hematoxylin and eosin (H&E) (top) and with tartrate-resistant acid 

phosphatase (TRAP) (bottom). The number of osteoclasts per field of tissue was analyzed 

using the histomorphometric results (right); (B) Levels of receptor activator of nuclear 

factor kappa-B ligand (RANKL), osteoprotegerin (OPG), and the serum RANKL/OPG 

ratio of control, LPS-treated, Aconitum pseudo-laeve var. erectum (APE)-treated, and both 

LPS and APE-treated mice.  

 
***: p < 0.001 versus control; ###: p < 0.001 versus lipopolysaccharide (LPS) group. 
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Additionally, we calculated the direct effect of APE on RANKL and OPG mRNA expression in 

bone cells, primary osteoblasts, in vitro. In results, APE did not directly affect mRNA expression of 

both RANKL and OPG induced by IL-1 (Supplementary Figure S1). In Figure 2B, on the contrary, 

APE altered the serum levels of RANKL and OPG in the condition of LPS stimulation. Previously, it 

is proved that circulating soluble RANKL acts as an indicator of bone turnover marker. Also, this 

circulating form of RANKL contains two forms of RANKL, a truncated ectodomain cleaved from the 

cell-bound form and a primary secreted form produced by activated T cells. However, trimeric 

transmembrane protein secreted from osteoblasts is not comprised in circulating RANKL [26]. Taken 

together, we assumed that APE only affected the expression of circulating soluble form of RANKL 

apart from the form of molecule derived from osteoblast, suggesting that the recovery effect of APE on 

LPS-induced bone loss is caused by blocking two forms of circulating RANKL. 

2.3. APE Prevents the Formation of TRAP-positive Osteoclasts and the Bone Resorbing Ability of 

Mature Osteoclasts 

To investigate the effect of APE on osteoclast formation and function in vitro, we initially cultured 

primary BMMs treated with several concentrations of APE or dimethyl sulfoxide (DMSO; as a 

control). It is well known that hematopoietic precursor cells of the macrophage/monocyte lineage 

differentiate into multinucleated osteoclasts in the presence of macrophage colony-stimulating factor 

(M-CSF) and RANKL [27,28]. In the process of differentiation, the expression of TRAP, which is 

deeply associated with various stages of the skeletal system—such as collagen synthesis—is 

remarkably increased [29]. The formation of TRAP-positive multinuclear cells (MNCs) appeared 

distinctly in BMMs treated with DMSO. However, BMMs treated with APE were limited to 

differentiate into osteoclasts in a dose-dependent manner (Figure 3A). Furthermore, the number of 

TRAP-positive osteoclasts was dramatically decreased (Figure 3B). Subsequently, we analyzed an 

XTT assay to explore the possibility that the inhibitory effect of APE on osteoclastogenesis is 

associated with cytotoxicity. At the indicated concentrations, APE did not affect cell viability, even at a 

high concentration (Figure 3C). These results indicate that the formation of TRAP-positive multinucleated 

giant cells is significantly suppressed by APE treatment, with no cytotoxicity. In the development of 

mature osteoclasts, bone-resorbing activity is in charge of main function of it. The formation of a sealing 

zone and ruffled border occurs in order to degrade the extracellular bone matrix [30–32]. The sealing zone, 

which contains abundant actin filaments (f-actin), plays a key role in attachment to the bone surface 

through the expression of integrin αν and β3 [33,34]. Simultaneously, the formation of a ruffled border 

occurs in the middle of the sealing zone. To dissolve the bone matrix, the ruffled border modifies the 

acidic environment through the secretion of proton ions and lysosomal proteases [35,36]. In an effort 

to identify the effect of APE on bone resorbing activity, we seeded mature osteoclasts on top of a 

hydroxyapatite-coated plate with or without APE. Although the formation of a considerable resorption 

pit was observed in DMSO conditions, there was a dose-dependent suppression of the formation of 

resorption pits on the plates by mature osteoclasts treated with APE. Furthermore, the relative ratio and 

number of pit areas were decreased in a dose-dependent manner (Figure 3D). These results suggest that 

APE has a suppressive effect on the bone matrix-dissolving activity of mature osteoclasts (Figure 3). 
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Figure 3. Aconitum pseudo-laeve var. erectum (APE) inhibits the formation of tartrate-

resistant acid phosphatase (TRAP)-positive osteoclasts, as well as the bone resorbing activity 

of mature osteoclasts. (A) Bone marrow macrophages (BMMs) were cultured for 4 days in the 

presence of macrophage colony-stimulating factor (M-CSF; 30 ng/mL) and receptor 

activator of nuclear factor kappa-B ligand (RANKL; 100 ng/mL) with dimethyl sulfoxide 

(DMSO; control) or APE. Cells were fixed with 3.7% formalin in phosphate-buffered 

saline (PBS), permeabilized with 0.1% Triton X-100 in PBS and stained with TRAP 

solution; (B) TRAP-positive multinucleated cells were counted as osteoclasts; (C) BMMs were 

cultured for 3 days at the indicated doses of APE in the presence of M-CSF (30 ng/mL). 

Cell viability was analyzed by XTT assay; (D) Mature osteoclasts were seeded on 

hydroxyapatite-coated plates for 24 h with the indicated concentrations of APE. Attached 

cells on the plates were removed and photographed under a light microscope. The relative 

ratio and number of pit areas was quantified using Image J. 

 
**: p < 0.01; ***: p < 0.001. 

A B

D

C



Molecules 2014, 19 11635 

 

 

2.4. The Inhibitory Effect of APE on c-Fos and NFATc1 Activation Is Not Associated with Early  

Signal Pathways 

To figure out whether APE stimulates the phosphorylation of early signaling, we tested the effect of 

APE on MAP kinases—including p38, ERK, JNK, and Akt, IκB—as well as calcium signaling 

pathways, such as PLCγ2, and Bruton's tyrosine kinase (BTK). Surprisingly, APE did not affect any 

early signaling pathway of RANKL-induced osteoclastogenesis (Figure 4A). Thus, we suggest that 

APE could regulate the differentiation of osteoclasts via directly targeting c-Fos/NFATc1 signaling. 

Previous studies revealed that NFATc1 is a downstream target gene of c-Fos in the late stage  

of osteoclastogenesis.  

Osteoclast precursor cells, which are deficient in c-Fos, showed a low expression of NFATc1 

activation and recovered normal osteoclast formation and bone resorption ability, as well as 

transcription activity of osteoclast-specific genes through the inducement of the NFATc1 active  

form [37,38]. To demonstrate the effect of APE on c-Fos/NFATc1 signaling, we examined the effect 

of APE on the protein levels of c-Fos and NFATc1 by western blotting, and the mRNA levels of the 

two transcription factors through real-time PCR. 

c-Fos and NFATc1 were suppressed significantly in comparison with the control (Figure 4B,C). 

Additionally, to confirm whether c-Fos and NFATc1 expression is sufficient to reverse the effect of 

APE on osteoclastogenesis, we applied a retrovirus to overexpress c-Fos and NFATc1 (Supplementary 

Figure S2). As shown in Figure 4D, the ectopic expression of c-Fos and NFATc1 recovered the 

inhibitory effect of APE on osteoclast differentiation. These results show that APE blocks the 

activation of both c-Fos and NFATc1 without affecting the RANKL-dependent signaling pathway 

(Figure 4). 

2.5. APE Regulates Osteoclastogenesis through Suppressing the mRNA Expression of Osteoclast 

Marker Genes  

We analyzed the effect of APE on the expression of various osteoclast-specific genes that results 

from the transcriptional activity of NFATc1. APE significantly downregulated the transcription of 

OSCAR, TRAP, DC-STAMP, OC-STAMP, Atp6v0d2, CTR, and MMP-9 (Figure 5). In particular, the 

expression of Cathepsin K—the main enzyme for cleaving extracellular matrix—was restricted in 

response to APE treatment (Figure 5). Previously, it was revealed that Cathepsin K-deficient mice 

underwent osteopetrosis due to impairment of bone resorption. Further, the lack of protein  

kinase-C-delta (PKCδ), which regulates Cathepsin K exocytosis by stimulating actin cross-linking 

protein myristoylated alanine-rich C-kinase substrate (MARCKS), shows preventive effects on 

postmenopausal osteoporosis [39,40]. These results indicate that APE negatively stimulates osteoclast 

differentiation and bone resorbing activity via regulating the various marker genes (Figure 5). 
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Figure 4. Aconitum pseudo-laeve var. erectum (APE) suppresses receptor activator of 

nuclear factor kappa-B ligand (RANKL)-induced c-Fos and nuclear factor of activated  

T-cells, cytoplasmic 1 (NFATc1) expression without stimulating early signal pathways.  

(A) Bone marrow macrophages (BMMs) were pretreated with DMSO (control) or APE 

(200 µg/mL) for 1 h in the presence of macrophage colony-stimulating factor (M-CSF;  

30 ng/mL) and were stimulated with RANKL (100 ng/mL) for the indicated times. Whole-cell 

lysates underwent western blot analysis with the various indicated antibodies. β-actin served 

as the internal control; (B) BMMs were stimulated with RANKL (100 ng/mL) and M-CSF  

(30 ng/mL) in the presence or absence of APE (200 µg/mL) for the indicated times. Total 

RNA was isolated from cells using QIAzol reagent and mRNA expression levels of c-Fos 

and NFATc1 were evaluated using real-time PCR; (C) Effects of APE on protein 

expression levels of c-Fos and NFATc1 were evaluated using western blot analysis. β-actin 

was used as the internal control; (D) BMMs were infected with retroviruses expressing 

pMX-IRES-EGFP (pMX), pMX-NFATc1-EGFP, and pMX-cFos-EGFP. Infected BMMs 

were cultured with or without APE (200 µg/mL) in the presence of M-CSF (30 ng/mL) and 

RANKL (100 ng/mL) for 4 days. After culturing, the cells were fixed and stained for 

tartrate-resistant acid phosphatase (TRAP) (left). The TRAP-positive multinucleated 

osteoclasts were counted (right). 

 
*: p < 0.05; **: p < 0.01; ***: p < 0.001. 
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Figure 5. Aconitum pseudo-laeve var. erectum (APE) down-regulates the expression of 

osteoclast-specific marker genes. Bone marrow macrophages (BMMs) were stimulated with 

receptor activator of nuclear factor kappa-B ligand (RANKL; 100 ng/mL) and macrophage 

colony-stimulating factor (M-CSF; 30 ng/mL) in the presence or absence of APE (200 µg/mL) 

for the indicated times. Total RNA was isolated from cells using QIAzol reagent and mRNA 

expression levels of osteoclast-associated receptor (OSCAR), tartrate-resistant acid 

phosphatase (TRAP), Atp6v0d2, Cathepsin K, dendritic cell-specific transmembrane protein 

(DC-STAMP), osteoclast stimulatory transmembrane protein (OC-STAMP), calcitonin 

receptor, and matrix metallopeptidase 9 (MMP-9) were evaluated by real-time PCR. 

 
*: p < 0.05; **: p < 0.01; ***: p <0.001. 
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3. Experimental Section  

3.1. Reagents and Antibodies 

The 95% ethanol extract of APE was purchased from the Korean Plant Extract Bank (Daejeon, 

Korea). TRAP staining solution was from Sigma Aldrich (St. Louis, MO, USA), the XTT assay kit 

was obtained from Roche (Indianapolis, IN, USA). The α-minimum essential medium (α-MEM), fetal 

bovine serum (FBS), and penicillin-streptomycin were purchased from Gibco-BRL (Grand Island, NY, 

USA) and soluble human recombinant M-CSF and RANKL were purchased from Peprotech (London, 

UK). Specific antibodies against phospho-PLCγ2 (sc-101785), PLCγ2 (sc-5283), IκB (sc-371), c-Fos 

(sc-7202), and NFATc1 (sc-7294) were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, 

USA) and phospho-Btk (GTX61791) was purchased from GeneTex (Irvine, CA, USA). Specific 

primary antibodies against phospho-p38 (#9211), p38 (#9212), phospho-Akt (#9271), Akt (#9272), 

phospho-JNK (#9251), JNK (#9252), phospho-IκB (#2859), phospho-ERK (#9101), ERK (#9102), 

and Btk (#3533) were purchased from Cell Signaling Technology (Beverly, MA, USA) and β-actin 

(A5441; housekeeping gene) was obtained from Sigma Aldrich. 

3.2. Mouse Bone Marrow Cell (BMC) Isolation and Osteoclast Differentiation 

Mouse BMCs were obtained from the femurs and tibiae of a 5-week-old ICR mouse and were 

incubated in α-MEM with 10% FBS, 1% penicillin/streptomycin, M-CSF (10 ng/mL) for 1 day to 

obtain non-adherent cells. The non-adherent cells as osteoclast precursors were incubated in α-MEM with 

10% FBS, 1% penicillin/streptomycin, M-CSF (30 ng/mL) for 3 days. After 3 days, the adherent cells were 

used as BMMs. The BMMs were incubated with M-CSF (30 ng/mL) and RANKL (100 ng/mL) in the 

presence of APE (50–200 µg/mL) or DMSO as control. After 3 days, the culture media was changed 

under the same conditions. After 1 day, the cells were fixed in 3.7% formalin for 20 min and 

permeabilized with 0.1% Triton X-100 and then stained with TRAP solution, and the stained cells 

were counted to establish the level of osteoclast differentiation.  

3.3. Cell Viability Assay 

The BMMs (1 × 104 cells/well) were cultured with or without APE (50–200 µg/mL) for 3 days in 

the presence of M-CSF (30 ng/mL) in 96-well plates. After 4 h incubation of the cells in a medium 

containing 50 µL of XTT solution (sodium 3'-[1-(phenyl-aminocarbonyl)-3,4-tetrazolium]-bis(4-

methoxy-6-nitro), benzenesulfonic acid hydrate, and N-methyl dibenzopyrazine methyl sulfate), the 

optical density was measured as 450 nm using an ELISA reader (Molecular Devices, Sunnyvale,  

CA, USA). 

3.4. Western Blot Analysis  

The BMMs were lysed in a lysis buffer containing 50 mM Tris-HCl, 150 mM NaCl, 5 mM 

ethylenediaminetetraacetic acid (EDTA), 1% Triton X-100, 1 mM sodium fluoride, 1 mM sodium 

vanadate, 1% deoxycholate, protease inhibitors and the lysate was centrifuged at 14,000 rpm for  

20 min to obtain pure protein. The protein concentration was measured using a Bio-Rad colorimetric 



Molecules 2014, 19 11639 

 

 

protein assay kit (Bio-Rad Laboratories Inc., Hercules, CA, USA) and equal amounts of proteins were 

separated through an SDS-polyacrylamide gel. The proteins were transferred to a polyvinylidene 

difluoride (PVDF) membrane (Millipore, Bedford, MA, USA) and treated with 5% non-fat dry milk to 

inhibit attachment of non-specific proteins. After the membrane was treated with primary and 

secondary antibodies (horseradish peroxidase [HRP]-conjugated sheep anti-mouse or donkey anti-rabbit 

immunoglobulin), the expression of specific protein signals was measured using a chemiluminescence 

detection system (Millipore). 

3.5. Quantitative Real-time PCR Analysis 

Total RNA was extracted using QIAzol lysis reagent (Qiagen, Valencia, CA, USA) according to the 

manufacturer’s instructions and equal amounts of the cDNA of RNA were synthesized from 1 µg of 

total RNA using SuperScript II Reverse Transcriptase (Invitrogen, San Diego, CA, USA). Real-time 

PCR was performed using a Exicycler™ 96 Real-Time Quantitative Thermal Block (Bioneer Co., 

Daejeon, Korea) in a 20 µL reaction mixture containing 10 µL SYBR Green Premix (Bioneer Co.),  

10 pmol forward primer, 10 pmol reverse primer, and 1 µg cDNA. The detection program of real-time 

PCR proceeded according to the following protocols: initial denaturation at 95 °C for 5 min and  

40 cycles of 3 steps PCR (denaturation at 95 °C for 1 min, annealing at 60 °C for 30 s, and extension at 

72 °C for 1 min). Gene expression levels were normalized to the housekeeping gene, β-actin. 

The relative results of specific genes were calculated using the comparative cycle threshold method. 

Table 1 shows the primer sets used in the Real-time PCR. 

Table 1. Primer sequences used for real-time PCR analysis. 

Primer sequences for Real-time RT-PCR 

c-Fos 
Forward: 5'-GGT GAA GAC CGT GTC AGG AG-3' 
Reverse: 5'-TAT TCC GTT CCC TTC GGA TT-3' 

NFATc1 
Forward: 5'-GAG TAC ACC TTC CAG CAC CTT-3' 
Reverse: 5'-TAT GAT GTC GGG GAA AGA GA-3' 

TRAP 
Forward: 5'-ACT TCC CCA GCC CTT ACT AC-3' 
Reverse: 5'-TCA GCA CAT AGC CCA CAC CG-3' 

OSCAR 
Forward: 5'-GGA ATG GTC CTC ATC TGC TT-3' 
Reverse: 5'-TCC AGG CAG TCT CTT CAT TTT-3' 

Cathepsin K 
Forward: 5'-CCA GTG GGA GCT ATG GAA GA-3' 
Reverse: 5'-CTC CAG GTT ATG GGC AGA GA -3' 

Atp6v0d2 
Forward: 5'-GAC CCT GTG GCA CTT TTT GT-3' 
Reverse: 5'-GTG TTT GAG CTT GGG GAG AA-3' 

DC-STAMP 
Forward: 5'-TCC TCC ATG AAC AAA CAG TTC CA-3' 
Reverse: 5'-AGA CGT GGT TTA GGA ATG CAG CTC-3' 

OC-STAMP 
Forward: 5'-ATG AGG ACC ATC AGG GCA GCC ACG-3' 
Reverse: 5'-GGA GAA GCT GGG TCA GTA GTT CGT-3' 

Calcitonin receptor 
(CTR) 

Forward: 5'-TCC AAC AAG GTG CTT GGG AA-3' 
Reverse: 5'-CTT GAA CTG CGT CCA CTG GG-3' 

MMP-9 
Forward: 5'-TCC AAC CTC ACG GAC ACC C-3' 
Reverse: 5'-AGC AAA GCC GGC CGT AGA-3' 

GAPDH 
Forward: 5'-TCA AGA AGG TGG TGA AGC AG-3' 
Reverse: 5'-GGT GGA GGA GTG GGT GTC-3' 
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3.6. Bone Resorption Assay 

To obtain mature osteoclasts, BMCs and primary osteoblasts were co-cultured in collagen gel-coated 

culture dishes for 7 days in the presence of 1,25-dihydroxyvitamin D3 (Vit D3; Sigma) and 

prostaglandin E2 (PGE2; Sigma). After 7 days, the co-cultured cells were detached using 0.1% 

collagenase at 37 °C for 10 min and the separated cells were replated on dentin slices or 

hydroxyapatite-coated plates (Corning, NY, USA) with or without APE (200 µg/mL) for 24 h or 48 h. 

Subsequently, the cells on the plates were removed and the resorption pits were photographed and 

quantified using the Image-Pro Plus program version 4.0 (Media Cybernetics, Silver Spring, MD, USA). 

3.7. Retroviral Gene Transfection 

Packaging of the retroviral vectors pMX-IRES-EGFP, pMX-cFos-IRES-EGFP, and pMX-NFATc1-

IRES-EGFP was performed using transient transfection of these pMX vectors into Plat-E retroviral 

packaging cells using X-tremeGENE 9 (Roche, Nutley, NJ, USA) according to the manufacturer’s 

protocol. After incubation in fresh medium for 2 days, the culture supernatants of the retrovirus-

producing cells were collected. For retroviral infection, non-adherent BMCs were cultured in M-CSF 

(30 ng/mL) for 2 days. The BMMs were incubated with viral supernatant pMX-IRES-EGFP, pMX-

cFos-IRES-EGFP, and pMX-NFATc1-IRES-EGFP virus-producing Plat-E cells together with polybrene 

(10 µg/mL) and M-CSF (30 ng/mL) for 6 h. The infection efficiency of the retrovirus was determined 

by green fluorescent protein expression and was always >80%. After infection, the BMMs were 

induced to differentiate in the presence of M-CSF (30 ng/mL) and RANKL (100 ng/mL) for 4 days. 

The forced expression of each construct and osteoclast formation were detected using a fluorescence 

microscope and TRAP staining. 

3.8. Mouse Model of LPS-induced Bone Erosion and Micro-CT and Histological Analysis 

Male, 5-week-old ICR mice were purchased from Damul Science (Daejeon, Korea). The mice were 

kept in a temperature (22 °C–24 °C) and humidity (55%–60%) controlled environment with a 12 h 

light/dark cycle. The use of experimental animals has been reviewed by the IACUC and has been 

approved under WKU14-40. The ICR mice were divided into 4 main experimental groups comprising 

5 mice each: phosphate-buffered saline (PBS)-treated (Control), only LPS-treated (LPS), only APE-treated 

(APE), and both LPS and APE-treated (LPS+APE). APE (200 mg/kg) or PBS as a control was 

administered orally 1 day before LPS injection (5 mg/kg). APE or PBS was administered orally every other 

day for 8 d. LPS was injected intraperitoneally on days 1 and 4. The mice were sacrificed after 8 days, and 

the left femurs underwent high-resolution micro-CT analysis. The intact femur metaphysic regions 

were scanned by micro-CT (NFR-Polaris-S160; Nanofocus Ray, Iksan, Korea) with a source voltage 

of 60 kVp, current of 114 mA, and 7 mm isotropic resolution. Femur scans were performed from the 

growth plate approximately to 2 mm, with a total of 350 sections per scan. After 3D reconstruction, 

BV/TV, Tb.N, Tb.Th, and Tb.Sp were calculated using INFINITT-Xelis software (INFINITT 

Healthcare, Seoul, Korea). The right femurs were fixed in 4% neutral buffered paraformaldehyde 

(Sigma) for 1 day, decalcified for 3 weeks in 12% EDTA and embedded in paraffin. Sections of 5-µm 

thickness were prepared using a Leica microtome RM2255 (Leica Microsystems, Bannockburn, IL, 
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USA). For histologic examination, sections were stained with hematoxylin and eosin (H&E) and 

another section was stained with TRAP to identify osteoclasts on the bone surface. Parameters for 

bone resorption—including number of osteoclasts per field of tissue—were quantified using the Image 

Pro-Plus program, version 4.0 (Media Cybernetics). Nomenclature, symbols, and units used in this 

study are those recommended by the American Society for Bone Mineral Research (ASBMR) 

Nomenclature Committee. 

3.9. Measurement of RANKL and OPG 

The serum levels of RANKL and OPG were determined using commercial ELISA kits (RANKL: 

Cat. NO. MTR00; OPG: Cat. No. MOP00) (R&D Systems, Minneapolis, MN, USA) in conformity 

with the following instructions. Briefly, all microtitre plates were coated overnight at 4 °C with 

antibodies against mouse RANKL and OPG. Subsequently, the plates were blocked, samples and 

standards were added at various dilutions in duplicate and incubated at 4 °C for 24 h. Plates were washed 

3 times with buffer, and antibodies were added to the wells. Plates were incubated at room temperature 

for 1 h, washed, and 50 µL of avidin-HRP was added. The color reagent o-phenyl-enediamine was added 

15 min later, and the plates were incubated in the dark at 37 °C for 15–20 minutes. The enzyme reaction 

was stopped with H2SO4 and the absorbance was measured at 490 nm. Values were expressed in pg/mL. 

3.10. Statistical Analysis 

Experiments were conducted separately at least three times and all data are presented as the  

mean ± standard deviation (SD). All statistical analyses were performed by using SPSS (Korean 

version 14.0). The statistical differences were analyzed using one-way analysis of variance (ANOVA) 

followed by Tukey’s post hoc test. p-values less than 0.05 were considered significant. 

4. Conclusions  

APE restored LPS-induced bone erosion in a murine model and it was revealed that its underlying 

mechanism was APE inhibition of osteoclast differentiation and bone resorbing activity through direct 

inactivation of both c-Fos and NFATc1, without affecting various RANKL-induced early signaling 

pathways, such as MAPKs and calcium signaling. Consequently, it is the first demonstration of the 

anti-osteoclast activity of APE on bone destruction, suggesting the potential promise of APE as an 

agent against bone-related disorders, including osteoporosis. 
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