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The Fitness‑Corrected Block Model, 
or how to create maximum‑entropy 
data‑driven spatial social networks
Massimo Bernaschi1, Alessandro Celestini1, Stefano Guarino  1*, Enrico Mastrostefano1 & 
Fabio Saracco1,2

Models of networks play a major role in explaining and reproducing empirically observed patterns. 
Suitable models can be used to randomize an observed network while preserving some of its features, 
or to generate synthetic graphs whose properties may be tuned upon the characteristics of a given 
population. In the present paper, we introduce the Fitness-Corrected Block Model, an adjustable-
density variation of the well-known Degree-Corrected Block Model, and we show that the proposed 
construction yields a maximum entropy model. When the network is sparse, we derive an analytical 
expression for the degree distribution of the model that depends on just the constraints and the 
chosen fitness-distribution. Our model is perfectly suited to define maximum-entropy data-driven 
spatial social networks, where each block identifies vertices having similar position (e.g., residence) 
and age, and where the expected block-to-block adjacency matrix can be inferred from the available 
data. In this case, the sparse-regime approximation coincides with a phenomenological model where 
the probability of a link binding two individuals is directly proportional to their sociability and to 
the typical cohesion of their age-groups, whereas it decays as an inverse-power of their geographic 
distance. We support our analytical findings through simulations of a stylized urban area.

The definition of a suitable data-driven spatial social network model is a widely studied problem in computa-
tional social sciences. Various dynamical processes (e.g., diseases spread) can be represented on such networks, 
and the topology of the network has a direct impact on the evolution of the process. Having general models for 
social interactions, based on available data and capable of reconstructing stylized facts known from the literature, 
is of utmost importance to prevent from reaching conclusions biased by incorrect or ill-defined assumptions. 
With widely available survey and census data, it is now possible to generate synthetic geo-localized populations, 
stratified by age and organized into households. However, there is no equally direct way to accurately model 
interpersonal relationships.

Many real social networks exhibit some form of group mixing, driven by the tendency of individuals to social-
ize with their peers1. This property can be reproduced using the so-called Stochastic Block Model (SBM), risen 
to prominence as a way to generate networks with a known community structure2,3. In the SBM, the vertex set 
is partitioned into disjoint blocks and the probability of an edge between two nodes depends on the blocks to 
which the two nodes belong. In the original formulation of the SBM, all vertices belonging to the same block are 
indistinguishable, so that the degree distribution within each block tends to be Poisson-like for large graphs2. To 
produce a more realistic network, a few extensions to the model have been proposed in the literature, including 
the Degree-Corrected Block-Model (DCBM)2 and its maximum-entropy version4. These models are, in some 
sense, the SBM-equivalent of the well-known configuration model. They are based on enforcing both the desired 
group mixing and a target degree-sequence, either exactly or in expectation. If LIJ is the number of links between 
blocks I and J – or twice that number, if I = J – and degi is the degree of node vi , the maximum-entropy DCBM 
works by imposing that 

〈

LIJ
〉

= KIJ and 
〈

degi
〉

= ki for suitable constants KIJ and ki . The internal consistency 
of the model requires 

∑

J KIJ =
∑

i∈I ki for all I, and the density of the network is fixed equal to 
∑

I ,J KIJ

N(N−1) , where 
N is the size of the network.

In this paper, we define and analyze the Fitness-Corrected Block Model (FCBM), a variation of the DCBM 
where the network density p is a configuration parameter. In the FCBM the block-level mixing is specified in 
terms of a matrix of edge-densities �—as in the original SBM—whereas a sequence �f  of vertex intrinsic fitness 
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values5,6 measures the propensity of each vertex to establish links and can be used to enforce the desired intra-
block heterogeneity. In the DCBM the constants KIJ and ki , that bound, respectively, 

〈

LIJ
〉

 and 
〈

degi
〉

 , need to 
be known explicitly. The DCBM was in fact conceived as an instrument to randomize an observed graph while 
preserving some of its features. In the FCBM, instead, KIJ and ki are determined based on p, � and �f  , making the 
FCBM a suitable model for generating random graphs whose properties may be tuned upon the characteristics 
of a given population or set of entities.

To the purpose of having a model that is maximally random, the FCBM is defined following the approach 
first presented in Ref.4 for the DCBM, and later clarified and generalized in Ref.7. In a nutshell, the approach 
consists in: (1) the definition of an ensemble of networks, each with the same number of nodes, but with all 
possible configurations of links; (2) the constrained maximization of the entropy associated to the network 
ensemble, via the method of Lagrangian multipliers. By imposing the conditions 

〈

LIJ
〉

= KIJ and 
〈

degi
〉

= ki , 
for all I, J, i, the probability per graph in the ensemble factorises in terms of probabilities per link. The numerical 
value of the Lagrangian multipliers has to be calculated solving the system of nonlinear equations given by the 
model constraints. The resolution of this system might become expensive when the network is large and, to the 
best of our knowledge, it is not implemented in any publicly available software library. For the present paper, 
we implemented a parallel version of the solver for the maximum-entropy DCBM, written in C making use of 
the Intel MKL scientific library and the OpenMP API, which can also be used to solve our FCBM. The solver is 
released as open-source software at https://​gitlab.​com/​cranic-​group/​dcbm_​solver.

A known sparse-regime approximation for the edge probability of the DCBM implies that, in the sparse 
FCBM, the probability of a link binding two individuals i and j is directly proportional to their sociability and to 
the cohesion of their blocks, i.e., pij ∝ pfifj�Ii Jj for all i ∈ I and j ∈ J . Under the sparse-regime approximation, 
the maximum entropy condition leads to a system of equations that admits a closed-form solution. We make 
use of this approximate solution to find two closed-form estimates for the degree distribution pk of the FCBM—
one more accurate, the other neater. These two estimates put in direct relation pk with the fitness distribution 
pf  , showing that the degree distribution of the FCBM, albeit not known a priori, can be essentially controlled 
through the model’s parameters. In particular, if pf  follows a power-law, lognormal or exponential distribution, 
then the same holds, approximately, for pk.

Among the many possible applications, the FCBM is especially well suited for generating a data-driven 
social network of geo-referenced and age-stratified individuals. The partition of the population into blocks can 
be obtained by grouping the individuals having similar position (e.g., residence) and age, whereas the expected 
block-to-block edge-density matrix � can be calibrated based on survey data that quantify the dependence of con-
tact frequencies upon geographic and socio-demographic factors. Finally, the fitness vector �f  may be drawn from 
a suitable probability distribution, modelled upon measurable features such as wealth, employment, or mobility. 
In this context, the sparse FCBM is well approximated by the phenomenological model presented in Refs.8,9.

To show how the FCBM can be used in practice, and to provide empirical support to our analytical findings, 
we generate a set of synthetic social networks for a stylized urban population distributed on a disk of radius 
2.5 Km. We use the SOCRATES10,11 tool to extract age-based social mixing patterns, and we embrace the widely-
accepted assumption that an inverse-power-law relation binds the distance between two individuals and the 
frequency of their social interactions12,13. We generate instances of our FCBM using either the exact model or its 
sparse-regime approximation, varying both the spatial density of the individuals in the territory and the fitness 
distribution. We show that the empirical degree distribution obtained with all considered configurations is in 
sharp agreement with the analytical estimates. The implementation of the FCBM is publicly available as part of 
the Urban Social Networks (USN) framework at https://​gitlab.​com/​cranic-​group/​usn.

Contributions and results
In the following, we summarize the main contributions and present the main analytical and experimental results 
of this paper. For all methodological details, we refer the reader to the “Methods” section.

The Fitness Corrected Block Model.  We propose the Fitness-Corrected Block Model (FCBM), a new 
maximum-entropy model for modular networks, parameterized by the network density p ∈ (0, 1) , the block-
wise mixing structure � —a symmetric matrix such that 

∑

I ,J �I ,J = 2—and the vertex-intrinsic fitness �f  —a 
vector that controls the tendency of each vertex to establish links with other vertices.

Formally, let V be a vertex set of size N partitioned into n blocks {BI }n−1
I=0 . The FCBM is defined as the 

maximum entropy probability distribution P, over all networks having vertex set V, fulfilling the following two 
conditions:

where LIJ is the number of edges between BI and BJ ; degi , fi and Ii are the degree, fitness and pertaining block of 
vertex vi ; �·�P denotes the expected value with respect to P.

The FCBM can be seen as a generalization of the Degree-Corrected Block Model (DCBM). However, contra-
rily to the DCBM, we show that the FCBM is consistent for any choice of the configuration parameters, making 
it suitable for generating random graphs with tunable topological properties.

(1)
〈

LIJ
〉

P
= p

(

N
2

)

�IJ for all I , J

(2)
〈

degi
〉

P
= p

(

N
2

)

fi
∑

u∈Ii
fu

∑

J

�Ii J for all i
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Leveraging on the framework of entropy-based null-models, we prove that the probability P(G) of generating 
a specific graph G with the FCBM can be factorized as the product of independent edge probabilities, namely 
P(G) =

∏

i,j pij , where pij is the probability of an edge between vi and vj . The edge probabilities can be recovered 
solving a system of non-linear equations obtained from (1) and (2).

Efficient solver for FCBM/DCBM system of equations.  The system of nonlinear equations, needed to 
explicitly calculate edge probabilities, becomes computationally expensive as the size of the network increases. 
Already with a few thousand nodes, a straightforward implementation may be too slow to be used in practical 
applications. We implemented a parallel C-program that efficiently solves this system, as well as the analogous 
system arising from the DCBM. The solver follows the Sequential Quadratic Programming approach presented 
in Ref.14, using Newton’s method for the Hessian approximation. To the best of our knowledge, this is the first 
publicly available solver for the DCBM. The source code is publicly released as open-source software at https://​
gitlab.​com/​cranic-​group/​dcbm_​solver.

Properties of the FCBM.  The fitness sequence �f  guarantees intra-block heterogeneity. In fact, (2) can be 
rewritten as

where 
〈

degI
〉

P
 is the expected total degree of block BI , i.e., the total number of edges incident to BI.

When the network is sparse, we show that the system from which all pij ’s must be derived admits a closed-
form approximate solution. The sparse-regime approximation allows to estimate the expected degree distribution 
of the sampled graph based on the fitness distribution pf  . We derive two estimates for the degree distribution 
pk of the network. The first estimate reads

where µI is the expected average degree of the vertices in BI . The second estimate, less accurate but easier to 
interpret and use in practice, reads

where µ is the average degree of the network. The obtained analytical expressions for pk have a very desirable 
property: for many choices of pf—including power-law, lognormal or exponential distributions—pk essentially 
has the same “shape” of pf .

Data‑driven FCBM for spatial social networks.  We propose an application for our FCBM as a maxi-
mum-entropy model for data-driven spatial social networks. In particular, we envision its application to generate 
geographic networks informed by census data, contact surveys, and geospatial data. Indeed, the phenomenologi-
cal model described at the end of this section has already been employed to develop a realistic social network at 
the urban scale9 and to study the spread of an epidemic process15–17, on it.

Let the vertex set V describe an age-stratified population of N individuals living in a territory tessellated into 
square tiles of side l. Each vi is thus characterized by two data-driven discrete attributes: its tile of residence ti ∈ T , 
that is, the discretized position of vi in the territory, and its age-group gi ∈ Ŵ . These two attributes induce a parti-
tion of the population into n = |T| · |Ŵ| blocks {BI }n−1

i=0  , with vi ∈ BI = (tI , gI ) if and only if ti = tI and gi = gI.
To define a data-driven block-wise mixing matrix � , we observe that:

•	 Social mixing patterns, derived from heterogeneous data sources such as surveys, cell phones or wearable 
sensors18–20, can be used to reconstruct a data-driven age-based mixing matrix S9, whose sIJ element measures 
the tendency of age groups gI and gJ to socialize with each other.

•	 The frequency of social relations between individuals living in tI and tJ is generally assumed to decay as d−β
IJ  , 

where dIJ is the normalized (geographic or euclidean) distance between tiles tI and tJ , and the exponent β > 0 
depends on the type of relation and on the extension of the territory12,13.

This leads to:

Finally, we extract the fitness vector �f  from a suitable distribution pf  , set the density parameter p ∈ (0, 1) 
and, for all pairs i, j, compute the edge probability pij as prescribed by the FCBM. As a result, the graph sam-
pling probability P guarantees that: (1) the expected number of links between BI and BJ is proportional to sI ,J 
and decays as d−β

I ,J  ; (2) the expected degree of vi is proportional to fi and to the expected total degree of block Ii.

〈

degi
〉

P
=

fi
∑

u∈Ii
fu

〈

degI
〉

P

(3)pk(k) ≈

�

f
�

pf

N

�

I

pf



k

�

f
�

pf

µI





NI

µI

(4)pk(k) ≈ pf



k

�

f
�

pf

µ





�

f
�

pf

µ

(5)�IJ =
d
−β
IJ sIJ

∑

O≤Q d
−β
OQsOQ
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In this case, the sparse-regime approximation yields

Expression (6) defines a phenomenological model, analogous to the one presented in Ref.9, where the prob-
ability of two individuals being connected is proportional to their sociability and to the cohesion of their age-
groups, while decaying as a power of their distance. Clearly, the estimates obtained in (3) and (4) for the degree 
distribution stay valid in the data-driven model. If the network is sufficiently sparse and the population of all 
tiles/groups is sufficiently large, the degree distribution of the sampled graph G is controlled by the available data 
and by the chosen fitness distribution pf .

Experimental analysis.  We implemented both the exact FCBM and its sparse-regime approximation. The 
code is released, as open-source software, as part of the Urban Social Networks (USN) framework at https://​
gitlab.​com/​cranic-​group/​usn.

We used our data-driven FCBM to generate instances of a spatial social network for a stylized city of 10K 
inhabitants living in disk of radius 2.5 Km. We set p so that the average degree of the network is µ = 25 , we set 
β = 1 , we used age-density data for Italy as released by the Italian National Institute of Statistics (ISTAT), and 
we extracted the matrix S from data released by the POLYMOD project21. We considered three possible spatial 
densities—uniform, and increasing or decreasing with the distance from the disk’s center—and three possible 
fitness distributions—pareto, lognormal and exponential. For all nine combinations, we generated 10 independ-
ent graph instances.

In Fig. 1 we show the empirical degree distribution, averaged over the 10 instances of the FCBM for each 
configuration, considering both the exact model and the sparse-regime approximation. We also show the two 
estimates (3) and (4). The plots confirm that the approximation is sound and that the two estimates can be safely 

(6)pij ≈ p

(

N
2

)

fi
∑

u∈Ii
fu

fj
∑

w∈Jj
fw

d
−β
Ii Jj

sIi Jj
∑

I≤J d
−β
IJ sIJ

Figure 1.   The degree distribution for an ideal city (circular, 10K inhabitants) for 3 different densities (uniform, 
radial increasing, radial decreasing) and 3 different fitness distributions (powerlaw, lognormal, exponential).
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used in practice—at least, for sparse networks—with (3) working especially well in all cases—except, possibly, 
for very small degrees.

Discussion
Developing realistic network models for social interactions is of paramount importance to understand the 
underlying mechanisms that lead to the observed features of such networks and to study all dynamical processes, 
such as disease spreading, that are strongly influenced by the network topology. Extreme care must be taken 
to avoid that any bias is unintentionally injected in the model. For this reason, maximum-entropy models are 
extensively used in network analysis, either as null models, or to generate synthetic networks that have specific 
characteristics, but are otherwise maximally random.

In this paper, we introduced the maximum-entropy Fitness-Corrected Block Model (FCBM), an adjustable-
density model for modular and heterogeneous networks, whose block-wise mixing pattern is known in expec-
tation. The model has a general and flexible formulation, but it was designed with a key application in mind: 
providing a working tool for building synthetic social networks informed with census, survey and geospatial 
data. Publicly available spatial density and demographic data are in fact necessarily discrete, thus inducing a 
partition of the population into blocks of agents who belong to the same age-group and live in the same area. The 
expected block-to-block edge-density can be estimated based on empirical findings that quantify the dependence 
of contact frequencies upon geographic and demographic features. However, both the density and the degree 
of heterogeneity of real-world social networks depend on the considered type of interpersonal relations and are 
rarely explicitly known beforehand. Contrarily to other block-models in the literature, the FCBM makes both 
these network features adjustable. In particular, the desired intra-block heterogeneity can be enforced through 
a vertex-intrinsic social fitness, possibly modelled upon observable population-level variables, such as wealth, 
employment or mobility.

We implemented the FCBM and made it publicly available as open-source software. The released software 
includes a parallel code that speeds up the computation of the most expensive part of the required maximization 
procedure, a step of the algorithm that is also needed in the well-known Degree-Corrected Block Model. We 
tested our implementation of the FCBM by reconstructing instances of a social network connecting the individu-
als of a stylized city of 10K inhabitants. The experiments allowed to verify that the exact model and its efficient 
sparse-regime approximation yield networks with almost identical degree distributions. We also showed and 
experimentally verified that, in the sparse-regime, the expected degree distribution of the output network can 
be estimated by two closed-form expressions. Thanks to these two estimates, the shape of the degree distribution 
can be predicted based on the chosen fitness distribution.

In the next future, we plan to use the FCBM—and, possibly, a temporal extension of the model—to simulate 
dynamical processes in real-world territories and understand how socio-demographic features and social habits 
affect the outcomes of these processes. To this end, we will work towards gaining a better understanding of how 
the topological properties of the FCBM depend on the configuration parameters, with special attention paid to 
a set of network properties, such as the clustering coefficient and the excess degree distribution, that can be used 
to study percolation and diffusion dynamics on the network.

Related work
Under the pressure of the COVID-19 pandemic, several simulation frameworks have been developed to provide 
realistic descriptions of the disease spread process on different spatial and temporal scales, from a single building 
to complex urban areas up to a global scale22–29. World-scale meta-population models and agent-based systems 
describing small and large areas can be informed by a variety of data sources. Census data and/or grid based 
population counts can be integrated to reconstruct populations that are statistically indistinguishable from real 
ones, including age, geographic distribution, education and wealth. The number and intensity of contacts in 
specific settings, such as workplaces, schools, or households, can be collected through surveys, questionnaires, 
diaries, and, if possible, supplemented with data obtained from digital technologies such as cell phones or wear-
able sensors18–20. These data are then used to reconstruct contact matrices, individual or group schedules, and 
are widely used to reproduce synthetic interactions30,31.

In comparison, generative network models that can reproduce the characteristics of real-world social net-
works by incorporating information from data, have received much less attention. The task of inferring a realistic 
distribution of social ties is quite challenging, since friendship ties can only be measured for a small subset of 
real-world networks, and the mechanism underlying tie formation, while thoroughly studied, is still far from 
being fully understood. Ideally, the models should reproduce the main features of real-world social networks, well 
summarized in Ref.32. These networks show a heavy-tailed (e.g, lognormal) degree distribution, often with a finite 
cutoff in agreement with Dunbar’s number. The transitivity of the networks is high, compared to a random graph 
model, as a consequence of the well-established principle that “friends of my friends are my friends”. Moreover, 
they show positive assortativity by degree and type. By quantitatively looking at ego networks, mobile phone 
networks, and online social networks we now have a better understanding of some of their peculiar features and 
underline mechanisms. Education, wellness, age and spatial proximity are regarded as critical elements in the 
formation of friendship bonds33,34. Among these, age is probably the most studied, possibly due to the fact that 
age-related data is actually available at different spatial scales35. While there is wide evidence that geographical 
factors alone cannot explain the structure of real-world spatial social networks12,36,37, the dependence of friend-
ship on distance is widely assumed to follow an inverse power-law with exponent β ∈ [0.5, 2]12,13,36–41—and 
this surprisingly holds even for online relationships42. In particular, β < 1 seems to work better for short range 
contacts ( < 20 km)13 and for urban networks40, in line with sociological studies43. However, contrary to other 
real-world networks44,45, such networks do not present very large hubs12,37,38,46. Their degree distribution is right 
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skewed and relatively long-tailed12,37, and it has been, at times, approximated by a power-law with a large (5–8) 
exponent38,46 or by a lognormal distribution13. Within cities, population density impacts on the frequency of 
close-range contacts, but usually not on the overall size of each person’s network41. While geographical proximity 
and community structure appear to be related37,40,41, some authors argue that only small clusters ( < 30 members) 
are geographically bounded39, whereas the large ones may span across very large areas of a city37.

Defining simple models that capture all of these features is not an easy task. Models designed to mimic the 
scale-free degree distribution emerging in many real networks, for instance, may fail to yield the expected clus-
tering structure47,48. Exponential random graphs have been shown to overcome some of these limitations49,50. 
Stochastic Block Models (SBMs)2,3, on the other hand, have been specifically developed to reproduce networks 
with a community structure, a typical characteristic of real-world social networks, which follows from the pres-
ence of some kind of group-level homophily. In this type of network models, the nodes are partitioned into 
disjoint sets named blocks and the probability of an edge existing between two nodes depends on the blocks to 
which the two nodes belong. The SBM and its generalization have gained their success in the last decades as 
they can be used to discover and understand the structure of a network, as well as for clustering purposes51,52.

Spatial network models are often obtained by incorporating vertices into a metric space and induced con-
straints can determine some of the network properties53. Introducing a penalty on “long” edges, which mimics a 
penalty in maintaining long-distance relationships, has an impact on clusters, path lengths, degree distributions, 
and more54. Recently, network instances having suitable features have been generated by means of the so-called 
random geometric models55–57, where the popularity and similarity of the nodes depend on their position in 
some latent metric space58. Embedding the vertices into a hyperbolic disk55 has proved a way to obtain both high 
clustering and heavy-tailed degree distribution.

In the present paper, we leverage on the framework of entropy-based null-models for real complex networks, 
revised in Ref.7. Among the very first fundamental papers, the work of Park and Newman has a particular 
relevance59: based on Jaynes’ derivation of Statistical Physics from Information Theory60, they proposed a general 
maximum entropy approach for the randomization of complex networks. Among the extension to a different 
context, the main innovations of Ref.59 are the introduction of local constraints, as the degree sequence, and the 
interpretation of the general framework of Exponential Random Graphs (ERGs) in terms of maximum entropy 
models. The present construction was later extended to the analysis of real networks61,62, tailoring the entropy-
based model on the observed network. As a matter of fact, the various Lagrangian multipliers, introduced for 
the entropy maximisation in Ref.59, can be numerically calculated by maximising the (Log-)Likelihood associ-
ated with the real network. Such a construction represents a perfect benchmark for the analysis of real systems, 
since it is maximally random (due to the entropy maximisation) and tailored on the observed system (due to 
the Likelihood maximisation). It is not surprising that it has been extensively applied to the study of non trivial 
structural patterns of different systems, as financial and trade networks, biological systems and online social 
networks7,63. Moreover, the general framework can be easily extended to tackle different kinds of networks, as 
undirected, directed, weighted, directed and weighted64–66, bipartite67, bipartite weighted68 and degree corrected 
block models4. Another relevant branch of research focuses on the reconstruction of networks from limited 
information69. This application is of particular interest for risk assessment of financial networks, and limited 
information is available due to privacy concerns70. Reconstruction approaches based on entropy-based null 
models have proven particularly effective in this context, and the maximally random nature of the framework 
described here is critical to avoid the introduction of bias into the predictions69–73.

Methods
Formalism.  Let G be the ensemble of all simple graphs of N vertices. If P is a probability distribution over 
G , P(G) is the probability of graph G ∈ G , and �·�P denotes the expectation with respect to P. The vertex set 
V = {vi}

N−1
i=0  is partitioned into n blocks {BI }n−1

I=0 . The size of block I is NI = |BI | and, for each vi ∈ V  , Ii denotes 
the index of the block to which vi belongs. For all pairs I, J, NIJ denotes the number of possible pairs (i, j) with 
vi ∈ I , vj ∈ J and i  = j , i.e., NII = NI (NI − 1) and NIJ = NINJ if I  = J—notice that in the case of NII we are 
counting twice the number of couples, as we will do for the counts of edges in the following.

Each G ∈ G is uniquely determined by its adjacency matrix A(G) = {aij(G)}
N−1
i,j=0 , where aij(G) = 1 if edge 

(i, j) ∈ E(G) and aij(G) = 0 otherwise. The degree of vertex vi in G is degi(G) =
∑

j aij(G) . The total degree of 
block I is degI (G) =

∑

i∈I degi(G) and, for all I, J, LIJ (G) =
∑

i∈I

∑

j∈J aij(G) is the number of edges between BI 
and BJ in G, or, if I = J , twice that number. Therefore, using the definitions, degI (G) =

∑

J LIJ (G) . For the sake 
of simplicity, the dependence of these quantities on the specific graph G will be often omitted in the following.

Maximum entropy Degree‑Corrected Block Model4.  The maximum entropy Degree-Corrected 
Block Model (DCBM) is defined as the maximum entropy probability distribution P over G in which the num-
ber of links per block and the degree sequence are constrained on average, i.e.

with 
∑

J KIJ =
∑

i∈I ki , for all I. If H(P) denotes the Shannon entropy of P, the sought P can be obtained by 
finding the stationary points of

(7)
〈

LIJ
〉

P
= KIJ for all I , J

(8)
〈

degi
〉

P
= ki for all i,
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where ηIJ , θi and α are Lagrange multipliers: while, ηIJ and θi control the conditions (7) and (8), respectively, α is 
necessary for the normalization of the probability P(G). Since the functional derivatives with respect to P(G) are 
d�LIJ�P
dP(G) =

∑

i∈I

∑

j∈J
aij(G) and d�degi�PdP(G) =

∑

j aij(G) , then

This results in

and the probability per graph factorises in terms of probabilities per link as

where xi = e−θi and yIJ = e−ηIJ . For all i and all I ≤ J , xi and yIJ can be found by solving the system of equations

Sparse DCBM.  When the average degree 〈k〉 is small, i.e., when the network is sparse, the edge probability of the 
DCBM can be approximated as pij ≈ xixjyIiJj . This allows to rewrite (11) and (12) as

Since the constants K and �k are, by construction, bound by the relation 
∑

J KIJ =
〈

degI
〉

=
∑

i∈I ki , (13) and 
(14) admit the following solution

Maximum entropy Fitness‑Corrected Block Model.  Given a scalar p ∈ (0, 1) , a symmetric matrix � 
such that 

∑

I ,J �I ,J = 2 , and a fitness sequence �f  , we define the Fitness-Corrected Block Model (FCBM) as the 
maximum entropy model fulfilling the following two conditions:

The FCBM is a variation of the DCBM where the network density p is a configuration parameter. As in the 
original stochastic block model, the block-level mixing is specified in terms of a set of edge-densities �IJ , rather 

(9)

H ′(P, �η, �θ) = H(P)− C(P, �η, �θ) = −�ln P(G)�P −





�

I≤J

ηIJ
��

LIJ
�

P
− KIJ

�

+
�

i

θi
��

degi
�

P
− ki

�

+ α(
�

G

P(G)− 1)





dC(P, �η, �θ)

dP(G)
=

∑

I≤J

ηIJ

∑

i∈I

∑

j∈J

aij(G)+
∑

i

θi

∑

j

aij(G)+ α =
∑

i<j

ηIi Jj aij(G)+
∑

i<j

(θi + θj)aij(G)+ α

P(G) ∝ exp



−
�

i<j

(θi + θj + ηIi Jj )aij(G)





(10)pij =







xixjyIiJj

1+ xixjyIiJj
if i �= j

0 otherwise

(11)
∑

i∈I

∑

j∈J

pij = KIJ for all I ≤ J

(12)
∑

j

pij = ki for all i

(13)
yIJ

∑

i∈I

xi
∑

j ∈ J
j �= i

xj = KIJ for all I ≤ J

(14)
xi
∑

J

yIiJ
∑

j ∈ J
j �= i

xj = ki for all i

xi = ki for all i

yIJ =
KIJ

�
�

i∈I ki
�







�

j ∈ J
j �= i

kj







for all I ≤ J

(15)
〈

LIJ
〉

P
= p

(

N
2

)

�IJ for all I , J

(16)
〈

degi
〉

P
= p

(

N
2

)

fi
∑

u∈Ii
fu

∑

J

�Ii J for all i



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18206  | https://doi.org/10.1038/s41598-022-22798-6

www.nature.com/scientificreports/

than a set of edge-counts KIJ . Similarly, the degree sequence �k is replaced by a vertex intrinsic fitness sequence 
�f  , in line with previous models available in the literature5,6. fi measures vi ’s propensity to establish links and 
〈

degi
〉

P
 is set proportional to fi by a constant that depends on Ii , other than p. By design, (15) and (16) imply 

∑

J

〈

LIJ
〉

P
=

〈

degI
〉

P
=

∑

i∈I

〈

degi
〉

P
 , and (16) can be rewritten as

which clarifies the role of �f  as an element of intra-block heterogeneity.
For fixed � and �f  , the derivation of the maximum entropy FCBM is identical to that of the DCBM: the 

maximum entropy probability per graph factorizes into the probability per edge given by (10) and the vectors 
of constants �x and �y can be obtained by solving the analogous of (11) and (12), i.e.

Sparse FCBM.  In the sparse-regime, i.e, when p ≪ 1 , using pij ≈ xixjyIiJj yields the following approximate 
solution to (17) and (18):

In this regime, the probability per edge can thus be rewritten as

Degree distribution for the sparse FCBM.  Let us assume that each fitness value fi is drawn from a suitable dis-
tribution pf  . The sparse-regime approximation allows to estimate the expected degree distribution of the sam-
pled graph G with respect to both pf  and the graph sampling probability P. If NIi is large enough, we have 
∑

u∈Ii
fu ≈

〈

f
〉

pf
NIi . Now, following the approach used in Ref.5, we have

where µI =
�degI�P

NI
=

〈

degi
∣

∣ Ii = I
〉

P
 is the expected average degree of the vertices in I. Equation (20) can be 

inverted leading to estimate

so that

and, hence,

A slightly less accurate, yet much simpler, approximation can be obtained computing first

〈

degi
〉

P
=

fi
∑

u∈Ii
fu

〈

degI
〉

P

(17)
∑

i∈I

∑

j∈J

pij = p

(

N
2

)

�IJ for all I ≤ J

(18)
∑

j

pij = p

(

N
2

)

fi
∑

u∈Ii
fu

∑

J

�IiJ for all i

xi = p

(

N
2

)

fi
∑

u∈Ii
fu

∑

J

�Ii J =
fi

∑

u∈Ii
fu

〈

degI
〉

P
for all i

yIJ =

p

(

N
2

)

�IJ

p

(

N
2

)

(
∑

O �IO

)

p

(

N
2

)

(
∑

O �OJ

)

=

p

(

N
2

)

�IJ

〈

degI
〉

P

〈

degJ
〉

P

for all I ≤ J

(19)pij ≈ p

(

N
2

)

fi
∑

u∈Ii
fu

fj
∑

w∈Jj
fw
�IiJj .

(20)k(f , I) =
〈

degi
∣

∣ fi = f , Ii = I
〉

pf ,P
≈

f
〈

f
〉

pf
NI

〈

degI
〉

P
=

f
〈

f
〉

pf

µI

f (k, I) ≈ k

〈

f
〉

pf

µI

(21)pk(k, I) = Pr[k(f ) = k
�

� I] = Pr[f (k) = f
�

� I]
df (k)

dk
≈ pf



k

�

f
�

pf

µI





�

f
�

pf

µI

(22)

pk(k) = Pr[k(f ) = k] =
�

I

pk(k, I)
NI

N
≈

�

I

pf



k

�

f
�

pf

µI





�

f
�

pf

µI

NI

N
=

�

f
�

pf

N

�

I
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
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�

f
�
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
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where µ =
∑

I µI
NI
N  is the average degree of the network. Then, (23) can be inverted as

yielding

In many cases, pk belongs to the same family of probability distributions of pf  : e.g., if pf  follows a power-law, 
lognormal or exponential distribution, then the same holds for pk.

Data‑driven FCBM for spatial social networks.  Our FCBM can be easily tuned upon real data and 
empirical findings to produce instances of a maximum entropy spatial social network. On one hand, the local 
density and demographic profile of the population are generally available in the form of discrete, geographically 
located (e.g., residents in 500 m × 500 m tiles) and/or age-stratified (e.g., 0–5 years old) population segments. 
These data naturally induce a partition of the population into blocks. On the other hand, intra-block population 
heterogeneity can be controlled by a vertex-related social fitness, possibly modelled upon measurable features 
such as wealth, employment or mobility.

Formally, let the vertex set V describe an age-stratified population of N individuals living in a territory 
tessellated into square tiles of side l. Each vi is characterized by two data-driven discrete attributes: its tile of 
residence ti ∈ T , that is, the discretized position of vi in the territory, and its age-group gi ∈ Ŵ . ti and gi may 
either be directly available—in the case of a real population—or be drawn, respectively, from given spatial den-
sity pt and age-distribution pg—in the case of a synthetic population. These two attributes induce a partition 
of the population into n = |T| · |Ŵ| blocks {BI }n−1

i=0  , with vi ∈ BI = (tI , gI ) if and only if ti = tI and gi = gI . We 
embrace the widely-acknowledged assumption that an inverse-power-law relation binds the distance dIJ and the 
frequency of social relations between individuals living in tI and tJ12,13. For all pairs of blocks I, J, we thus define 
the edge-density

where dIJ is the normalized (geographic or euclidean) distance between tiles tI and tJ ; the normalization is 
obtained through a division by l2 . We set dII = 1 , so that the distance between individuals in the same tile is 
half the distance of individuals living in neighboring tiles. β > 0 is a configuration parameter. sIJ measures the 
tendency of age groups gI and gJ to socialize with each other; such a |Ŵ| × |Ŵ| symmetric age-based social mixing 
matrix S can be obtained, by imposing reciprocity and normalizing, from a suitable data-driven contact matrix9.

Finally, we extract the fitness vector �f  , set the density parameter p ∈ (0, 1) and, for all pairs i, j, compute the 
edge probability pij as described for the FCBM. As a result, the graph sampling probability P guarantees that: 
(1) the expected number of links between BI and BJ is proportional to sI ,J and decays as d−β

I ,J  ; (2) the expected 
degree of vi is proportional to fi and to the expected total degree of block Ii.

In this case, the sparse-regime approximation yields

Expression (25) defines a phenomenological model, where the probability of two individuals being connected 
is proportional to their sociability and to the cohesion of their age-groups, while decaying as a power of their 
distance. Clearly, the estimates obtained in (22) and (24) for the degree distribution stay valid in the data-driven 
model. If the network is sufficiently sparse and the population of all tiles/groups is sufficiently large, the degree 
distribution of the sampled graph G is controlled by the available data and by the chosen fitness distribution pf .

Data availability
All code and data used in this paper are available at the following public repositories: https://​gitlab.​com/​cranic-​
group/​usn and https://​gitlab.​com/​cranic-​group/​dcbm_​solver.

Received: 17 August 2022; Accepted: 19 October 2022

References
	 1.	 McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: Homophily in social networks. Annual review of sociology 27, 

415–444 (2001).

(23)k(f ) =
〈

degi
∣

∣ fi = f
〉

pf ,P
=

∑

I

k(f , I)
NI

N
≈

f
〈

f
〉

pf

∑

I

µI
NI

N
=

f
〈

f
〉

pf

µ

f (k) ≈ k

〈

f
〉

pf

µ

(24)pk(k) = Pr[k(f ) = k] = Pr[f (k) = f ]
df (k)

dk
≈ pf



k

�

f
�

pf

µ





�

f
�

pf

µ

�IJ =
d
−β
IJ sIJ

∑

O≤Q d
−β
OQsOQ

(25)pij ≈ p

(

N
2

)

fi
∑

u∈Ii
fu

fj
∑

w∈Jj
fw

d
−β
Ii Jj

sIi Jj
∑

I≤J d
−β
IJ sIJ

https://gitlab.com/cranic-group/usn
https://gitlab.com/cranic-group/usn
https://gitlab.com/cranic-group/dcbm_solver


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18206  | https://doi.org/10.1038/s41598-022-22798-6

www.nature.com/scientificreports/

	 2.	 Karrer, B. & Newman, M. E. Stochastic blockmodels and community structure in networks. Physical review E83, 016107 (2011).
	 3.	 Peixoto, T. P. Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X4, 011047. https://​

doi.​org/​10.​1103/​PhysR​evX.4.​011047 (2014).
	 4.	 Fronczak, P., Fronczak, A. & Bujok, M. Exponential random graph models for networks with community structure. Physical Review 

E88, 032810. https://​doi.​org/​10.​1103/​PhysR​evE.​88.​032810 (2013).
	 5.	 Caldarelli, G., Capocci, A., De Los Rios, P. & Munoz, M. A. Scale-free networks from varying vertex intrinsic fitness. Physical 

review letters89, 258702 (2002).
	 6.	 Servedio, V. D., Caldarelli, G. & Buttà, P. Vertex intrinsic fitness: How to produce arbitrary scale-free networks. Physical Review 

E70, 056126 (2004).
	 7.	 Cimini, G. et al. The statistical physics of real-world networks. Nat. Rev. Phys. 1, 58–71. https://​doi.​org/​10.​1038/​s42254-​018-​0002-6. 

arxiv:​1810.​05095 (2019).
	 8.	 Guarino, S. et al. A model for urban social networks. In International Conference on Computational Science, 281–294 (Springer, 

Cham, 2021).
	 9.	 Guarino, S. et al. Inferring urban social networks from publicly available data. Future Internet. https://​doi.​org/​10.​3390/​fi130​50108 

(2021).
	10.	 Willem, L. et al. Socrates: An online tool leveraging a social contact data sharing initiative to assess mitigation strategies for Covid-

19. BMC Research Notes. https://​doi.​org/​10.​1186/​S13104-​020-​05136-9 (2020).
	11.	 Verelst, F. et al. Socrates-comix: a platform for timely and open-source contact mixing data during and in between covid-19 surges 

and interventions in over 20 european countries. BMC Med. 19, 1–7 (2021).
	12.	 Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P. & Tomkins, A. Geographic routing in social networks. Proceedings of the 

National Academy of Sciences 102, 11623–11628 (2005).
	13.	 Illenberger, J., Nagel, K. & Flötteröd, G. The role of spatial interaction in social networks. Networks and Spatial Economics 13, 

255–282 (2013).
	14.	 Vallarano, N. et al. Fast and scalable likelihood maximization for exponential random graph models with local constraints. Sci. 

Rep. 2021, 11: 1–33, 2021, doi: 10.1038/s41598-021-93830-4.
	15.	 Guarino, S. et al. Data-driven simulation of contagions in public venues. In 2021 Annual Modeling and Simulation Conference 

(ANNSIM), 1–12 (IEEE, 2021).
	16.	 Celestini, A., Colaiori, F., Guarino, S., Mastrostefano, E. & Zastrow, L. R. Epidemics in a synthetic urban population with multiple 

levels of mixing. In International Conference on Complex Networks and Their Applications, 315–326 (Springer, Cham, 2021).
	17.	 Celestini, A., Colaiori, F., Guarino, S., Mastrostefano, E. & Zastrow, L. R. Epidemic risk assessment from geographic population 

density. Applied Network Science 7, 39. https://​doi.​org/​10.​1007/​s41109-​022-​00480-0 (2022).
	18.	 Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLOS Medicine 5, 1–1 (2008).
	19.	 Eagle, N., Pentland, A. S. & Lazer, D. Inferring friendship network structure by using mobile phone data. Proceedings of the 

national academy of sciences 106, 15274–15278 (2009).
	20.	 Klepac, P. et al. Contacts in context: large-scale setting-specific social mixing matrices from the BBC pandemic project. medRx-

ivhttps://​doi.​org/​10.​1101/​2020.​02.​16.​20023​754 (2020).
	21.	 Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLOS Medicine5, e74. https://​

doi.​org/​10.​1371/​JOURN​AL.​PMED.​00500​74 (2008).
	22.	 Kerr, C. C. et al. Covasim: an agent-based model of covid-19 dynamics and interventions. PLoS Comput. Biol. 17, e1009149 (2021).
	23.	 Mahmood, I. et al. Facs: A geospatial agent-based simulator for analysing Covid-19 spread and public health measures on local 

regions. J. Simul. 16:1–19 (2020).
	24.	 Liu, P., McQuarrie, L., Song, Y. & Colijn, C. Modelling the impact of household size distribution on the transmission dynamics of 

covid-19. Journal of the Royal Society Interface 18, 20210036 (2021).
	25.	 Coletti, P. et al. A data-driven metapopulation model for the belgian covid-19 epidemic: assessing the impact of lockdown and 

exit strategies. BMC Infect. Dis. 21, 1–12 (2021).
	26.	 Bouchnita, A. & Jebrane, A. A hybrid multi-scale model of covid-19 transmission dynamics to assess the potential of non-

pharmaceutical interventions. Chaos, Solitons & Fractals 138, 109941 (2020).
	27.	 Aleta, A. et al. Modelling the impact of testing, contact tracing and household quarantine on second waves of covid-19. Nature 

Human Behaviour 4, 964–971 (2020).
	28.	 Aleta, A. et al. Quantifying the importance and location of sars-cov-2 transmission events in large metropolitan areas. Proc. Natl. 

Acad. Sci. 119, e2112182119 (2022).
	29.	 Chang, S. et al. Mobility network models of covid-19 explain inequities and inform reopening. Nature 589, 82–87 (2021).
	30.	 Del Valle, S. Y., Hyman, J. M., Hethcote, H. W. & Eubank, S. G. Mixing patterns between age groups in social networks. Social 

Networks 29, 539–554 (2007).
	31.	 Barrett, C. L. et al. Generation and analysis of large synthetic social contact networks. In Proceedings of the 2009 Winter Simulation 

Conference (WSC), 1003–1014 (IEEE, 2009).
	32.	 Kertész, J., Török, J., Murase, Y., Jo, H.-H. & Kaski, K. Modeling the complex network of social interactions. In Pathways Between 

Social Science and Computational Social Science, 3–19 (Springer, 2021).
	33.	 Palla, G., Barabási, A.-L. & Vicsek, T. Quantifying social group evolution. Nature 446, 664–667 (2007).
	34.	 Huang, Y., Shen, C. & Contractor, N. S. Distance matters: Exploring proximity and homophily in virtual world networks. Decis. 

Support Syst. 55, 969–977 (2013).
	35.	 Worldpop. https://​www.​world​pop.​org/ (2020).
	36.	 Scellato, S., Noulas, A., Lambiotte, R. & Mascolo, C. Socio-spatial properties of online location-based social networks. In Proceed-

ings of the International AAAI Conference on Web and Social Media, Vol. 5 (2011).
	37.	 Herrera-Yagüe, C. et al. The anatomy of urban social networks and its implications in the searchability problem. Scientific reports 

5, 10265 (2015).
	38.	 Lambiotte, R. et al. Geographical dispersal of mobile communication networks. Physica A: Statistical Mechanics and its Applica-

tions 387, 5317–5325 (2008).
	39.	 Onnela, J.-P., Arbesman, S., González, M. C., Barabási, A.-L. & Christakis, N. A. Geographic constraints on social network groups. 

PLoS one6, e16939 (2011).
	40.	 Walsh, F. & Pozdnoukhov, A. Spatial structure and dynamics of urban communities (2011).
	41.	 Büchel, K. & Ehrlich, M. V. Cities and the structure of social interactions: Evidence from mobile phone data. Journal of Urban 

Economics119, 103276 (2020).
	42.	 Goldenberg, J. & Levy, M. Distance is not dead: Social interaction and geographical distance in the internet era. arXiv:​0906.​3202 

(2009).
	43.	 Krackhardt, D., Nohria, N. & Eccles, B. The strength of strong ties. Netw. Knowl. Econ. 82:1 (2003).
	44.	 Bernaschi, M., Celestini, A., Guarino, S., Lombardi, F. & Mastrostefano, E. Spiders like onions: On the network of tor hidden 

services. In The World Wide Web Conference, 105–115 (2019).
	45.	 Newman, M. Networks: An Introduction (OUP, Oxford, 2010).
	46.	 Onnela, J.-P. et al. Analysis of a large-scale weighted network of one-to-one human communication. New journal of physics 9, 

179, 2007, DOI: 10.1088/1367-2630/9/6/179.

https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevE.88.032810
https://doi.org/10.1038/s42254-018-0002-6
http://arxiv.org/abs/1810.05095
https://doi.org/10.3390/fi13050108
https://doi.org/10.1186/S13104-020-05136-9
https://doi.org/10.1007/s41109-022-00480-0
https://doi.org/10.1101/2020.02.16.20023754
https://doi.org/10.1371/JOURNAL.PMED.0050074
https://doi.org/10.1371/JOURNAL.PMED.0050074
https://www.worldpop.org/
http://arxiv.org/abs/0906.3202


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18206  | https://doi.org/10.1038/s41598-022-22798-6

www.nature.com/scientificreports/

	47.	 Cointet, J.-P. & Roth, C. How realistic should knowledge diffusion models be?. J. Artif. Soc. Soc. Simul. 10, 1–11 (2007).
	48.	 Iskhakov, L., Kamiński, B., Mironov, M., Prałat, P. & Prokhorenkova, L. Local clustering coefficient of spatial preferential attach-

ment model. J. Complex Netw. 8, 019 (2020).
	49.	 Robins, G., Snijders, T., Wang, P., Handcock, M. & Pattison, P. Recent developments in exponential random graph (p*) models for 

social networks. Soc. Netw. 29, 192–215. 2007, doi: 10.1016/j.socnet.2006.08.003.
	50.	 Daraganova, G. et al. (2012) Networks and geography: Modelling community network structures as the outcome of both spatial 

and network processes. Soc. Netw. 34, 6–17. doi: 10.1016/j.socnet.2010.12.001.
	51.	 McCallum, A., Wang, X. & Corrada-Emmanuel, A. Topic and role discovery in social networks with experiments on Enron and 

academic email. J. Artif. Intell. Res. 30, 249–272 (2007).
	52.	 Zhou, D., Manavoglu, E., Li, J., Giles, C. L. & Zha, H. Probabilistic models for discovering e-communities. In Proceedings of the 

15th International Conference on World Wide Web, 173–182 (2006).
	53.	 Barthélemy, M. Spatial networks. Physics Reports 499, 1–101, 2011, doi: 10.1016/j.physrep.2010.11.002.
	54.	 Alizadeh, M., Cioffi-Revilla, C. & Crooks, A. Generating and analyzing spatial social networks. Computational and Mathematical 

Organization Theory 23, 362–390, 2017, DOI: 10.1007/s10588-016-9232-2.
	55.	 Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A. & Boguná, M. Hyperbolic geometry of complex networks. Physical Review 

E82, 036106 (2010).
	56.	 Boguná, M., Papadopoulos, F. & Krioukov, D. Sustaining the internet with hyperbolic mapping. Nature communications 1, 1–8 

(2010).
	57.	 Serrano, M. A., Krioukov, D. & Boguná, M. Self-similarity of complex networks and hidden metric spaces. Physical review let-

ters100, 078701 (2008).
	58.	 Papadopoulos, F., Kitsak, M., Serrano, M., Boguná, M. & Krioukov, D. Popularity versus similarity in growing networks. Nature 

489, 537–540 (2012).
	59.	 Park, J. & Newman, M. E. J. Statistical mechanics of networks. Physical Review E 70, 66117, 2004, DOI: 10.1103/

PhysRevE.70.066117.
	60.	 Jaynes, E. Information theory and statistical mechanics. The Physical Review 106, 181–218. https://​doi.​org/​10.​1103/​PhysR​ev.​106.​

620 (1957).
	61.	 Garlaschelli, D. & Loffredo, M. I. Fitness-dependent topological properties of the world trade web. Physical Review Letters93, 

188701. https://​doi.​org/​10.​1103/​PhysR​evLett.​93.​188701 (2004).
	62.	 Squartini, T. & Garlaschelli, D. Analytical maximum-likelihood method to detect patterns in real networks. New J. Phys. 2011, 

doi: 10.1088/1367-2630/13/8/083001.
	63.	 Straka, M. M. J., Caldarelli, G., Squartini, T. & Saracco, F. From ecology to finance (and back?): A review on entropy-based null 

models for the analysis of bipartite networks. Journal of Statistical Physics 173, 1252–1285, 2018, DOI: 10.1007/s10955-018-2039-4.
	64.	 Squartini, T., Picciolo, F., Ruzzenenti, F. & Garlaschelli, D. Reciprocity of weighted networks. Sci. Rep. 2013, 3, 1–9, https://​doi.​

org/​10.​1038/​srep0​2729 (2013).
	65.	 Mastrandrea, R., Squartini, T., Fagiolo, G. & Garlaschelli, D. Enhanced reconstruction of weighted networks from strengths and 

degrees. New J. Phys. 2014, doi: 10.1088/1367-2630/16/4/043022.
	66.	 Squartini, T., Mastrandrea, R. & Garlaschelli, D. Unbiased sampling of network ensembles. New J. Phys. 2015, doi: 

10.1088/1367-2630/17/2/023052.
	67.	 Saracco, F., Clemente, R. D., Gabrielli, A. & Squartini, T. Randomizing bipartite networks: the case of the world trade web. Sci. 

Rep. 5, 10595. https://​doi.​org/​10.​1038/​srep1​0595 (2015).
	68.	 Di Gangi, D., Lillo, F. & Pirino, D. Assessing systemic risk due to fire sales spillover through maximum entropy network recon-

struction. Journal of Economic Dynamics and Control 94, 117–141, 2018, doi: 10.1016/j.jedc.2018.07.001.
	69.	 Squartini T, Caldarelli G, Cimini G, Gabrielli A, Garlaschelli D (2018) Reconstruction methods for networks: The case of economic 

and financial systems. Phys. Rep. 757, 1–47. DOI: 10.1016/j.physrep.2018.06.008.
	70.	 Bardoscia, M. et al. The physics of financial networks. Nat. Rev. Phys. 2021, 3, 490–507. 2021, doi: 10.1038/s42254-021-00322-5.
	71.	 Gandy, A. & Veraart, L. A. M. Adjustable network reconstruction with applications to cds exposures. SSRN Electron. J.https://​doi.​

org/​10.​2139/​SSRN.​28957​54 (2017).
	72.	 Ramadiah, A., Caccioli, F. & Fricke, D. Reconstructing and stress testing credit networks. SSRN Electronic Journal 2017, 10.2139/

SSRN.3084543.
	73.	 Anand, K. et al. The missing links: A global study on uncovering financial network structures from partial data. Journal of Financial 

Stability 35, 107–119, 2018, DOI: 10.1016/J.JFS.2017.05.012.

Acknowledgements
This work was supported in part by the Project “CARES: Context-Aware Realistic Epidemic Simulator”, funded 
by the Italian Ministry of Research under the FISR 2020 programme. The Ministry of Research had no role in 
the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. Any 
opinion, finding, and conclusions expressed in this paper only reflect the views of the authors.

Author contributions
All authors designed the study. S.G. and F.S. developed the methods. A.C. and E.M. acquired the data. M.B., 
A.C, S.G and E.M. created the software. S.G. interpreted the experimental results and wrote most of the paper. 
All authors contributed to the writing and the revision of the article, and they all read and approved the final 
manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRevLett.93.188701
https://doi.org/10.1038/srep02729
https://doi.org/10.1038/srep02729
https://doi.org/10.1038/srep10595
https://doi.org/10.2139/SSRN.2895754
https://doi.org/10.2139/SSRN.2895754
www.nature.com/reprints


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18206  | https://doi.org/10.1038/s41598-022-22798-6

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	The Fitness-Corrected Block Model, or how to create maximum-entropy data-driven spatial social networks
	Contributions and results
	The Fitness Corrected Block Model. 
	Efficient solver for FCBMDCBM system of equations. 
	Properties of the FCBM. 
	Data-driven FCBM for spatial social networks. 
	Experimental analysis. 

	Discussion
	Related work
	Methods
	Formalism. 
	Maximum entropy Degree-Corrected Block Model4. 
	Sparse DCBM. 

	Maximum entropy Fitness-Corrected Block Model. 
	Sparse FCBM. 
	Degree distribution for the sparse FCBM. 

	Data-driven FCBM for spatial social networks. 

	References
	Acknowledgements


