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Abstract: The copolymers of ethylene (E) with open-caged iso-butyl-substituted tri-alkenyl-silsesquioxanes
(POSS-6-3 and POSS-10-3) and phenyl-substituted tetra-alkenyl-silsesquioxane (POSS-10-4) were
synthesized by copolymerization over the ansa-metallocene catalyst. The influence of the kind
of silsesquioxane and of the copolymerization conditions on the reaction performance and on
the properties of the copolymers was studied. In the case of copolymerization of E/POSS-6-3,
the positive comonomer effect was observed, which was associated with the influence of POSS-6-3 on
transformation of the bimetallic ion pair to the active catalytic species. Functionality of silsesquioxanes
and polymerization parameters affected the polyhedral oligomeric silsesquioxanes (POSS) contents in
the copolymers which varied in the range of 1.33–7.43 wt %. Tri-alkenyl-silsesquioxanes were
incorporated into the polymer chain as pendant groups while the tetra-alkenyl-silsesquioxane
derivative could act as a cross-linking agent which was proved by the changes in the contents
of unsaturated end groups, by the glass transition temperature values, and by the gel contents (up to
81.3% for E/POSS-10-4). Incorporation of multi-alkenyl-POSS into the polymer chain affected also
the melting and crystallization behaviors.

Keywords: ethylene; polyhedral oligomeric silsesquioxanes (POSS); copolymerization; metallocene;
crosslinking; active site modifier

1. Introduction

One of many advantages of polyhedral oligomeric silsesquioxanes (POSS) is their structural
diversity. The POSS compounds have various structures of their silicon–oxygen cores as well as various
kinds and numbers of substituents attached to them [1,2]. The POSS derivatives may be classified into
three groups: mono-functional POSS, di-functional POSS, and multi-functional POSS, depending on
the number of the reactive functional substituents. In the case of the (co)polymerization processes with
POSS as (co)monomers, those reactions yield (co)polymers with varied architectures. The copolymers
with the POSS cages as pendant side groups or end groups of the polymer chains are prepared when
mono-functional POSS are used [3–9]. Di-functional POSS derivatives have attracted considerable
attention in recent years. Depending on the types of reactive substituents, they have been successfully
incorporated into such macromolecules as polyimide [9–11], polysiloxane [12], polyamide [13],
polyurethane [14], polysulfone [15], vinylidene-arylene copolymer [16], and polyethylene [17], via the
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step-growth polymerization process [9–11,13–16,18], or as pendant groups and cross-linkage sites
through the coordination copolymerization [17].

In the case of the multi-functional POSS comonomers (octa-functional POSS are mostly
investigated within that group) the organic–inorganic polymers can be prepared in different ways,
depending on the kinds of their reactive groups [19–23]. Generally, multi-functional POSS derivatives
behave as nanosized cross-linkers which take part in the formation of polymer networks [19,21,22] or
as precursors in the production of amphiphilic materials [23].

The multi-functional POSS derivatives are useful in preparation of (co)polymers with different
structural properties. Matějka et al. [22] reported organic–inorganic epoxy networks based on
diglycidyl ether of bisphenol A and poly-(oxypropylene)diamine which were reinforced with
multi-functional epoxy-POSS (octa-, tetra-, and di-epoxy POSS comonomer). The obtained materials
contained POSS as pendant units of the network chains or as network cross-links of various
functionality. Matějka and co-workers [21] also reported modified hybrid epoxy–amine networks
with mono- or multi-epoxide POSS which were produced via the reactive blending method.
The POSS molecules were incorporated into the organic–inorganic networks as pendant units of
the network chains or as network junctions. Liu and co-workers [20] reported the possibility of
modifying epoxy resins with the use of an incompletely condensed caged POSS with three reactive
hydroxyl groups (POSS-triol). The organic–inorganic hybrid polymers were prepared via in situ
polymerization of POSS-triol with diglycidyl ether of bisphenol A over aluminum triacetylacetonate.
Chen et al. [19] prepared a novel cross-linker, octa[(trimethoxysilyl)ethyl]-POSS, which was introduced
into the hydroxyl-terminated polydimethylsiloxane matrix to prepare a series of novel silicone
rubbers. The novel POSS cross-linker was found to significantly enhance the thermal stability and
mechanical properties of those rubbers. The incompletely condensed and completely condensed
POSS tethered with hydrophilic poly(ethylene glycol) chains were used by Yusa et al. [23] as novel
organic–inorganic amphiphilic block molecules in order to obtain self-assembly nanomaterials. To the
best of our knowledge, however, there are no reports available of ethylene copolymerization with
multi-alkenylsilsesquioxane comonomers over the organometallic catalysts.

Tri- and tetra-alkenyl-silsesquioxane comonomers were used in the present work for
copolymerization with ethylene over the metallocene catalyst. The research involved
iso-butyl-substituted tri-alkenyl-silsesquioxanes (POSS-6-3 and POSS-10-3) and phenyl-substituted
tetra-alkenyl-silsesquioxane (POSS-10-4), which contained the incompletely condensed silicon–oxygen
T4D3 and M4T8 cages, respectively (Figure 1). The POSS compounds also had various lengths of
reactive alkenyl substituents in the silicon–oxygen cages (POSS-6-3 and POSS-10-3, Figure 1).
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The rac-ethylenebis(indenyl)zirconium dichloride catalyst (rac-Et(Ind)2ZrCl2) activated by
modified methylaluminoxane (MMAO) was applied in the (co)polymerization processes.
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The aim of this work was to study the influence of the kind of POSS as well as of the polymerization
conditions, such as concentration of the POSS comonomer in the feed, ethylene pressure, and reaction
time, on the performance of ethylene/POSS copolymerization and on the structures and properties
of the obtained copolymers. The copolymers were characterized by the following methods: nuclear
magnetic resonance (1H and 13C NMR), Fourier transform infrared spectroscopy (FT-IR), differential
scanning calorimetry (DSC), and gel permeation chromatography (GPC). The influence of POSS
on the catalytic system activated by MMAO was investigated by 1H NMR. Based on the obtained
results, the compositions and structural properties of copolymers were comprehensively analyzed and
discussed. We also paid attention to thermal properties of copolymers, including their melting and
crystallization behaviors.

2. Materials and Methods

2.1. Materials

Toluene was purchased from Chempur (Piekary Śląskie, Poland) and it was refluxed over
sodium and distilled under nitrogen prior to use. Modified methylaluminoxane (MMAO,
7 wt % in toluene, Sigma-Aldrich, Saint Louis, MO, USA), rac-ethylenebis-(1-η5-indenyl)-zirconium
dichloride (rac-Et(Ind)2ZrCl2, Sigma-Aldrich, Saint Louis, MO, USA), 1,2-dichlorobenzene-d4 (Deutero
GmbH, Kastellaun, Germany), hydrochloric acid (35–38%, Chempur, Piekary Śląskie, Poland),
2,2′-metylenebis(4-methyl-6-tert-butylfenol) (Sigma-Aldrich, Saint Louis, MO, USA), and methanol
(Chempur, Piekary Śląskie, Poland) were used as purchased. Toluene-d8 (Deutero GmbH, Kastellaun,
Germany) was dried over molecular sieves (4 Å) and degassed in vacuo, and then it was stored and
handled in vacuo.

Ethylene (Grade 3.5, Air Liquide, Kraków, Poland) and nitrogen (Messer, Chorzów, Poland)
were used after passing them through a column with the sodium metal supported on Al2O3.
1,2,4-Trichlorobenzene (TCB, 99 wt %, Aldrich, Saint Louis, MO, USA) was purified by distillation.

2.2. Experimental Section for the Synthesis of Trialkenyl- and Tetraalkenyl-Substituted Silsesquioxanes

Tri(alkenyl)-substituted silsesquioxanes derived from cubic-type open-cage trisilanol and
tetra(dec-9-enyl)-substituted double-decker silsesquioxanes were synthesized via hydrolytic
condensation of incompletely condensed trisilanolisobutyl POSS (i-Bu7(Si7O9)(3OH)) and tetrasilanol
silsesquioxane (DDSQ-4OH) with respective chlorosilanes. The obtained products made precursors
for hydrosilylation. The procedures were based on the general methodology for alkenyl-substituted
silsesquioxanes [24–26]. The compounds were synthesized in the Centre for Advanced Technologies,
AMU (Poznań, Poland).

i-BuPOSS-3(OMe2Si-Hex) (Figure 1, POSS-6-3) was produced via hydrolytic condensation of
i-Bu7(Si7O9)(3OH) with chloro(dimethyl)(hex-5-enyl)silane and it was obtained with the yield of 65%.

1H NMR (300.2 MHz, CDCl3, δ, ppm): 0.11 (s, 18H, –SiCH3), 0.52–0.62 (m, 20H, –CH2–(hex-5-enyl),
–CH2– (i-Bu)), 0.95–0.97 (m, 42H, –CH3 (i-Bu)), 1.37–1.43 (m, 12H,–CH2- (hex-5-enyl)), 1.79–1.88 (m, 7H,
–CH– (i-Bu)), 2.01–2.07 (m, 6H, –CH2– (hex-5-enyl)), 4.91–5.02 (m, 6H, H2C=CH–), 5.74–5.88 (m, 3H,
H2C=CH–). 13C NMR (100.6 MHz, CDCl3, δ, ppm): 0.47 (CH3Si–), 18.14 (–CH2–), 22.91 (–CH2–), 23.94
(i-Bu), 24.14–24.25 (i-Bu), 26.02–26.19 (i-Bu), 32.86 (–CH2–), 33.77 (–CH2–), 114.19 (H2C=CH–), 139.33
(H2C=CH–). 29Si NMR (79.5 MHz, CDCl3, δ, ppm): 9.02 (–OSi(CH3)2–), −67.35, −67.78, −68.22.

i-BuPOSS-3(OMe2Si-Dec) (Figure 1, POSS-10-3) was produced via hydrolytic condensation
of i-Bu7(Si7O9)(3OH) with chlorodimethylsilane. The product of this process, i.e.,
tri(hydrodimethylsilyl)-substituted silsesquioxane, was used for hydrosilylation with 1,9-decadiene to
give i-BuPOSS-3(OMe2Si-Dec). The final product was obtained with the yield of 73%.

1H NMR (300.2 MHz, CDCl3, δ, ppm): 0.11 (s, 18H, –SiCH3), 0.54–40.56 (m, 20H, –CH2–
(dec-9-enyl), –CH2– (i-Bu)), 0.95–0.97 (m, 42H, –CH3 (i-Bu)), 1.28 (m, 36H, –CH2–(dec-9-enyl)), 1.83–1.86
(m, 7H, –CH– (i-Bu)), 2.01–2.07 (m, 6H, –CH2– (dec-9-enyl)), 4.91–5.02 (m, 6H, H2C=CH–), 5.75–5.88
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(m, 3H, H2C=CH–). 13C NMR (100.6 MHz, CDCl3, δ, ppm): 0.48 (CH3Si–), 18.32 (–CH2–), 22.64 (–CH2–)
23.38 (i-Bu), 24.14–24.25 (i-Bu), 26.04-26.20 (i-Bu), 29.15 (–CH2–), 29.41 (–CH2–), 29.59 (–CH2–), 29.68
(–CH2–), 33.69 (–CH2–), 34.01 (–CH2–), 114.23 (H2C=CH–), 139.39 (H2C=CH–). 29Si NMR (79.5 MHz,
CDCl3, δ, ppm): 9.10 (–OSi(CH3)2–), −67.36, −67.83, −68.31.

DDSQ-4OSi-Dec (Figure 1, POSS-10-4) was produced via hydrolytic condensation of DDSQ-4OH
with chlorodimethylsilane. The product, i.e., tetra(hydrodimethylsilyl)-substituted double-decker
silsesquioxane, was used for hydrosilylation with 1,9-decadiene. The final product was obtained with
the yield of 93% [25].

1H NMR (300 MHz, CDCl3, ppm): δ = 0.03 (s, 24H, Si(CH3)2-), 0.41–0.46 (m, 8H, Si-CH2-),
0.95–1.32 (m, 48H, –CH2–), 1.95–2.03 (m, 8H, –CH2–), 4.89–4.99 (m, 8H, H2C=CH–), 5.72–5.85 (m, 4H,
-CH=CH2), 7.07–7.44 (m, 40H, Ph). 13C NMR (101 MHz, CDCl3, ppm): δ = 0.14 (SiCH3), 18.24
(–H2C–), 23.06 (–H2C–), 28.97 (–H2C–), 29.15 (–H2C–), 29.37 (–H2C–), 29.44 (–H2C–), 33.40 (–H2C–),
33.84 (–H2C–), 114.06 (H2C=CH–), 127.34–127.73 (Ph), 129.64–130.02 (Ph), 131.78 (Ph), 133.66 (Ph),
134.10–134.38 (Ph), 139.27 (H2C=CH–). 29Si NMR (79.5 MHz, CDCl3, ppm): δ = 11.01 (–Si(Me)2–),
−76.15, −78.77 (–Si–Ph–).

2.3. Procedure for Ethylene Homopolymerization and Copolymerization of Ethylene with POSS

The ethylene polymerization and ethylene/POSS copolymerization processes were carried out
in a 500 cm3 glass reactor equipped with a propeller-like mechanical stirrer and a temperature
probe. In the case of homopolymerization, the reactor was charged with 150 cm3 toluene and
the required volume of the MMAO solution in toluene (nAl = 3.01 × 10−3 mol). As regards
copolymerization experiments, the following ingredients were used: 140 cm3 toluene, MMAO
solution in toluene (nAl = 3.01 × 10−3 mol), and POSS solution in 10 cm3 toluene ([POSS] = 0.67;
1.67; 3.33; 6.67·10−3 mol/dm3 in the reaction feed). In the next step, the solution of a metallocene
catalyst in toluene (nZr = 3.5·10−7 mol) was introduced. Then, the reactor content was heated up
to 50 ◦C and ethylene (0.2 or 0.5 MPa) was fed into the reaction system. The ethylene pressure and
(co)polymerization temperature were maintained constant during the run. In order to terminate
the polymerization process, the 5% HCl solution in methanol was introduced into the reaction feed.
The obtained polymeric products were filtered and purified by stirring for 2 h with hexane (in the case
of ethylene/POSS copolymers), with the 5% HCl solution in methanol, then with methanol, and then
they were dried in an oven at 40 ◦C for 8 h.

2.4. Analysis of (Co)polymer, Comonomer, and Catalytic System

1H, 13C, and 29Si Nuclear Magnetic Resonance (NMR) analyses for POSS were performed on the
Bruker UltraShield 400 and 300 MHz spectrometers (Bruker BioSpin GmbH, Rheinstetten, Germany),
using CDCl3 as a solvent. The chemical shifts are reported in ppm with reference to the residual
solvent (CHCl3) peaks for 1H and 13C and to TMS for 29Si.

The 1H and 13C NMR spectra for copolymers were recorded on the UltraShield Bruker
spectrometer (400 MHz) (Bruker BioSpin GmbH, Rheinstetten, Germany) at 120 ◦C in
1,2-dichlorobenzene-d4 as a solvent. The 1H NMR spectra for the catalytic system were recorded on
the same spectrometer (400 MHz) at 20 ◦C in toluene-d8 as a solvent, in 5 mm cylindrical glass sample
tubes. All the experiments were carried out in sealed, high-vacuum systems to avoid any undesired
contact with atmospheric air.

The FT-IR spectra were acquired on the Nicolet Nexus 2002 FT-IR spectrometer (Thermo Fisher
Scientific, San Jose, CA, USA). The (co)polymer samples were prepared in the form of tablets which
were made of the polymer powder and KBr, and their scans were taken in the range from 4000 to
400 cm−1 with the resolution of 2 cm−1. The relative POSS comonomer contents were calculated based
on the ratio of the absorption band for the Si-O bond in the POSS units and the internal standard of
PE. The unsaturated end groups, vinyl and trisubstituted vinylene, and their relative contents, were
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estimated from the peak intensities at 910 and 840–790 cm−1, respectively, which were normalized
using the peak at 2020 cm−1.

The average molecular weights (Mw) and molecular weight distributions (Mw/Mn) were found
in 1,2,4-trichlorobenzene as a solvent, at 135 ◦C, at the flow rate of 1 cm3/min, on the Alliance 135
GPCV 2000 apparatus (Waters, Milford, MA, USA). The data were analyzed using the polystyrene
calibration curves.

The melting temperature (Tm), crystallization temperature (Tc), and crystallinity degree (Xc) were
measured on the DSC1 calorimeter from Mettler Toledo (Columbus, OH, USA), in closed aluminum
pans, under N2. The (co)polymer sample (10 mg) was weighed and then heated up to 170 ◦C at the
rate of 10 ◦C/min, and it was kept at that temperature for 5 min to remove its thermal history, and
then it was cooled down to 30 ◦C at 10 ◦C/min, and finally again heated up to 170 ◦C at 10 ◦C/min.
The crystallinity degree in per cent was calculated on the basis of ∆Hf as Xc = ∆Hf × (100/290) [27].

The glass transition temperatures (Tg) of the obtained polyethylene and E/POSS copolymers
were studied by the differential scanning calorimetry (DSC) method using the TA Instruments DSC
2920 device (New Castle, DE, USA). All the tests were performed under nitrogen and at the rate of
10 ◦C/min. The Tg value was determined by the inflection point on the curve.

The gel contents of copolymers were determined by solvent extraction, according to the
(Polish) standard PN-EN ISO 10147:2013-06P. The copolymer was extracted with 175 cm3 xylene
in a Soxhlet extractor glass system. The copolymer samples (about 0.3 g) with an antioxidant
(0.65 g) were extracted for 8 h. After extraction, the samples were dried in vacuum at 140 ◦C
for 2 h to constant mass. The gel contents of the copolymer samples were calculated from the
following equation: % gel content = [(weight of the sample after extraction)/(weight of the sample
before extraction)] × 100%.

3. Results

3.1. Performance of E/POSS Copolymerization

In the case of ethylene copolymerization with POSS, catalyzed by the rac-Et(Ind)2ZrCl2/MMAO
catalytic system, the concentration of the POSS comonomer in the reaction feed was varied in the range
from 6.67 × 10−4 to 6.67 × 10−3 mol/dm3 and the ethylene pressure was 0.2 or 0.5 MPa. The results of
E/POSS copolymerization are presented in Figure 2.
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The rac-Et(Ind)2ZrCl2/MMAO catalytic systems were less active in copolymerization of ethylene
with POSS-10-3 and POSS-10-4 in comparison to ethylene homopolymerization (Figure 2) due to
the presence of a sterically bulky POSS comonomer in the feed. In contrast, activity of the catalyst
was higher for copolymerization of ethylene with the POSS-6-3 comonomer (Figure 2). It should
be emphasized that this is the first example of the positive effect of a comonomer in the case of
ethylene/POSS copolymerization [3–6,17]. However, a positive effect of comonomers was observed
earlier for other organometallic systems, i.e., for both metallocene [28,29] and post-metallocene [30]
catalysts, in the case of ethylene copolymerization with α-olefins.

The maximum activity of the metallocene catalyst in E/POSS copolymerization occurred at the
POSS concentration in the feed of 1.67× 10−3 mol/dm3, regardless of the kind of the POSS comonomer
and ethylene pressure used (Figure 2). The similar relation was observed in copolymerization of
ethylene with the DDSQ comonomer, as reported in our previous work [17]. The increased ethylene
pressure led to higher activity of the catalyst (Figure 2).

When the results of the E/POSS-6-3 and E/POSS-10-3 copolymerization processes were compared
with each other, it was found that lengthening of the reactive alkenyl substituent at the silicon–oxygen
core of the POSS comonomer resulted in decreased catalytic activity (Figure 2). This could be
associated with the increased steric hindrance as well as weakened interaction between the open
silicon–oxygen cage of POSS-10-3 and the active center of the rac-Et(Ind)2ZrCl2 catalyst. The opposite
relation was observed in the case of ethylene copolymerization with monoalkenyl(siloxy)- and
monoalkenylsilsesquioxane which contained completely condensed T8 cages [6]. However, it should
be noted that higher values of catalytic activity were obtained when the tri-alkenylsilsesquioxane
comonomers were applied even at a twice lower concentration of the catalyst in the feed (up to
21,740 kgcopolymer/molZr·0.5 h; Figure 2) in comparison with previously studied monoalkenyl(siloxy)-
and monoalkenylsilsesquioxanes (3107–13,507 kgcopolymer/molZr × 0.5 h) [6] and the double-decker
silsesquioxane derivative (8279–11,490 kgcopolymer/molZr × 0.5 h) [17].

The effect of the reaction time on the performance of E/POSS copolymerization was also
investigated (Figure 3). The activity of the ansa-metallocene/MMAO catalytic system in ethylene
homopolymerization sharply decreased as the reaction time was prolonged (Figure 3).
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In the case of ethylene copolymerization with POSS, the catalytic efficiency also decreased with the
prolongation of time reaction, regardless of the ethylene pressure, however the changes in activity were
less significant. At the same time, however, in the case of ethylene copolymerization with POSS-6-3
at pe = 0.5 MPa and with POSS-10-3 at pe = 0.2 MPa, the catalytic activity remained constant despite
prolongation of the reaction time. This means that comonomers with incompletely condensed POSS
cages do not poison the active center of the ansa-metallocene catalyst. These results indicated high
stability of these active species which is attributed to the heterogeneous metallocene catalytic system,
what is untypical for homogeneous analogs [31,32].

3.2. Influence of POSS on Ansa-Metallocene/MMAO Catalytic System

The NMR spectroscopy was successfully applied to investigate the intermolecular structure of
the ionic species relevant to the catalytic homogeneous polymerization [33–42]. These literature data
provided important information on the structures of intermediates formed upon the activation of
metallocene with MAO in toluene. Nevertheless, the ansa-metallocene catalyst activated by MAO was
studied in one case only [36].

In the case of MAO-activated metallocene, the ion pairs (a, b, and c) were reported on the 1H NMR
analysis based on µ-Me resonance at –1.3, –0.85, and –0.75 ppm, respectively. A bimetallic ion pair
was observed at a low Al/Zr ratio (<100 mol/mol) in which case one methyl-group acted as a bridge
between Zr atoms, keeping the Me-MAO- anion in the outer coordination sphere (a) [33,36–38]. In turn,
the cationic complexes [Cp2Zr(µ-Me)2AlMe2]+ Me–MAO− (b) and Cp2ZrMe+←Me–Al≡MAO (c) are
the major species at high Al/Zr ratios (200–4000 mol/mol) [40]. It should be noted that the complexes
(b) and (c) were suggested to be the precursors of active centers for polymerization [36]. In turn, the 1H
NMR analysis of the systems of rac-Et(Ind)2ZrCl2 with MAO, also at high Al/Zr ratios (300 mol/mol),
showed one µ-Me signal at –0.85 ppm (detected at µ-Me signal as b in the case of Cp2ZrCl2/MAO)
indicating the formation of the [rac-Et(Ind)2Zr(µ-Me)2AlMe2]+ Me–MAO− complex only [36].

Having the above results in mind, we performed the NMR analysis of the reaction products
of rac-Et(Ind)2ZrCl2 with MMAO, obtained in a wide range of Al/Zr molar ratios (Al/Zr = 50 to
1000 mol/mol), and of appropriate raw materials for reference. As can be seen from Figure 4, activation
of rac-Et(Ind)2ZrCl2 by MMAO caused the down-field shift of the Ind-C5

1H NMR resonance of the
ansa-metallocene catalyst, irrespective of the Al/Zr molar ratios used (from 6.38 and 5.71 ppm to 5.65
and 5.33 ppm, Figure 4a: 1–6). It should be noted that the presence of three resonances at 5.73, 5.40,
and from 5.00 to 4.62 ppm in MMAO (Figure 4a: 2) significantly impeded the investigation in all 1H
NMR spectra of the catalytic systems (Figure 4a: 3–7).
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Figure 4. 1H NMR spectra in two different ranges (a,b) in toluene-d8 at 20 ◦C of rac-Et(Ind)2ZrCl2 (1),
MMAO (2), rac-Et(Ind)2ZrCl2/MMAO: Al/Zr = 50 (3), Al/Zr=100 (4), Al/Zr = 500 (5), Al/Zr = 1000
(6), and rac-Et(Ind)2ZrCl2/MMAO/POSS-6-3: Al/Zr = 50 (7); ([Zr] = 1.25 × 10−2 mol/dm3).
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Only two broadened resonances from Ind-C5 were found in the 1H NMR spectra (Figure 4a: 3)
instead of the expected doublet of doublets JHH = 3.3 and 0.7 Hz and doublet JHH = 3.3 Hz
(Figure 4a: 1). The widths of the 1H NMR peaks were probably affected by the exchange of the
Me–MMAO– counter-ions.

Moreover, the µ-Me resonances of the ion pairs at –1.2 ppm (Figure 4b: 3, 4) as well as at –0.85 ppm
and –0.75 ppm were observed (Figure 4b: 3–6). Taking into account the literature data concerning the
NMR analysis of metallocene/MAO systems, these signals were assigned to the structure as shown in
Figure 5.
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catalytic system for the range of Al/Zr molar ratios used.

The concentrations of complexes 2 (–0.85 ppm) and 3 (–0.75 ppm) increased with the increasing
Al/Zr molar ratio. In turn, the complex 1 gradually disappeared at high Al/Zr molar ratios which
was confirmed by the decrease in the intensity of the µ-Me resonance at −1.2 ppm (Figure 4b: 3–6).
The cationic complexes 2 and 3 turned out to be the major species at high Al/Zr ratios (500 and
1000 mol/mol) (Figure 4b: 6, 7) which was consistent with the published research reports (complexes
b and c, respectively) [33–42].

It should be stressed, however, that to the best of our knowledge, the complete
ansa-metallocene/MMAO/silsesquioxane system was never studied before by NMR. Meanwhile,
it turned out in our research that the addition of the POSS-6-3 comonomer to the
rac-Et(Ind)2ZrMe2/MMAO catalytic system, even at Al/Zr = 50 mol/mol, led to the disappearance
of the µ-Me resonance of the complex 1 at –1.2 ppm (Figure 4 b: 7). This phenomenon is associated
with the influence of the POSS comonomer on transformation of the bimetallic metallocene species
1 (inactive form) into 2 or 3 complexes (precursors of the active form). However, the observed
metallocene species 2 and 3 were dominant in the catalytic system in this case, even at the low
Al/Zr ratio of 50 mol/mol, which is unusual for this group of catalysts [33–42]. It is probable that
the modification of the catalytic system by the POSS compound resulted in much higher activity of
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the catalytic system in ethylene copolymerization with the POSS-6-3 comonomer as compared to
homopolymerization of ethylene (Figure 2).

Thus, the described results indicated that the POSS-6-3 compound acted not only as a comonomer
but it also competed with MMAO for a bimetallic ion pair 1. Moreover, POSS-6-3 broke the methyl
bridge in complex 1 and caused the active site to be readily accessible to MMAO.

The influence of the POSS-10-3 and POSS-10-4 comonomers on the rac-Et(Ind)2ZrMe2/MMAO
catalytic system was further investigated for the adopted Al/Zr molar ratio of 50 mol/mol. The POSS
comonomers with longer alkenyl substituents were found not to affect the transformation of complex
1 into complex 2 or 3, which was confirmed by the presence of the µ-Me resonance at –1.2 ppm in 1H
NMR (Figure 6).
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Figure 6. 1H NMR spectra in toluene-d8 at 20 ◦C of rac-Et(Ind)2ZrCl2/MMAO/POSS-10-3: Al/Zr = 50
(1) and rac-Et(Ind)2ZrCl2/MMAO/POSS-10-4: Al/Zr = 50 (2); ([Zr] = 1.25 × 10−2 mol/dm3).

These results are consistent with the lower catalytic activity of the ansa-metallocene
system in ethylene copolymerization with POSS-10-3 or POSS-10-4 in comparison to ethylene
homopolymerization and especially to copolymerization of ethylene with POSS-6-3 (Figure 2).

3.3. Structures of E/POSS Copolymers

The contents of POSS units incorporated into the copolymer chain (CPOSS) and the structures of
copolymers were characterized by the 1H and 13C NMR (Figure 7) and FT-IR (Figure 8) methods.
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The signal pattern in the 1H NMR spectrum (Figure 7a) is in agreement with the general pattern
for ethylene copolymers with monoalkenyl(siloxy)- or monoalkenylsilsesquioxane derivatives [4–6,43].
Three signals at 0.87, 1.10, and 2.03 ppm can be ascribed to the iso-butyl non-reactive substituent of
the POSS units. A part of the (CH2)x spacer of POSS leads to the signals in the same region of the
spectrum as the polyethylene chain at about 1.32 ppm. The peaks assigned to chain unsaturation in
copolymers occurred in the olefinic region (5.85–4.55 ppm). In the case of E/POSS copolymers, the 13C
NMR spectrum (Figure 7 b) showed the signals at 14.01 ppm (C1 in the spacer), 18.75 ppm (C2 in the
spacer), 29.98 ppm (C3 in the spacer), and 34.64 ppm (C4 in the spacer) for a part of the (CH2)x spacer
that were unchanged after polymerization and similar to the peaks for the iso-butyl group at 24.16,
26.07, and 27.35 ppm. The new peaks at 34.64 (RCH2–CH) and 36.21 ppm (R3CH) appeared due to the
incorporation of POSS into the polymer chain.

A high intensity broad band with two maxima at 1130, 1055 cm−1 in the FT-IR spectra of neat
POSS comonomers (Figure 8) indicated the presence of Si–O–Si bonds occurring in the silicon–oxygen
silsesquioxane cage [44,45] and the bands at 1120, 1060 cm−1 were ascribed to the Si–O–Si bonds in
the dimethylsiloxy spacer linking the alkenyl reactive substituent with the silicon–oxygen cage [46].
In order to determine stability of the incompletely condensed POSS cage in the polymerization
conditions, the A1120/A1060 and A1130/A1055 absorbance ratios were determined using the FT-IR
spectra (Figure 8) of E/POSS copolymers. The absorbance ratio was equal to about 1.09 and 1.12
for copolymers with tri- and tetra-alkenyl-POSS, respectively. Thus, it could be concluded that the
structures of the POSS comonomers remained unchanged during copolymerization.
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Figure 8. FT-IR spectra for neat POSS comonomers, polyethylenes, and E/POSS copolymers obtained
over rac-Et(Ind)2ZrCl2 under ethylene pressure of 0.2 MPa (a) and 0.5 MPa (b) at the concentration of
the POSS comonomer in the reaction feed of: 1.67 × 10−3 mol/dm3 (1) and 6.67 × 10−3 mol/dm3 (2).

The content of the POSS comonomer incorporated into the polymer chain was found to increase
with the increasing comonomer concentration in the feed (Table 1).

Table 1. Compositions, molecular weights, and analysis of unsaturated end groups of E/POSS
copolymers obtained with the use of rac-Et(Ind)2ZrCl2/MMAO.

Item (Co)polymers A1120
A2020

f CPOSS
e

ne
e MD e Mw·103

(g/mol) g
Mw
Mn

g
Analysis of Unsaturated

End Groups f

(mol %) (wt %) A908/A2020 A800/A2020

1 PE 0 0 0 0 0 165 1.9 0.460 0

2 a

E/POSS-6-3
7.86 0.031 1.33 3226 99.969 326 3.9 0.649 0.145

3 b 9.81 0.038 1.62 2632 99.962 364 4.0 0.857 0.110
4 b,c 12.13 0.047 2.00 − − − − 0.984 0.328

5 a

E/POSS-10-3
8.83 0.034 1.65 2941 99.966 377 4.4 0.843 0.175

6 b 9.98 0.040 1.94 2500 99.960 434 4.9 1.053 0.187
7 b,c 8.25 0.031 1.51 − − 526 4.8 0.769 0.541
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Table 1. Cont.

Item (Co)polymers A1120
A2020

f CPOSS
e

ne
e MD e Mw·103

(g/mol) g
Mw
Mn

g
Analysis of Unsaturated

End Groups f

(mol %) (wt %) A908/A2020 A800/A2020

8 c,d PE 0 0 0 0 0 226 3.9 0.291 0

9 a,d

E/POSS-6-3
14.46 0.056 2.37 1786 99.944 − − 0.945 0.161

10 b,d 23.78 0.093 3.87 1075 99.907 − − 1.664 0
11 b,c,d 16.43 0.064 2.70 − − − − 0.928 0.463

12 a,d

E/POSS-10-3
14.66 0.057 2.74 1754 99.943 − − 1.062 0

13 b,d 17.46 0.068 3.25 1471 99.932 − − 1.481 0.429
14 b,c,d 11.07 0.043 2.08 − − − − 1.337 0.309

15 a,d
E/POSS-10-4

19.11 f 0.075 4.74 f 1333 99.925 − − 0.565 2.663
16 b,c 30.76 f 0.121 7.43 f 826 99.879 − − 0.971 4.933

[POSS]: a 1.67 × 10−3 mol/dm3 and b 6.67 × 10−3 mol/dm3; Tr = 50 ◦C, tr = 30, c 60 min., pe = 0.5 MPa, d 0.2 MPa,
e determined by 1H NMR, f FT-IR, g GPC.

The copolymers with higher contents of the POSS comonomers were obtained under lower
ethylene pressure (pe = 0.2 MPa) during polymerization (Table 1, items 2–7 and 9–14) which was
associated with a higher probability of insertion of a comonomer segment into the Zr–C bond.
Interestingly, longer reaction times generally led to slightly lower incorporation of POSS into the
copolymers, regardless of the reaction conditions (Table 1, items 6, 7, 10, 11, 13, 14). This result could
be explained by extremely high efficiency of the catalytic system in copolymerization of ethylene
with POSS, which quickly decreased the POSS concentration in the feed at the initial stage of the
copolymerization process.

The structures of the POSS comonomers strongly influenced POSS incorporation into the
copolymer chain and the copolymers with POSS-10-4 obtained under pe = 0.2 MPa were characterized
by the highest contents of the POSS units (up to 7.43 wt %) (Table 1, item 16).

Despite the presence of three and four alkenyl substituents in the POSS comonomers,
the incorporation degree of the POSS comonomer into the polymer chain was unexpectedly
found lower in comparison with the DDSQ comonomer under the same reaction conditions
(CDDSQ = 11.53 wt %) [17]. In the case of tri-alkenyl-POSS comonomers, in which the reactive
substituents are close to each other, this phenomenon could be explained by the limited access to the
active center.

For copolymers of ethylene with tri-alkenyl-POSS, the reactivity ratios of ethylene were calculated
using the Fineman–Ross method [47]. It was found that the re values were equal to 162 and 182
for copolymerization of E/POSS-6-3 and E/POSS-10-3, respectively. The resulting lower reactivity
of the POSS-10-3 comonomer (higher re value) could be explained by higher steric hindrance
of the longer reactive group. Noteworthy is that the re values in ethylene/tri-alkenyl-POSS
copolymerization were comparable to the re values for copolymerization with monoalkenyl(siloxy)-
and monoalkenylsilsesquioxanes [6], but they were much higher in comparison with the DDSQ
comonomer [17]. Those results confirmed that the presence of three alkenyl substituents on the same
side of the POSS cage did not increase reactivity of the POSS comonomer in copolymerization with
ethylene. For all the obtained polymeric products, the number–average sequence length of ethylene
(ne) and monomer dispersity (MD) were also determined (Table 1).

The lowest values of ne were observed for E/POSS-10-4 copolymers in comparison to copolymers
of ethylene with POSS-6-3 and POSS-10-3 which were obtained at the same polymerization
conditions (Table 2). It should be noted that the ne values for ethylene copolymers with
tri-alkenyl-POSS were similar to the values for copolymers which contained monoalkenyl(siloxy)-
or monoalkenylsilsesquioxanes [6]. Moreover, the ne values for E/POSS-10-4 copolymers were
comparable to those values for E/DDSQ copolymers [17].
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Table 2. Thermal properties of PE and E/POSS copolymers synthesized over the rac-Et(Ind)2ZrCl2/MMAO
catalytic system.

Item (Co)polymers Tg [◦C] Xc
c [%]

Melting Temperaturec Crystallization
Temperature c

Tmo Tmp Tme Tco Tcp Tce

1 PE e −149.7 63.2 124.8 131.0 136.4 119.7 116.5 111.9

2 a
E/POSS-6-3 e −156.0 60.9 122.4 134.8 140.1 121.4 115.6 106.8

3 b −157.1 59.1 125.4 132.3 135.6 120.1 118.2 114.1

4 a
E/POSS-10-3 e −166.5 58.5 122.5 134.3 138.3 120.8 115.1 108.2

5 b −166.6 60.4 124.2 133.6 140.3 120.2 116.4 107.4

6 PE d −155.0 61.2 123.2 128.6 134.6 119.8 116.5 112.8

7 a
E/POSS-6-3 d −157.8 56.2 121.7 132.2 135.9 120.5 116.4 108.8

8 b −158.0 56.7 121.8 131.0 135.9 120.1 116.3 108.9

9 a
E/POSS-10-3 d −157.3 54.7 119.3 129.8 133.6 119.8 115.1 108.2

10 b −162.5 50.6 122.0 129.4 135.7 118.6 116.0 108.2

11 PE d −159.3 62.2 123.2 129.6 134.6 119.8 117.5 112.8

12 a
E/POSS-10-4 d −150.4 53.7 116.4 129.5 135.4 119.0 114.7 104.7

13 b −149.5 50.2 117.2 127.9 132.5 118.4 114.7 106.0

[POSS]: a 1.67× 10−3 and b 6.67× 10−3 mol/dm3, data were obtained by c DSC, pe = d 0.2 and e 0.5 MPa, Tr = 50 oC,
tr = 30 min.

The monomer dispersity (MD) values were equal to about 100 irrespective of the kind of the POSS
comonomer (Table 1) which suggested that the POSS units were incorporated into the polymer chain
between long ethylene sequences.

The molecular weights (Mw) of the E/tri-alkenyl-POSS copolymers synthesized by
rac-Et(Ind)2ZlCl2 were much higher in comparison to neat polyethylene, which suggested that chain
termination by transfer to the monomer was significantly limited (Figure 9, Table 1). However, it should
be noted that it was impossible for the E/POSS-10-4 copolymers to determine the Mw and Mw/Mn

values by the GPC analysis because their solubility was only partial.
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Moreover, the Mw values of E/POSS increased with the increasing POSS content in the copolymer.
This indicated the modifying influence of the tri-alkenyl-POSS comonomer on metallocene active
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sites, irrespective of the kind of reactive substituents present in the comonomer used. Based on
the literature data [3–6], such phenomenon was for the first time observed in the case of ethylene
copolymerization with POSS, which was catalyzed by the metallocene system. It could be explained
by the interaction of incompletely condensed silicon–oxygen of the POSS comonomer with the active
center of ansa-metallocene (as was previously suggested on the basis of the 1H NMR analysis of the
complexes) or by the influence of the POSS comonomer on the formation of the ion pair, which resulted
in many “open” active sites of the catalysts for the monomer insertion.

All metallocene-synthesized (co)polymers as described above were characterized by the
unimodal but relatively broad molecular weight distributions (Mw/Mn = 3.9–4.9) (Figure 9, Table 1).
The copolymers characterized by broader molecular weight distributions were obtained when the
POSS-10-3 comonomers were used in comparison to POSS-6-3, probably due to the higher POSS
content in the copolymer.

The analysis of specific unsaturated end groups by the 1H NMR and FT-IR spectra for the E/POSS
copolymers revealed the presence of only vinyl and tri-substituted vinylene groups (Figure 10, Table 1).Polymers 2018, 10, x FOR PEER REVIEW  13 of 19 
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The absence of vinylidene and trans-vinylene end groups indicated that tri- and
tetra-alkenyl-silsesquioxane did not take part in chain termination after 1,2 and 2,1-insertion of the
POSS comonomer (Figure 10, Table 1) which was in line with the changes in molecular weights of the
copolymers. The relative amounts of end groups increased with the increasing POSS content in the
copolymers, regardless of the kind of the POSS comonomer (Table 1). The presence of trisubstituted
vinylene end group in the copolymers suggested that the POSS comonomers were incorporated
internally into the polymer chains [48].

Moreover, the increase in the content of vinyl end groups and increased Mw values with the
increasing contents of POSS in copolymers indicated that not all alkenyl substituents of POSS took
part in copolymerization. Therefore, one should consider different ways of incorporation of these
multi-functional POSS units into the copolymer chains.

It is theoretically possible to obtain the macromolecules with POSS as pendant vinyl groups
(type I), cyclic units (type II), and copolymers with cross-linked structures (type III) analogously to
previously investigated ethylene/DDSQ copolymers [17].

In the case of ethylene copolymerization with the POSS comonomers which contain the reactive
substituents located close to each other, the formation of cyclic units in the polymer chain could be
expected (Figure 11, type II). However, the absorption band at 945 cm−1 associated with the cyclic
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structure in the main chain is not observed [49]. Noteworthy is that the relative content of vinyl
groups in the case of the E/POSS-10-4 copolymer was much lower in comparison to the products with
POSS-6-3 and POSS-10-3 obtained at the same reaction conditions (Table 1, items 6–11).
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It is suggested that tetra-alkenyl-POSS acted as a cross-linking agent (Figure 11, type III) due to
the presence of reactive alkenyl substituents on both sides of the silicon–oxygen cage, which resulted
in lower steric hindrance in comparison to tri-alkenyl-POSS.

For copolymers of ethylene with tetra-alkenyl-POSS, the content of the cross-linked fraction as
determined by estimation of the gel content (G) increased with the increasing content of POSS in
the copolymer. It should be noted that the gel content for tetra-alkenyl-POSS-containing copolymers
was higher (from 53.0% to 81.3%) in comparison to copolymers with the DDSQ comonomer (up to
65.0%) [17] despite the fact that the contents of POSS-10-4 were lower in the copolymer. This could be
associated with the presence of four reactive substituents in the POSS-10-4 comonomer and hence its
greater ability to create cross-linked structures.

The incorporation of the POSS-10-4 comonomers into the polymer chain increased the Tg values
significantly with the increasing POSS content (Figure 12b and Table 2) which was associated with
the lower flexibility of the copolymer chain and which confirmed the cross-linked structure of the
E/POSS-10-4 copolymer (Figure 11, type III).

In turn, the glass transition temperature (Tg) of the ethylene copolymers with tri-alkenyl-POSS
slightly decreased with the increasing contents of POSS in the copolymer (Figure 12 and Table 2). This
change of the Tg value was basically in parallel with relative amounts of vinyl end groups and it
indicated the presence of vinyl pendant groups.
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Their increased contents in the copolymer resulted in lower Tg values (Figure 12a and Tables 1 and 2)
due to the absence of sterically rigid cyclic and cross-linked units (Figure 11, type II and III). The similar
changes in Tg caused by incorporation of sterically encumbered monomer units, like cyclic rings, was
reported in the literature related to ethylene copolymerization with unconjugated dienes [50].

3.4. Crystallization and Melting Behavior of E/POSS Copolymers

The increasing POSS content in copolymers decreased the values of the crystallinity degree (Xc)
and peak melting temperature (Tmp), regardless of the kind of the POSS comonomer (Table 2). These
results indicate that incorporation of the POSS comonomer in the copolymer resulted in disruption of
regular packing of macromolecules.

The endothermic peaks in the DSC curves of the copolymers were observed to get broader with
the increasing POSS incorporation degree, which proved the increased heterogeneity of the copolymer,
irrespective of the kind of POSS applied (Figure 13, Table 2). This phenomenon could be confirmed
also by the shapes of Tg curves (Figure 12a).
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The values of Tcp for the copolymers generally occurred at lower temperatures in comparison
to neat polyethylene and they decreased with the increasing POSS comonomer content (Table 2).
Moreover, broader exothermic peaks were observed for the copolymers produced under pe = 0.2 MPa
in comparison to neat polyethylene which increased with the increasing contents of the POSS units in
the copolymers (Table 2, items 6–13). This phenomenon could be associated with the increased
heterogeneity of the chain composition of the E/POSS copolymers. The opposite relation was
observed for the E/POSS-6-3 copolymers obtained under higher ethylene pressure for which narrower
exothermic peaks were visible, which suggested acceleration of the crystallization process (Table 2,
items 1–5).

4. Conclusions

The hybrid copolymers of ethylene with open-caged iso-butyl-substituted tri-alkenyl-silsesquioxanes
(POSS-6-3 and POSS-10-3) and phenyl-substituted tetra-alkenyl-silsesquioxane (POSS-10-4) were for the
first time successfully synthesized by coordinative copolymerization with the use of the metallocene
catalytic system (rac-Et(Ind)2ZrCl2/MMAO).

The performance of copolymerization was found to be significantly affected by the kind and
concentration of the silsesquioxane comonomer in the feed as well as by the ethylene pressure and
reaction time. The steric hindrance, inductive effect, and interactions between the open silicon–oxygen
cage of the POSS comonomers and the active center of the metallocene catalyst significantly influenced
the efficiency of polymerization. In the case of E/POSS-6-3 copolymerization, a very high catalyst
activity (up to 21,740 kgcopolymer/molZr × 0.5 h) was noted. Moreover, the positive comonomer effect
was observed for the first time in the ethylene/POSS copolymerization.

Based on the 1H NMR results, POSS-6-3 was found to act as a modifier of the catalytic system
which caused the increased concentration of complexes 2 or 3 (precursors of active forms) at the very
low Al/Zr ratio (50) which is atypical for the metallocene catalysts.

The E/POSS copolymers varied in the POSS contents, reaching up to 7.43 wt % in the case
of the E/POSS-10-4 copolymer. Incorporation of the POSS comonomers into the polymer chains
resulted in the increase in the molecular weights which indicated the limitation of chain termination
by transfer to the monomer and suggested the modifying influence of the POSS comonomer on the
metallocene active sites. Depending on the functionality of the POSS comonomer, copolymers varied
in the structural architecture. Tri-alkenyl-silsesquioxanes were incorporated into the polymer chains as
pendant groups. In the case of copolymers with tetra-alkenyl-silsesquioxane, the cross-linked structure
was demonstrated and the gel content reached even 81.3%. These structural differences were proved
by the changes in the contents of unsaturated end groups and by the glass transition temperature
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values. The copolymers of ethylene with multi-alkenyl-POSS were also characterized by interesting
melting and crystallization behavior.
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