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  Ventricular hypertrophy is an ominous escalation of hemodynamically stressful conditions such as hyperten-
sion and valve disease. The pathophysiology of hypertrophy is complex and multifactorial, as it touches on 
several cellular and molecular systems. Understanding the molecular background of cardiac hypertrophy is es-
sential in order to protect the myocardium from pathological remodeling, or slow down the destined progres-
sion to heart failure. In this review we highlight the most important molecular aspects of cardiac hypertrophic 
growth in light of the currently available published research data.
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Etiology and Risks

Hypertrophic growth of the heart is an adaptive response to 
hemodynamic stress, which is believed to have a compensatory 
role to enhance cardiac performance and diminish ventricular 
wall tension and oxygen consumption [1]. Physiological hyper-
trophy of the heart can ensue as a result of exercise or preg-
nancy, and is deemed mild and/or reversible [2,3]. However, 
in the presence of chronic stressful conditions such as hyper-
tension and valvular disease, a form of pathological hyper-
trophy develops, which is characterized by excessive increase 
in ventricular dimensions, accompanied by myocardial dys-
function and fibrosis [4,5]. These are foreboding signs of the 
development heart failure and pathological remodeling [6]. 
Additionally, myocardial supply-demand mismatch secondary 
to increased myocardial oxygen consumption of the hypertro-
phic heart further predisposes to multiple cardiovascular ail-
ments, including arrhythmias, myocardial infarction, cerebro-
vascular events, and sudden death [7]. Ventricular hypertrophy 
is hence considered as a predictor of cardiovascular morbid-
ity and mortality [7].

Pathogenesis

Mechanical stress

At the cellular level, cardiomyocyte hypertrophy is character-
ized by an increase in cell size, enhanced protein synthesis, 
and heightened organization of the sarcomere [8,9]. Mechanical 
stress is thought to induce a hypertrophic response downstream 
of mechanosensitive molecules. The sarcomeric Z-disc and its 
associated proteins have been suggested to drive mechani-
cal stress-induced signal transduction, a process referred to 
as “mechanotransduction” [4]. A good example of mechano-
sensitive molecules that have gained attention in recent years 
are a family of Z-disc-specific proteins called calsarcins, also 
known as myozenins [10]. Calsarcins were shown to couple 
the cardiac skeletal apparatus to signaling molecules that can 
directly influence gene expression. They do this by binding to 
the Z-disc myofilament anchor proteins, a-actinin and teletho-
nin, and tethering them to calcineurin, a calcium-dependent 
phosphatase that was shown to directly induce cardiomyocyte 
hypertrophy by downstream transcriptional pathways [10,11].

Humoral stimuli

Humoral stimuli, on the other hand, act on cell surface recep-
tors, triggering downstream second messenger cascades, finally 
culminating in cellular hypertrophic response and the associ-
ated gene expression program. Based on their target recep-
tor, humoral stimuli can be nested under 2 major groups. The 
first are targeted by growth factors, such as insulin-like growth 

factor-1 (IGF-1) and transforming growth factor beta (TGF-b), 
which act on tyrosine kinase-coupled receptors (RTKs) and are 
responsible for the eutrophic, as well as adaptive (physiolog-
ical), myocyte growth. On the other hand, G-protein-coupled 
receptors (GPCR)-activating molecules, such as catecholamines, 
angiotensin II, and endothellin-1, are linked to the ominous 
progression to heart failure, and hence have been the target 
of many pharmacological antagonists [12,13]. This strongly 
suggests that a cardiomyocyte undergoing physiological hy-
pertrophy uses different signaling pathways than another one 
undergoing pathological hypertrophy [8]. A good example sup-
porting this notion is the calcineurin-nuclear factor of activat-
ed T cells (NFAT) signaling axis, which was shown to activate 
pathological hypertrophy [14]. Sustained elevation of calcium 
ions (Ca+2) downstream of GPCR (aq/a11 subclass) is sensed 
by calmodulin (Cam) and conveyed to calcineurin, an obligate 
dimer of regulatory and catalytic subunits with phosphatase 
activity. Once activated, calcineurin tightly binds and dephos-
phorylates conserved serine residues at the N-terminus of cyto-
plasmic NFAT transcription factors, permitting their transloca-
tion to the nucleus and activation of pathological hypertrophic 
gene expression [15].

Similarly, activation of the mitogen-activated protein kinases 
(MAPK) c-Jun N-terminal kinase (JNK) was also shown to con-
tribute to pathological hypertrophic maladaptive gene expres-
sion. On the other hand, physiological hypertrophy, such as 
that induced by exercise, utilizes a different signaling path-
way, mainly through phosphoinositide 3-kinase (PI3K), Akt pro-
tein kinase B (PKB), and the mammalian target of rapamycin 
(mTOR) [15]. Studies from genetically modified animal models 
corroborate this notion, as Akt1–/– mice were shown to be de-
fective in exercise-induced cardiac hypertrophy [4]. However, 
one should be careful in interpreting this phenomenon, This 
is because cellular signaling pathways are highly intricate and 
interconnected, and pathways activated by either physiolog-
ical and pathological pathways can converge downstream of 
different stimuli, as in the case of the MAPK signaling cas-
cade, which can be initiated by GPCRs, RTKs, receptor serine/
threonine kinases, and glycoprotein receptors (e.g., gp130), as 
well as stretching stress [4]. Further research is still needed to 
better delineate the signaling pathways that govern the de-
velopment of either adaptive or non-adaptive cardiac hyper-
trophy, as well as those driving the transition to heart failure.

Figure 1 illustrates some major intracellular signaling path-
ways controlling cardiac hypertrophy.

Transcriptional switch to the fetal gene program

A characteristic feature of pathological cardiac hypertrophy is 
the switch to the fetal gene expression profile, including up-
regulation of cardiac myosin heavy chain-beta (MHC-b) in lieu 
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of the adult predominant alpha isoform (MHC-a), skeletal al-
pha actin (SKA), and atrial natriuretic factor (ANF) genes [16]. 
Additionally, cardiomyocytes switch to carbohydrate-dependent 
energetic machinery instead of fatty acid oxidation, which in 
turn necessitates alterations in expression levels of metabolic 
genes [17]. Interestingly, exercise-induced physiological hyper-
trophy was associated with downregulation of the pathologi-
cal fetal gene program and suppression of NFAT activity [18].

The role of inflammation

Importantly, inflammation was shown to be a prominent hall-
mark of ventricular hypertrophy [19]. Interstitial inflammatory 
cell infiltration involving macrophages, T-lymphocytes, fibrosis, 
high expression levels of cytokines such as interleukins (IL)-6, 
IL-1b, IL-1RA, and tumor necrosis factor-alpha (TNF-a), and 
activation of inflammatory signaling pathways such as nucle-
ar factor kappa B (NF-kB) are all characteristic hallmarks of a 
pathologically hypertrophied heart [20,21]. The pathogenic role 
inflammation plays is not clearly understood; however, it most 

probably exacerbates the disease condition. For example, IL-6 
was shown to directly induce hypertrophy both in vitro and 
in vivo [22,23]. Furthermore, macrophage microRNA-155, in-
duced by pro-inflammatory stimuli, including lipopolysaccharide 
(LPS), TNF-a, and interferon-gamma (INF-g), promotes cardi-
ac hypertrophy and failure [24]. Additionally, targeting inflam-
matory cell receptors and mediators was shown to modify the 
disease process and might preserve cardiac function [25,26].

The role of inflammatory cells in cardiac hypertrophy is not 
to be overlooked. A good example which merits further elab-
oration is macrophages Mj. Mj are mononuclear phagocytes 
widely distributed throughout the body performing important 
active and regulatory functions in innate and adaptive im-
munity, as well as a crucial role in tissue remodeling and re-
pair [27,28]. Two distinct phenotypes of Mj can be found in 
the heart: classically activated pro-inflammatory M1, and al-
ternatively activated anti-inflammatory M2 [28,29]. The for-
mer (M1) agitates inflammation in the heart by liberating cy-
tokines and accelerating apoptosis, and contributes to cardiac 

Figure 1.  Diagrammatic representation of main intracellular signaling pathways regulating cardiac hypertrophy. Elevated calcium ion 
levels downstream of GPCRs, either through activation of voltage-gated calcium channels or from intracellular stores, is 
sensed by calmodulin, which activates calcineurin. Calcineurin in turn dephosphorylates NFAT transcription factor, leading to 
its nuclear translocation, where it activates gene transcription. ROS can contribute to hypertrophy by direct interaction with 
cellular proteins and subsequent changes in cellular contraction and/or induction of apoptosis, or by activation of NFkB-
mediated gene transcription. Inflammatory stimuli can exacerbate the disease condition by inducing interstitial inflammatory 
cell infiltration and fibrosis. Stress signals can trigger the activation MAP kinase cascades, which activate a number of 
downstream targets such as JNK, finally leading to transcriptional activation. Growth hormones induced by physiological 
cues, such as exercise or pregnancy, bind to and activate downstream signaling of RTKs, which, on the other hand, leads 
to adaptive hypertrophic growth. GPCR – G-protein-coupled receptor; RTK – receptor tyrosine kinase; MAPKKs – mitogen-
activated protein kinase kinases; ROS – reactive oxygen species; RyR – Ryanodine receptor; PI3K – phosphoinositide-3 kinase; 
JNK – c-Jun N-terminal kinase; NFkB – nuclear factor kappa B; PKC – protein kinase C; Cam – calmodulin; CnA – calcineurin 
A; CnB – calcineurin B; NFAT – nuclear factor of activated T-cell; Akt – protein kinase B (PKB); mTOR – mammalian target of 
rapamycin; LPS – lipopolysaccharide.
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remodeling [28,30,31]. The latter (M2), on the other hand, 
thwarts inflammation and stimulates cardiac reparative path-
ways and angiogenesis [31]. A strong link between Mj and hy-
pertrophy was established; however, studies have shown that 
Mj depletion aggravates cardiac dysfunction upon hypertro-
phy, suggesting a crucial, yet-to-be-understood role in both dis-
ease process and outcome [28]. Taken together, inflammation 
is an attractive target for studying disease progression and de-
veloping new therapeutic interventions [26,32].

The role of redox signaling

The role of oxidative stress was shown to be strongly involved 
in the pathogenesis of ventricular hypertrophy. Reactive oxygen 
species (ROS) were shown to activate a plethora of signaling 
pathways implicated in hypertrophic growth and remodeling, 
including tyrosine kinases, protein kinase C (PKC), and MAPK, 
among others [33,34]. Furthermore, ROS were shown to medi-
ate angiotensin II, as well as norepinephrine-induced hypertro-
phy downstream of GPCR [35,36]. Anti-oxidant treatment was 
shown to abolish TNF-a-induced hypertrophy via NF-kB, sug-
gesting an important role of redox signaling in inflammation-
induced hypertrophy [37]. Moreover, ROS contribute to con-
tractile dysfunction by direct modification of proteins central 
to the excitation-contraction coupling (e.g., the Ryanodine re-
ceptor) [38]. Importantly, ROS are involved in the fibrotic re-
modeling of the heart due to their interaction with extracel-
lular matrix and their activation of matrix metalloproteinase 
by posttranslational modifications [39]. Finally, ROS can con-
tribute to the loss of myocardial mass upon cardiac remodel-
ing by inducing cardiomyocyte apoptosis [33].

Insights from therapy-oriented studies

At first it might seem obvious that in order to prevent, or at 
least, halt the progression of cardiac hypertrophy to its more 
pernicious stages, a correction of the predisposing hemody-
namic stress and unloading the encumbered heart, by correc-
tion of blood pressure or valve disease, is crucial. However, 
and based on the above-illustrated molecular nature, cardiac 
hypertrophy and heart failure are seen as endocrine diseas-
es. Due to the strong role of humoral stimuli in the disease 
pathology, targeting GPCRs by adrenergic antagonists, renin-
angiotensin system modulators such as angiotensin-convert-
ing enzyme (ACE) inhibitors, or angiotensin receptor blockers, 
has been the criterion standard therapeutic approaches for de-
cades [40]. However, a growing body of evidence has shown 
that such treatment might have a ceiling effect, characterized 
by lack of efficacy, and even regression, in some patients [13]. 
A recently published study has intriguingly shown that inter-
ference with the non-canonical pathways of the transform-
ing growth factor beta (TGFb) by Puerarin led to attenuation 
of hypertrophy in an AngII-induced heart hypertrophy mouse 

model [41]. The molecular knowledge gained from basic sci-
ence has shed the lights on calcineurin as a central key play-
er in the development of cardiac hypertrophy [14]. However, 
in vivo studies using calcineurin inhibitors such as Cyclosporin 
A have shown great discrepancies [9]. On the other hand, tar-
geting inflammation has also been sought as a potential treat-
ment for cardiac hypertrophy [26]. Cytokine inhibitors such as 
TNF-alpha antagonists have been clinically investigated for 
safety and efficacy, but with no apparent success so far in hu-
mans [13]. Due to the probably labyrinthine nature of inflam-
matory processes, a novel approach is currently under inves-
tigation that relies on the use of mesenchymal stem cells as 
modulators of inflammation, which are also capable of con-
trolling inflammatory cells such as macrophages [31]. Such cell 
therapy-based approaches are now receiving increased atten-
tion in cardiovascular disease research.

Conclusions

Ventricular hypertrophy is a compensatory attempt of the heart 
to enhance its performance; however, it risks the development 
of heart failure or even sudden death. At the molecular level, 
hypertrophic growth of the myocardium is a multifaceted en-
tity that demonstrates a high degree of cellular and molecu-
lar intricacy across multiple signaling pathways. Furthermore, 
the development of either physiological or pathological hyper-
trophy utilizes distinct molecular machinery, if not influenc-
ing each other, a phenomenon that needs extensive research. 
Indeed, this knowledge was made possible by virtue of ge-
netically modified animal models. We encourage further im-
plementation of these models, which serve as powerful tools 
in intricate signaling studies, and are able to guide the devel-
opment of highly targeted therapies. On the other hand, the 
traditional mainstream rodent models, in which hypertrophy 
is surgically induced by aortic banding or pharmacological in-
duction, do not fully represent the features seen in humans. 
Hence, in order to better study the effect of hemodynamic 
load and/or neurohormonal stress, there is a need for larger 
and longer-lived models.

With regard to therapeutic interventions, the use of ACE-
inhibitors and sympatholytics has indeed afforded significant 
clinical benefits [9]. However, the limited clinical success seen 
in many patients (ceiling effect) is probably due to the nature 
of cardiac hypertrophy as an adaptive response, which does 
not need to be fully inhibited per se [9,13]. Hence, a delicate 
dissection of the molecular pathways involved, well-tailored 
drug dosing, and targeted therapy are needed to thwart the 
deleterious ramifications while maintaining heart homeosta-
sis. Better understanding of the disease molecular founda-
tions shall help us design more targeted and clinically effica-
cious therapeutic approaches.
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