
 

1 
 

 1 
 2 
 3 
 4 

 5 

Perspectives on Codebook: sequence 6 

specificity of uncharacterized human 7 

transcription factors 8 

 9 
 10 
Arttu Jolma1*, Kaitlin U. Laverty1,2*, Ali Fathi1,3*, Ally W.H. Yang1*, Isaac Yellan1,3*, Ilya 11 
E. Vorontsov4*, Sachi Inukai5,6, Judith F. Kribelbauer-Swietek 5,6, Antoni J. Gralak5,6, 12 
Rozita Razavi1, Mihai Albu1, Alexander Brechalov1, Zain M. Patel13, Vladimir Nozdrin7, 13 
Georgy Meshcheryakov8, Ivan Kozin8, Sergey Abramov4,9, Alexandr Boytsov4,9, The 14 
Codebook Consortium, Oriol Fornes10, Vsevolod J. Makeev4,#, Jan Grau11, Ivo Grosse11, 15 
Philipp Bucher12, Bart Deplancke5,6**, Ivan V. Kulakovskiy4,8**, and Timothy R. 16 
Hughes1,3** 17 
 18 
 19 
1Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada 20 
2Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA 21 
3Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada 22 
4Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia  23 
5Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École 24 
Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland  25 
6Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland  26 
7Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, 27 
Russia  28 
8Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Russia  29 
9Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA 30 
10Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children’s 31 
Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada  32 
11Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06099, Halle, Germany  33 
12Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland 34 
#Present address: Cancer Research UK National Biomarker Centre, University of Manchester, 35 
Manchester, Manchester, M20 4BX, UK 36 
 37 
*These authors contributed equally 38 
** To whom correspondence should be addressed: bart.deplancke@epfl.ch, 39 
ivan.kulakovskiy@gmail.com, t.hughes@utoronto.ca   40 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.622097doi: bioRxiv preprint 

mailto:bart.deplancke@epfl.ch
https://doi.org/10.1101/2024.11.11.622097
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 
 

The Codebook Consortium 41 
 42 
Principal investigators (steering committee) 43 
Philipp Bucher, Bart Deplancke, Oriol Fornes, Jan Grau, Ivo Grosse, Timothy R. 44 
Hughes, Arttu Jolma, Fedor A. Kolpakov, Ivan V. Kulakovskiy, Vsevolod J. Makeev 45 
  46 
Analysis Centers: 47 
University of Toronto (Data production and analysis): Mihai Albu, Marjan 48 
Barazandeh, Alexander Brechalov, Zhenfeng Deng, Ali Fathi, Arttu Jolma, Chun Hu, 49 
Timothy R. Hughes, Samuel A. Lambert, Kaitlin U. Laverty, Zain M. Patel, Sara E. Pour, 50 
Rozita Razavi, Mikhail Salnikov, Ally W.H. Yang, Isaac Yellan, Hong Zheng 51 
Institute of Protein Research (Data analysis): Ivan V. Kulakovskiy, Georgy 52 
Meshcheryakov 53 
EPFL, École polytechnique fédérale de Lausanne (Data production and analysis): 54 
Giovanna Ambrosini, Bart Deplancke, Antoni J. Gralak, Sachi Inukai, Judith F. 55 
Kribelbauer-Swietek 56 
Martin Luther University Halle-Wittenberg (Data analysis): Jan Grau, Ivo Grosse, 57 
Marie-Luise Plescher 58 
Sirius University of Science and Technology (Data analysis): Semyon Kolmykov, 59 
Fedor Kolpakov 60 
Biosoft.Ru (Data analysis): Ivan Yevshin 61 
Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State 62 
University (Data analysis): Nikita Gryzunov, Ivan Kozin, Mikhail Nikonov, Vladimir 63 
Nozdrin, Arsenii Zinkevich 64 
Institute of Organic Chemistry and Biochemistry (Data analysis): Katerina 65 
Faltejskova 66 
Max Planck Institute of Biochemistry (Data analysis): Pavel Kravchenko 67 
Swiss Institute for Bioinformatics (Data analysis): Philipp Bucher 68 
University of British Columbia (Data analysis): Oriol Fornes 69 
Vavilov Institute of General Genetics (Data analysis): Sergey Abramov, Alexandr 70 
Boytsov, Vasilii Kamenets, Vsevolod J. Makeev, Dmitry Penzar, Anton Vlasov, Ilya E. 71 
Vorontsov 72 
McGill University (Data analysis): Aldo Hernandez-Corchado, Hamed S. Najafabadi 73 
Memorial Sloan Kettering (Data production and analysis): Kaitlin U. Laverty, Quaid 74 
Morris 75 
Cincinnati Children’s Hospital (Data analysis): Xiaoting Chen, Matthew T. Weirauch   76 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.622097doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.622097
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 
 

SUMMARY 77 

We describe an effort (“Codebook”) to determine the sequence specificity of 332 78 

putative and largely uncharacterized human transcription factors (TFs), as well as 79 

61 control TFs. Nearly 5,000 independent experiments across multiple in vitro and 80 

in vivo assays produced motifs for just over half of the putative TFs analyzed 81 

(177, or 53%), of which most are unique to a single TF. The data highlight the 82 

extensive contribution of transposable elements to TF evolution, both in cis and 83 

trans, and identify tens of thousands of conserved, base-level binding sites in the 84 

human genome. The use of multiple assays provides an unprecedented 85 

opportunity to benchmark and analyze TF sequence specificity, function, and 86 

evolution, as further explored in accompanying manuscripts. 1,421 human TFs 87 

are now associated with a DNA binding motif. Extrapolation from the Codebook 88 

benchmarking, however, suggests that many of the currently known binding 89 

motifs for well-studied TFs may inaccurately describe the TF’s true sequence 90 

preferences. 91 

KEYWORDS: Transcription factor, TF, ChIP-seq, HT-SELEX, GHT-SELEX, SELEX, 92 

SMiLE-seq, Motif, DNA-binding specificity, PWM, PBM, Codebook  93 
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Introduction and motivations 94 

The human genome encodes >1,600 putative transcription factors (TFs), defined as 95 
proteins that bind specific DNA sequence motifs and regulate gene expression1. These 96 
DNA binding motifs are most commonly modelled as a Position Weight Matrix (PWM) 97 
that describes the relative preference of the TF for each nucleotide base pair in the 98 
binding site2,3, and can be visualized as a sequence logo4. Several hundred putative 99 
human TFs still lack DNA binding motifs1, and even for well-characterized TFs, it 100 
remains controversial whether the reported motif model is accurate5,6, and to what 101 
degree the TF’s sequence specificity contributes to binding site selection in living 102 
cells7,8. These uncertainties are due in part to the fact that different methods for 103 
measuring TF binding, and for deriving PWMs from these data, can have different 104 
inherent limitations and biases2. Such shortcomings represent fundamental hurdles for 105 
the analysis of gene regulation, as well as a myriad of related tasks in genome analysis, 106 
including the interpretation of conserved genomic elements and sequence variants, or 107 
genetic engineering such as synthetic enhancer design. 108 

To address these issues, we analyzed a large majority of the as-yet uncharacterized 109 
human TFs1, as well as several dozen previously studied control TFs9,10, using a panel 110 
of assays that provide different perspectives on DNA sequence specificity. This 111 
unprecedented effort generated what we believe is the largest uniform data structure of 112 
its kind. We refer to this international collaborative project as the “Codebook/GRECO-113 
BIT Collaboration”: the reagent set and laboratory experiments were initiated as the 114 
“Codebook Project”, alluding to the fact that TFs decode individual “words” in the 115 
genome, and the existing Gene REgulation COnsortium Benchmarking IniTiative, 116 
GRECO-BIT, was then engaged for much of the data analysis and benchmarking. 117 

In this paper, we present an overview of the data collection and its analysis, the 118 
resulting data, several major outcomes and findings of the Codebook study, and 119 
examples of prevalent phenomena and applications. We also introduce web resources 120 
that can be used to access the primary and processed data, including the PWMs. 121 
Accompanying manuscripts provide greater depth regarding biological findings, new 122 
assays, and intriguing TF families, as well as methods for identifying binding patterns 123 
(i.e. PWM derivation) and PWM benchmarking (Table S1). 124 

Codebook reagents, assays, and data structure 125 

Figure 1 provides a schematic of the Codebook project. We chose 332 putative TFs 126 
(i.e., “Codebook TFs”) (Table S2) for study by starting with a previously described list of 127 
427 hand-curated “likely” human TFs that lacked known motifs or any large-scale DNA 128 
binding data1. We removed 95 C2H2 zinc finger (C2H2-zf) proteins for which we were 129 
already aware of unpublished data (mainly from our prior collaboration with ENCODE11). 130 
As of June 2024, most of these putative TFs still lack motifs, outside of the Codebook 131 
study: of the 332, only 107 have PWMs on Factorbook12 and/or HOCOMOCO13. Many 132 
of these motifs appear to be simple repeats, or common cofactor motifs (such as CTCF, 133 
REST, and CRE sites) (examples in Figure S1), but among the 107, 59 have at least 134 
one PWM that appears plausible for representing specificity of the TF (see below).  135 
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Among the 332 Codebook TFs, 180 contain C2H2-zf domains, while another 103 136 
contain another type of well-known DNA-binding domain (DBD). Forty-nine did not have 137 
an established DBD at the outset of the study; these were mainly identified as 138 
sequence-specific in studies of individual proteins or regulatory sites1. We 139 
simultaneously analyzed 61 control TFs, encompassing 29 well-characterized TFs 140 
representing diverse human DBD classes9, and an additional 32 C2H2-zf proteins for 141 
which published ChIP-seq data were available and had led to a binding motif10. For 142 
these controls, we incorporated the published SMiLE-seq and ChIP-seq data, rather 143 
than repeating the experiments. 144 

To study the 332 Codebook proteins, we manually designed 716 protein-coding inserts, 145 
corresponding to full-length coding regions of the dominant isoform, and one or more 146 
DBDs (or subsets of C2H2-zf domain arrays), if there was a known DBD (Table S3). 147 
We employed up to three different expression vectors for each insert, as required for the 148 
different assays in Figure 1, resulting in a total of 1352 new distinct constructs (Table 149 
S4). One of the assays, GHT-SELEX (Genomic high-throughput SELEX), is a new 150 
variant of HT-SELEX which is performed with fragmented genomic DNA. As described 151 
in the accompanying manuscript14, GHT-SELEX yields peaks, analogous and often in 152 
agreement with ChIP-seq. GHT-SELEX thus provides a new perspective that bridges in 153 
vitro and in vivo DNA binding. HT-SELEX and GHT-SELEX were performed with 154 
multiple protein sources (mammalian cell extracts, and two different systems for in vitro 155 
transcription/translation) whereas SMiLE-seq and PBMs were performed with only one 156 
protein source. Multiple replicates were performed in many cases, for all assays. 157 

The full Codebook data structure is composed of a total of 4,873 technically successful 158 
experiments (i.e. they produced data that could be analyzed by at least some 159 
subsequent processes) (Table S5), The Codebook data structure, experimental 160 
information, and PWMs (see below) are accessible at multiple sources (see Data 161 
Availability). Each experiment corresponds to one of the Codebook constructs (or one 162 
of the control constructs), analyzed using one of the assays, with one of the protein 163 
sources. Not every protein or every insert was analyzed in every assay, by design. For 164 
example, the ChIP-seq data only utilize full-length proteins, while Protein Binding 165 
Microarray data include only DBD constructs. Long human C2H2-zf domain arrays 166 
typically fail in PBMs, and such experiments were omitted. We note that, in general, 167 
experiments that are technically successful may not yield motifs that are specific to the 168 
TF assessed and supported by other data types (see below). For example, ChIP-seq 169 
can detect both indirect and non-sequence-specific DNA binding, as we explored 170 
separately15. We also emphasize that the in vitro assays described here were 171 
conducted with unmethylated DNA. We explored the sensitivity of a subset (79) of the 172 
Codebook TFs to DNA methylation in an accompanying study, however, which 173 
introduces the methylation-sensitive SMiLE-seq variant (meSMS)16. DNA binding 174 
interactions of 17 of the 79 were impacted by methylation, encompassing inhibition (10) 175 
and increased binding or alternative binding sites (7); these data were not incorporated 176 
in the analyses described herein. 177 
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Motifs are obtained from most C2H2-zf proteins, and half of those containing 178 
other DBD classes, but only a few proteins with previously unknown DNA binding 179 
domains 180 

We next derived and examined motifs as PWMs for all the experiments in a semi-181 
automated expert curation format, to identify “approved” experiments (i.e. experiments 182 
that contained clear enrichment of credible binding motifs (see Methods)). This effort is 183 
described in detail in a separate manuscript that describes motif benchmarking, data 184 
sets, and success measures17, and also introduces a web resource that makes all of the 185 
motifs available for browsing and download. Briefly, our primary approach was to ask 186 
whether similar motifs were obtained for the same protein from different assays and 187 
whether the PWMs scored highly by a panel of criteria, including predictive capacity in 188 
other data types (depicted schematically in Figure 1, bottom left), adapting a previously 189 
described motif benchmarking framework18. To increase our ability to derive motifs that 190 
would score highly across data sets, we employed ten motif discovery tools, ranging 191 
from the widely used MEME suite19 to approaches based on machine learning or 192 
biophysical modeling, such as ExplaiNN20 and ProBound21, thus producing hundreds of 193 
motifs per TF. In total, 177 Codebook TFs were associated with “approved” datasets 194 
(Figure 1, bottom right), and a total of 1,072 experiments associated with these 177 195 
TFs were approved (Tables S2 and S5). 59/61 controls were also approved, suggesting 196 
a low per-TF false-negative rate. 197 

The 177 Codebook TFs for which there are approved experiments are dominated by the 198 
C2H2-zf domain class, for which 67% (121/180) had approved experiments. These 199 
proteins typically contain an array of C2H2-zf domains that bind DNA in tandem22. 200 
Some C2H2-zf domains can bind RNA, protein, or other ligands23-25. The Codebook 201 
outcome indicates that most C2H2-zf proteins are indeed DNA-binding, although it does 202 
not rule out their other activities. Experiments for roughly half (50/103, or 49%) of 203 
Codebook TFs in other established DBD classes were also successful. Lack of 204 
approved experiments for a putative TF could represent false negatives, which could 205 
arise from lack of an obligate binding partner, a requirement for epigenetically modified 206 
DNA, lack of requisite post-translational modification in our experiments, or limitations of 207 
the methods. Alternatively, they could represent true negatives which are not 208 
unexpected; some bona fide DBD classes are known to have subtypes that lack 209 
sequence specificity (e.g. HMG26). Among the Codebook proteins lacking a well-210 
established DBD, only 6/49 (12%) yielded approved experiments (and thus motifs) 211 
(discussed in more detail below), suggesting that many of them may indeed lack 212 
sequence specificity.  213 

We emphasize that our approval process was intentionally conservative, and many 214 
experiments were not approved despite being informative in some way (e.g. ChIP-seq 215 
yielding reproducible peaks, but no motif, which could indicate indirect association 216 
through other TFs or chromatin binding; these are explored in an accompanying 217 
manuscript15). We also note that our success criteria assume that the sequence 218 
preferences of TFs can be represented by PWMs. It is conceivable that uncharacterized 219 
TFs could instead recognize interspersed sequence patterns or other features of the 220 
DNA sequence that are not readily captured by PWM models or short k-mers.  221 
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Diversity and complexity among Codebook TF motifs 222 

To gain an overview of the Codebook TF motifs, and to generate a representative PWM 223 
set, we next used expert curation to select a single PWM that is (i) high-performing 224 
among all “approved” experiments17 (see Methods), (ii) representative of other high-225 
performing PWMs for the same TF, (iii) consistent with expectation for the class of TF 226 
(e.g. the C2H2-zf “recognition code”27), and (iv) high information content (IC) (i.e. with a 227 
“tall” sequence logo), provided it does not compromise PWM performance. The PWM 228 
selected in this process is typically not the highest scoring by criterion (i) alone, as our 229 
extensive process typically generated dozens of high-performing PWMs from which to 230 
choose, for approved experiments17. Table S6 shows sequence logos for these curated 231 
PWMs and their properties; the PWM IDs are given in Table S2, and all PWMs can be 232 
downloaded (see Data Availability). Notably, no data type or motif derivation method 233 
stood out as highly preferred by the curators, who were blinded to the source (i.e. data 234 
type and derivation method for the PWMs). 235 

Figure 2 shows an overview of similarity28 among the curated PWMs. Small clusters 236 
along the diagonal mostly correspond to the handful of paralogs analyzed (e.g. TIGD4 237 
and 5, SP140 and SP140L, DACH1 and 2, CAMTA1 and 2, and ZXDA, B, and C). In the 238 
middle of Figure 2 is a set of eight TFs that mainly bind CG dinucleotides, leading to 239 
similarity in DNA-binding, and in the lower right is a group of five AT-hook proteins that 240 
have similar preferences to A/T containing sequences. Most of the Codebook TF PWMs 241 
are unlike each other, however, and display a low similarity to any other known PWM17 242 
(examples are shown in Figure 2). This result is partly explained by the large number of 243 
C2H2-zf proteins, which are known to differ in their DNA-contacting “specificity 244 
residues”29. Regardless, a large majority of the Codebook TF motifs are apparently new, 245 
and all previous analyses in human regulatory genomics would have been unaware of 246 
the ~150 visibly distinct, curated motifs described here.  247 

For dozens of TFs, the curated PWM had a degenerate appearance, i.e. there are few 248 
or no positions at which a specific base is absolutely required. Indeed, for fifty-two of 249 
them, no individual base at any position achieved a bit score of >1.4 in the curated 250 
PWM (equivalent to roughly >10% of aligned binding sites having a variant base at that 251 
position) (Figure S2A). Systematically increasing the information content (IC) (i.e., 252 
“unflattening” the sequence logo, and increasing the specificity) of the low-IC curated 253 
PWMs almost universally reduced performance (Figure S2B,C), indicating that the 254 
degeneracy is required for accuracy. We also found that, overall, IC is not predictive of 255 
motif performance in the benchmarking effort17. It is counterintuitive that degeneracy 256 
(i.e. lower inherent specificity) would lead to better predictive capacity, but we note that 257 
similar findings by others support the validity of the result30-32.  258 

We propose several explanations for this observation. First, lower IC tends to make 259 
affinity distributions across all possible k-mers less digital (i.e. it removes all-or-nothing 260 
dependence on specific base positions), which could facilitate the gradual evolution of 261 
cis-regulatory sequences. Second, homomeric binding (possibly via “avidity”33), which a 262 
body of evidence suggests is a widespread mechanism14,34, should reduce reliance on 263 
optimal specificity to a single binding site, and strong binding sites may evolve more 264 
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readily if weak binding sites tend to occur more frequently (and are selected). Third, 265 
motif degeneracy may be a consequence of forcing a single PWM to represent the 266 
specificity of TFs that, in reality, recognize multiple related motifs. For example, the 267 
dependency of binding energy on both enthalpy and entropy can lead to two distinct 268 
sequence optima35; in another example, different spacings of bZIP half-sites cannot be 269 
represented by a single PWM36. Consistent with this last possibility, the accompanying 270 
manuscript17 finds that combining multiple PWMs (by Random Forests) typically 271 
produces models that are more accurate across platforms, relative to any single PWM.  272 

The C2H2-zf proteins present a special case in which a single TF might be anticipated 273 
to require multiple PWMs, because long C2H2-zf domain arrays could utilize different 274 
segments of the array to bind to either overlapping or distinct sites37. Until now, 275 
however, examples were sparse and anecdotal. In an accompanying manuscript14, we 276 
present evidence that C2H2-zf proteins often bind multiple sequence motifs that 277 
correspond to different subsets of the extended motif predicted by the recognition code 278 
(i.e. protein-sequence-based computational prediction of C2H2-zf-domain specificities), 279 
consistent with varying usage of the C2H2-zf domains at different genomic binding sites 280 
being commonplace.  281 

Underappreciated DNA-binding domains 282 

The six Codebook proteins that were lacking canonical DBDs, yet yielded “approved” 283 
experiments and thus motifs (CGGBP1, NACC2, TCF20, PURB, DACH1, and DACH2), 284 
appear to represent cases of DBDs that were poorly described at the outset of the 285 
study. We and others have recently described CGGBP1 as the founding member of an 286 
extensive family of eukaryotic TFs derived from the DBDs of transposons38,39. NACC2 287 
contains a BEN domain, which over the last decade has been clearly established as a 288 
sequence-specific DBD40,41. TCF20 contains a potential AT-hook42 (below the 289 
conventional Pfam scoring threshold), and yielded an AT-hook-like motif. PURB is 290 
composed largely of three copies of the PUR (Purine-rich-element binding) domain; it 291 
yielded a motif on four different PBM assays (resembling ACCnAC/GTnGGT), which is 292 
unlike its previously established binding site (CTTCCCTGGAAG)43. The sequence 293 
specificity of this protein thus remains enigmatic.  294 

DACH1 and DACH2 are paralogs that yielded very similar motifs (Figure 3A). They 295 
contain a SKI/SNO/DAC domain, shared with their Drosophila counterpart Dachshund, 296 
from which their name is derived. A Forkhead-like motif (different from the one we 297 
obtained) was previously described for DACH144, but to our knowledge, no other 298 
homolog has been reported as being sequence-specific. The SKI/SNO/DAC domain 299 
includes a helix-turn-helix (HTH), a feature found in many DBDs. Alphafold345 predicts 300 
that the HTH inserts into the major groove precisely at the PWM-predicted binding site 301 
within an extended DNA sequence (Figure 3A). Interpro46 lists over 7,000 proteins 302 
containing SKI/SNO/DAC domains, entirely in metazoans, with specific expansions in 303 
several fish lineages, particularly barbels and salmonids47 (Figure 3A). SKI/SNO/DAC 304 
therefore may represent an expansive class of poorly-characterized DBDs. 305 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.622097doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.622097
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 
 

In addition to these six examples, the sequence specificity of SLC2A4RG and ZNF395 – 306 
both C2H2-zf proteins – appears to reside in their C-clamp. The domain is also present 307 
in TCF7L and LEF proteins, where it is known to bind DNA alongside their HMG 308 
domains48. Alphafold345 predicts that the single C2H2-zf domains in SLC2A4RG and 309 
ZNF395 are not the main determinants of DNA-binding (although they may contact the 310 
major groove), but instead that a region corresponding to the C-clamp model on the 311 
SMART database of protein domains49 binds the major groove precisely at the PWM-312 
predicted binding site within an extended DNA sequence (Figure 3B). There is one 313 
additional human TF matching the C-clamp model, ZNF704, with a published PWM that 314 
is virtually identical to that of SLC2A4RG and ZNF395 (CCGGCCGG)50 (Figure 3B). 315 
Like the SKI/SNO/DAC domain, the C-clamp is found broadly across animals46, and 316 
may therefore also represent a large class of unexplored DBDs. 317 

Widespread contribution of transposons to the human TF repertoire 318 

Sixteen of the Codebook TFs (and two controls) that yielded approved experiments 319 
possess a DBD that has been co-opted from a DNA transposon: CGGBP139, five 320 
proteins containing BED-zf domains51, six with the related CENBP or Brinker domains52, 321 
two with transposon-derived Myb/SANT domains53, one with a MADF domain, and 322 
FLYWCH154. The PWMs obtained for CENPB/Brinker TFs are often long (Figure 3C). A 323 
striking example is JRK, a TF that is derived from an ancient domesticated Tigger 324 
element DBD55, and is found broadly in mammals47. All DNA transposons, including 325 
Tigger, have been extinct in the human lineage for over 40 million years56. Remarkably, 326 
genomic binding of JRK is enriched for binding to a subset of Tigger elements, and the 327 
consensus sequence for these same elements has a PWM-predicted binding site for 328 
JRK in the terminal repeats of these elements (Figure 3C), consistent with its presumed 329 
ancestral role in transposition. We speculate that JRK may represent a case of co-330 
option in which the same DNA transposon simultaneously introduced both a multitude of 331 
cis-regulatory elements, and the TF that binds them. 332 

The Codebook data also underscore that many TFs bind preferentially and intrinsically 333 
to specific repeat classes. These interactions are explored in greater detail in the 334 
accompanying manuscripts14,15. Binding to endogenous retroelements is known to be a 335 
common property of the KRAB-domain-containing C2H2-zf (KZNF) subfamily in vivo27, 336 
but until now it has not been clear that the recruitment is defined almost entirely by the 337 
sequence specificity of the KZNFs alone. The combination of assays run here, 338 
particularly GHT-SELEX, extends earlier observations by pinpointing the exact binding 339 
sites, and demonstrating that these proteins typically have high specificity for these 340 
elements, because they bind preferentially to precisely the same elements in vitro. 341 
Binding preferentially to retroelements is not limited to KZNFs, but includes other C2H2-342 
zf proteins and other classes of TFs. For example, binding sites for TIGD3, a 343 
transposon-derived TF which is closely related to JRK, are enriched for binding to L1s, 344 
SINEs, and DNA transposons15.  345 
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Codebook PWMs predict TF binding in independent data and across cell types 346 

The Codebook project was conducted over a period of nearly six years, and during this 347 
time, several large-scale studies aimed at systematic ChIP-seq analysis of human TFs 348 
(e.g. ENCODE) were published11,57,58. Combined, the ENCODE data portal59 and 349 
GTRD60, a compilation database, contain ChIP-seq and ChIP-exo peak data for 214 of 350 
the Codebook proteins, including 105 that were among the 166 with either “approved” 351 
Codebook ChIP-seq experiments (Table S7), or with ChIP-seq replicates that yielded 352 
reproducible peak sets15. We grouped both types of ChIP-seq data in our study and 353 
compared them to the external data. We first asked whether Codebook peak sets 354 
overlapped with these external peak sets for the same TF. Among the major ENCODE 355 
cell lines, the highest overlap values (Jaccard index) were found with experiments 356 
utilizing the same cell type (HEK293 cells) (Figure S3A,B). Slightly lower Jaccard 357 
values were obtained for experiments performed in HepG2 and other cell types, which 358 
would be expected given the altered chromatin profiles in different cell types, but over 359 
one-third were still clearly nonrandom (Jaccard > 0.1) (Figure S3C). Overlap scores 360 
with published K562 data, which dominate the external ChIP data due to a single large 361 
ChIP-exo study58, were much lower, overall (Figure S3D). We conclude from these 362 
analyses that the Codebook ChIP-seq data provide mainly new information. 363 

We next asked how effectively the Codebook PWMs predict binding of TFs to peak sets 364 
in the published datasets. Consistent with the fact that the Codebook and external 365 
peaks often overlap, the Codebook PWMs had a median AUROC of 0.71 on the 366 
external HEK293 data, and were nearly as effective in predicting peak sets in other cell 367 
types (Figure S3E), illustrating that the Codebook PWMs are predictive across studies 368 
and cell types. We also asked how the predictive capacity of the Codebook PWMs 369 
compared to PWMs that appear in the latest versions of Factorbook12, JASPAR61, and 370 
HOCOMOCO13 (Table S8). We identified 19 TFs with at least one successful Codebook 371 
ChIP-seq experiment and Codebook PWM, at least one external ChIP-seq experiment, 372 
and at least one PWM from an external database. In most cases, both the Codebook 373 
and external PWMs scored well on both Codebook and external peak sets (Figure 374 
S3F,G), supporting the validity of both PWMs and both peak sets. For seven proteins, 375 
low scores were obtained in at least some tests, however. For four of them, the 376 
independent Codebook in vitro data support the Codebook PWM; for two of the others, 377 
the external PWM scores poorly on Codebook peaks, while the Codebook PWM scores 378 
well on Codebook and external peak sets (Figure S3H). We conclude that the 379 
Codebook PWMs are generally more reliable than those published previously, likely 380 
because they are aided by confirmation of PWM performance across multiple data 381 
types that were not available in previous studies 382 

Codebook TF binding sites suggest functions for tens of thousands of conserved 383 
elements 384 

Together, the Codebook assays and PWMs can be used to pinpoint genomic loci that 385 
are bound directly by each TF in vivo (i.e., in ChIP-seq), by identifying those that are 386 
also bound in vitro (i.e., GHT-SELEX), and that contain a PWM hit, thus allowing base-387 
level resolution. We refer to these as “triple overlap” (TOP) sites, which are taken as the 388 
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overlap of the three sets (ChIP-seq, GHT-SELEX, and PWM hits) after applying 389 
optimized score thresholds for each (see Methods for details). This process produced a 390 
median of 455 TOP sites for 101 Codebook proteins, and a median of 3,014 TOP sites 391 
for 36 control TFs.  392 

To gauge functionality of the TOP sites, we examined whether the pattern of per-393 
nucleotide conservation13 at each site is consistent with the TF’s sequence preference 394 
driving local sequence constraint (see Methods for details). Figure 4A shows several 395 
examples illustrating that this approach readily detects apparent conservation of PWM 396 
hits, for both control and Codebook TFs. In total, 85/101 Codebook TFs (as well as 397 
33/36 controls) displayed conservation of at least one TOP site (FDR < 0.1), and in total 398 
we identified 121,785 such conserved TOP sites (“CTOP” sites) (83,621 for Codebook 399 
TFs and 38,164 for controls), encompassing 1,577,298 bases. These results, 400 
summarized in Figure S4 and in greater detail in an accompanying manuscript15, 401 
provide strong support for the functional importance of Codebook TF binding sites in the 402 
genome. 403 

Many of the CTOP sites were either overlapping or adjacent to CTOP sites for the same 404 
or other TFs. We grouped them into 50,375 clusters, based on proximity (allowing a 405 
maximum of 100 bases, to capture binding to different segments of what may be the 406 
same regulatory element). Codebook TFs with the largest number of CTOP sites were 407 
typically associated with CpG islands, which represented 37.5% of all the clusters 408 
(Figure 4B). The majority of protein-coding promoter CpG islands (58.7%, 409 
7,892/13,427) contained CTOP sites, with an average of 4.3 CTOP sites per CpG 410 
island. Moreover, 59/101 (58%) of all Codebook TFs had at least one CTOP site within 411 
a CpG island. An example CTOP that overlaps a CpG island is shown in Figure 4C.  412 

The extent of specific, conserved, and intrinsic occupancy of CpG islands by many TFs 413 
of diverse classes is, to our knowledge, unexpected. The abundance of CG 414 
dinucleotides in CpG islands has been attributed primarily to their lack of methylation in 415 
the germline, rather than primary sequence constraint62. There is one class of TFs (the 416 
CXXC proteins) that is known to specifically recognize unmethylated CG dinucleotides 417 
and to modulate chromatin at promoters62, and we do observe this property for the 418 
CXXC proteins KDM2A, CXXC4, FBXL19, and TET3. Intriguingly, however, many of the 419 
Codebook TFs with CTOP sites in CpG islands recognize elaborate C/G rich motifs, 420 
rather than CG dinucleotides (Figure 4C). 421 

CTOP clusters were also found in non-CpG island protein-coding promoters (Figure 422 
4B) (855/6,606 such promoters, defined as -1000 to +500 relative to TSS). These 423 
clusters are not dominated by any specific TFs, although some TFs are more prevalent 424 
than others (e.g. CTOPs for the controls ELF3 and CTCF, and Codebook TF ZBTB41, 425 
are each found in ~10% of all non-CpG promoters) (Figure 4D). Figure 4E shows an 426 
example of one such non-CpG promoter cluster, occurring early in the first intron of the 427 
TSPAN31 gene, which exhibits apparent conserved spacing and orientation of multiple 428 
Codebook TF binding sites. In contrast, CTOP clusters outside of promoters and CpG 429 
islands often contain just one or two CTOP sites (Figure 4B). One example is a very 430 
strongly conserved intergenic ZNF689 binding site found in an L1ME1 transposon; this 431 
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site is just over 100 bp from a predicted enhancer containing a CTCF binding site 432 
(Figure 4F).  433 

A total of 42,200 distinct CTOP clusters (out of 50,375) overlapped catalogued 434 
conserved elements (UCSC PhastCons track), thus indicating a likely biochemical 435 
function for these elements. For the remaining 8,175, detection of functional elements 436 
from base-level scores is now augmented by the TF binding information. Relatively few 437 
CTOP clusters overlapped with known enhancers, however: only 4,768 are found in the 438 
extensive GeneHancer annotation set63, and 2,819 overlap with HEK293 enhancers ( 439 
defined by ChromHMM15). This low overlap could be attributed to the relatively rapid 440 
evolution of enhancers64, or to lack of complete knowledge of enhancer identities. We 441 
also note that, even for well-studied TFs, most TOP sites were classified by our 442 
methods as not conserved, and that roughly half of the Codebook TFs had few or no 443 
conserved TOP sites (particularly the aforementioned retroelement-binding KZNFs) 444 
(Figure S4). Lack of conservation does not demonstrate that a sequence is not a 445 
functional binding site, however, as turnover in functional genomic binding sites of TFs 446 
is common65. This result is nonetheless consistent with the notion that many TF binding 447 
sites are coincidental, redundant, or serve(d) a purpose other than host genome 448 
regulation. In the accompanying manuscript15, we explore potential functions for 449 
proteins that frequently bind non-conserved sites in genomic “dark matter”. 450 

Relationships between Codebook TFs, SNVs and chromatin 451 

Because the CTOP sites are evolutionarily constrained, we reasoned that they might 452 
also be less frequently associated with human sequence variation, and indeed, 92.6% 453 
of CTOPs lack SNPs and other common short variants, while only 82.1% of 454 
unconserved TOPs are variant-free. Both are depleted of common SNPs, however, 455 
when examined separately (Fisher’s exact test p ~ 2.4x10-307 and odds ratio = 0.657, p 456 
~ 0 and ratio = 0.872, respectively). The CTOP SNPs also have a lower impact on PWM 457 
scores: on average, the relative PWM score for SNP-containing CTOP sequences 458 
declines by 0.027, while PWM scores for unconserved TOPs decline by 0.057 (median 459 
declines of 0.011 and 0.0285, respectively). CTOPs are furthermore depleted of 460 
common short indels (Fisher’s exact test, p ~ 1x10-150, ratio = 0.77), while unconserved 461 
TOPs (which often overlap with simple repeats) are enriched (p < 1x10-150, ratio = 462 
3.318), relative to genomic background. The depletion of common SNPs is consistent 463 
with ongoing purifying selection of CTOPs within recent human populations, and the 464 
association of SNPs with specific TFs should provide a ready means for directed study 465 
of the functionality of the encompassed SNPs.  466 

We reasoned that the GHT-SELEX and ChIP-seq experiments would also allow direct 467 
assessment of allele-specific binding (ASB) of TFs, by quantifying allelic imbalance of 468 
read counts at SNVs. We note that the data were not initially intended for this purpose, 469 
and caveats included relatively low read counts, linked SNVs, and the fact that HEK293 470 
has an abnormal karyotype and was derived from a single individual. Nonetheless, 471 
there was sufficient coverage in the sequencing data to make 925,003 variant calls 472 
overlapping with dbSNP common SNPs (889,820 variant calls from 362 ChIP-seq 473 
experiments and 35,183 from 374 GHT-SELEX multi-cycle experiments), at 122,364 474 
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unique genomic locations (Figure 5A, Figure S5A, Table S9). 10,009 of these genomic 475 
locations were associated with 12,056 ASBs of 160 Codebook TFs and 46 positive 476 
controls in ChIP-seq (10,571 ASBs) or GHT-SELEX (1,485 ASBs) samples, i.e. there 477 
was a significant imbalance in the sequencing reads for the two alleles overlapping the 478 
respective SNPs. Among these ASBs, 3,569 also overlapped a PWM hit for the TF, and 479 
for 2,367 of them, the read count imbalance was concordant with the change in PWM 480 
scores, i.e. the allele with the higher read count also has a higher PWM score (Figure 481 
S5A,B, Table S9). (ASBs that do not overlap a PWM hit may be linked to a “causative” 482 
SNV, which may act indirectly). ASBs for control TFs were strongly enriched with 483 
previously-known ASBs of those TFs (ADASTRA database, odds ratio of 5.7, p < 10-15, 484 
Fisher's exact test)66, and nearly three-quarters of ASBs coincided with eQTLs (GTEx 485 
database, odds ratio of 1.2, p < 10-15, Fisher's exact test)67 (Figure S5C), supporting the 486 
reliability of the detected ASBs as well as the validity of detected PWM hits. 487 

Compared to whole-length peaks, TOP regions had an increased density of variant calls 488 
(~258 sufficiently covered variants per Mb in TOPs, versus 52 per Mb for peaks), and a 489 
larger fraction of ASB calls in SNVs (30%, compared to 9% for full peaks), presumably 490 
due to detection bias from higher ChIP-Seq or GHT-SELEX coverage at the TOPs. 491 
Nonetheless, variants in TOPs had a significantly higher predicted effect on protein 492 
binding (i.e. PWM score change) for both controls and Codebook TFs (p < 2.22x10-5 493 
and p < 2.98x10-12, Mann-Whitney U test), relative to full peaks or non-ASB SNPs 494 
overlapping PWM hits (Figure 5B). Thus, the ASBs in TOPs are more likely to induce 495 
an effect than those elsewhere within peaks, presumably because they represent direct 496 
TF binding. 497 

Among the mechanisms connecting TF binding to biological function are TF-mediated 498 
chromatin state changes. Hence, in heterozygotes, variant-dependent TF binding may 499 
co-occur with allele-specific chromatin accessibility variants (ASVs) (Figure 5A), which 500 
are SNVs with imbalanced read counts in ATAC-seq and/or DNase-seq experiments. 501 
To ask whether the Codebook TFs may be involved in control of ASVs, we utilized the 502 
UDACHA database, which contains ASVs from 577 ATAC-seq and 321 DNase-seq 503 
datasets from individual cell types68 (Table S9, Figure S5D). Using a multi-tiered 504 
procedure (see Methods), we identified cases in which (1) ASVs in a specific cell type 505 
overlap significantly with PWM hits for a TF in the Codebook motif collection, (2) the 506 
change in the PWM score is concordant with the read imbalance in the ASVs, (i.e. 507 
stronger predicted binding is associated with more accessible chromatin), and (3) the 508 
concordance is significant across cell types detected in step (1). This procedure 509 
identified 53 TFs whose PWM hits were found often at, and concordant with, ASVs 510 
(Figure S5E). Twenty of these TFs were positive controls including well-known pioneers 511 
or activators (such as SOX2, GABPA, or JUN/FOS-family TFs), while 33 were 512 
previously unexplored Codebook TFs, including ZNF70, GRHL3, MYPOP, SP140(L), 513 
and DMTF1. An example ASV for ZNF70, in a region upstream of the PTMS gene that 514 
is annotated with multiple ENCODE enhancer elements is shown in Figure 5C. 515 

For 34 of these 53 TFs, there was at least one ASV-overlapping TOP site (the non-TOP 516 
sites may represent sites that are not bound in HEK293). To assess whether ASVs in 517 
PWM hits have a greater effect at TOP sites than in other regions, we first removed 518 
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cases in which the TF does not appear to impact chromatin directly, by grouping the 519 
TFs into ASV-concordant (i.e. having overall concordance between ASVs and PWM hits 520 
in ChIP-seq or GHT-SELEX peaks; 18 TFs), and others (16 TFs). We separated the 521 
ASV-concordant group into Codebook and control TFs. For each of the groups, we then 522 
calculated the concordant-to-discordant ratio for loci that corresponded to PWM hits that 523 
are non-ASV for that TF, ASV, ASV in TF’s peaks, and ASV in TOPs, and observed an 524 
overall monotonic increase in concordance (Figure 5D). Thus, the highest-confidence 525 
Codebook TF binding sites for these TFs are those most likely to impact the chromatin 526 
state. Moreover, the fraction of ASVs within PWM hits also increased monotonously as 527 
the ASV confidence increased, and the ASVs preferably occur at binding site positions 528 
that are most important for the PWM score (Figure 5E, Figure S5F), further supporting 529 
relevance of the TF sequence preferences.  530 

Overall, the Codebook motifs provide a valuable resource for SNV interpretation, 531 
including identification of mechanisms that underpin variation in chromatin and 532 
transcription. 533 

Lessons from Codebook: prospects for a complete human TF motif collection 534 

Codebook yielded several clear outcomes, and guidance for future efforts. The high 535 
success rate is particularly striking. We obtained motifs for 177 previously 536 
uncharacterized human TFs, a number larger than the entire TF repertoire for many 537 
eukaryotes69. The selected PWMs for most of these TFs are unique, and unlike any 538 
previous TF motif. Most are from C2H2-zf proteins, and most C2H2-zf proteins analyzed 539 
were successful. Thus, a majority of putative and uncharacterized human TFs are bona 540 
fide TFs, and not annotation errors. We envision that the data produced will be broadly 541 
and immediately useful for a variety of applications. Motifs (especially as PWMs) are a 542 
standard component of the computational genomics toolkit, due to their utility in a range 543 
of tasks ranging from identification of key regulatory factors to building and interpreting 544 
models of gene expression70-73. For example, differential binding of TFs to noncoding 545 
SNVs (Single Nucleotide Variants) is thought to be a major mechanism by which these 546 
variants contribute to phenotypic differences74, and the Codebook data therefore 547 
provide vital new information for the analysis of cis-regulatory variation. 548 

A key technical demonstration of the Codebook project is that the simultaneous 549 
application of multiple experimental strategies and multiple motif-derivation and motif-550 
scoring strategies was highly beneficial. No single experiment type or data analysis 551 
approach dominated all others, or was universally successful, although specific assays 552 
were more or less advantageous for different classes of proteins (as evident in Figure 553 
1). For example, PBMs were uniquely successful with AT-hook proteins, while ChIP-seq 554 
and SELEX variants were most successful for C2H2-zf proteins. We caution that there 555 
are confounding variables limiting what conclusions can be drawn regarding the 556 
strengths and weaknesses of experimental platforms. The protein production and 557 
purification method can differentially impact success of specific DBD classes, even 558 
when the same assay is used, and the different assays we employed were tied to 559 
different affinity tags and expression systems. Data pre-processing (i.e. read filtering 560 
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and background estimation) is an additional variable that we did not systematically 561 
explore, but is known to impact all of the assays used here. 562 

As noted above, a subset of the Codebook TFs, as well as other poorly characterized 563 
TFs, have been analyzed by others since our study began. To evaluate the current 564 
scope of known human TF specificities, we surveyed JASPAR, HOCOMOCO, and 565 
Factorbook for PWMs for putative TFs that were not included in this study or not found 566 
among 177 Codebook successes. These databases reported PWMs for 107 proteins, 567 
63 of which we had tested, and 44 were among the 95 putative TFs not included in our 568 
experiments. We manually curated these external PWMs, using procedures similar to 569 
those we applied to our own data, to assess whether they are likely to represent the 570 
bona fide specificity of the TF analyzed. Many of them were comprised of simple 571 
repeats (which are common artifacts in virtually all assays) or appeared to correspond 572 
to indirect binding and/or recruitment by other TFs in ChIP-seq (See Table S8 for 573 
annotations and classification, and Figure S1 for examples of nonspecific, concordant, 574 
and likely correct PWMs in the external datasets). 575 

Based on this curation, 33 additional human TFs (i.e. beyond the 177 described here) 576 
have at least one plausible motif available in datasets that have been performed since 577 
our 2018 TF census1, leading to a total of 1,421 human TFs now with characterized 578 
sequence specificities (Figure 6 and Table S10). Altogether, only 175 proteins with 579 
conventional DBDs now lack known sequence specificity. Not all proteins with such 580 
domains are necessarily TFs; for example, one systematic trend we observed is that 581 
almost all 36 proteins we tested with only a single C2H2-zf domain failed in every assay 582 
(Figure 6). At the same time, however, new DBD classes continue to appear, such as 583 
the aforementioned BEN, CGGBP, Dachshund, and C-clamp. Some TFs may bind only 584 
to methylated DNA, and ongoing advances in the prediction of protein and protein-DNA 585 
structures45 have the potential to identify additional candidates for sequence-specific 586 
DNA binding. Thus, while completion of the objective to obtain a motif for every human 587 
TF now appears much closer, the list of likely human TFs continues to evolve. 588 

Many of the Codebook TFs are now among the best characterized human DNA-binding 589 
proteins in terms of their sequence specificity. As illustrated in the accompanying 590 
papers (Table S1), and consistent with previous benchmarking efforts18,32, validation 591 
across platforms can lead to very different conclusions regarding PWM reliability. 592 
Moreover, obtaining in vivo and in vitro binding to the genome facilitates 593 
disentanglement of direct and indirect binding, as well as the contribution of the cellular 594 
environment. Obtaining in vitro binding data to both genomic-sequence and random-595 
sequence DNA can provide insight into the importance of local sequence context. Only 596 
a small handful of the 1,000+ previously characterized TFs have such a combination of 597 
data types. A much better perspective on human gene regulation and genome function 598 
and evolution could presumably be obtained from generation of such data for all human 599 
TFs.  600 
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Figure 1. Codebook project overview. Top, Categories of 393 TFs assayed and their 
associated constructs. Middle, Graphical summary of assays employed. Bottom left, 
Example of performance (as AUROC) of the best performing PWM for TPRX1, for each 
combination of experiment type – one for motif derivation (rows), and one for motif 
testing (columns). Bottom right, Depiction of the approval process for each individual 
experiment, including comparison of motifs and/or binding sites between replicates, 
evaluation of motifs across experiments, and motif similarity between related TFs (see 
Experiment evaluation by expert curation). Heatmap shows approved experiments 
for all 393 TFs across all experiment types. 
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Figure 2. Similarity of Codebook TF motifs. Symmetric heatmap displaying the 
similarity between expert-curated PWMs for each pair of Codebook TFs, clustered by 
Pearson correlation with average linkage. The PWM similarity metric is the correlation 
between pairwise affinities to 200,000 random sequences of length 50, as calculated by 
MoSBAT28. Pullouts and labels illustrate specific points in the main text. 
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Figure 3. Neglected DNA-binding domains. Overview of new motifs for previously 
understudied TF families. A, Top, Number of DACH1 and DACH2 orthologs (union of 
one-to-one and one-to-many) across Ensembl v111 vertebrates and selected 
invertebrates. Species order reflects the Ensembl species tree. Bottom, AlphaFold3-
predicted structure of the DACH1 SKI/SNO/DAC region (residues 130 – 390) bound to 
an HT-SELEX ligand sequence with a high-scoring PWM hit. B, Top, Sequence logos 
and sequence relationships of human C-Clamp domains (*ZNF704 motif from 50). 
Bottom, AlphaFold3-predicted structure of two full-length SLC2A4RG proteins bound to 
a CTOP sequence with flanking sequences (chr17:48,048,369-48,048,401), and four 
Zn2+ ions (grey). The remainder of the proteins (beyond the C-clamp and C2H2-zf 
domains) are hidden, for visual simplicity. C. Left, Sequence logos of human TFs that 
are derived from the domestication of Tigger and Pogo DNA transposon DBDs 
elements and have known DNA binding motifs. Tree is a maximum-likelihood phylogram 
from FastTree92, using DBD sequence alignment with MAFFT L-INS-I93, rooted on 
POGK, which is derived from an older family of Tigger-like elements94,95. Sequence 
logos are Codebook-derived, except for CENPB96. Right, average per-base read count 
over Tigger15a TOPs in the human genome, for JRK ChIP-seq (orange) and GHT-
SELEX (purple), with sequences aligned to the Tigger15a consensus sequence. JRK 
PWM scores at each base of the Tigger15a consensus sequence are shown in black 
(plus strand) and grey (minus strand). 
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Figure 4. Conservation of Codebook TF binding sites and association with 
genomic features. A, Heatmaps of phyloP scores over the PWM hit and 50 bp flanking 
for TOP sites for four TFs (two controls and two Codebook TFs). Statistical test results 
(see main text and Methods) are indicated at right. B, Left, Donut plot displays the 
proportion and number of clusters of conserved TOP (CTOP) sites that overlap the 
genomic features indicated. Middle, Bar plot displays the mean # of individual CTOPs 
contained within clusters that overlap the examined genomic regions. C. A 1,420-base, 
CpG-island-overlapping CTOP cluster (chr12:120368293-120369713). Zoonomia 241-
mammal phyloP scores and Multiz 471 Mammal alignment PhastCons Conserved 
Elements are shown. D, Bar plot of the frequency of TFs with CTOPs that occur most 
frequently in CTOP clusters that overlap CpG and non-CpG protein coding promoters, 
respectively. E, CTOP cluster overlapping the non-CpG promoter at chr12:57,745,278-
57,745,396. F, CTOP site for the KRAB-C2H2-zf protein ZNF689, overlapping an 
L1ME4a located at chr16:25,403,631-25,403,717.  
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Figure 5. Allele-specific transcription factor binding and chromatin accessibility.  
A, Scheme of the analysis: identification of allele-specific binding sites (ASBs) from 
Codebook ChIP-Seq and GHT-SELEX data and annotation of allele-specific chromatin 
accessibility variants (ASVs) with the Codebook motifs. B, Distribution of PWM score 
(log-odds) fold changes between alleles for non-ASB SNPs, ASBs in peaks, and ASBs 
in TOPs. Left, 32 positive control TFs, Right, 85 Codebook TFs. P-values: Mann-
Whitney U test. С. An example ASV for ZNF70, in chr12:6,763,200-6,765,850, around 
1kb upstream of the PTMS gene. Onset shows the exact location of the ASV (with A/G 
alleles) together with the corresponding PWM hit. Allelic read counts for three available 
ATAC- and DNase-seq samples are shown on the side. D. The ratio of concordant-to-
discordant PWM hits for <SNP, TF> pairs for non-ASVs (red), all ASVs (yellow), ASVs 
overlapping with peaks (blue), and ASVs in TOPs (green). P-values: Fisher's exact test. 
E. Left, Fraction of ASVs overlapping with PWM hits for four example TFs, using 4 
different thresholds on ASV significance: all SNPs (blue), 25% FDR ASVs (yellow), 10% 
FDR ASVs (orange), and 5% FDR ASVs (red). Right, Fraction of ASVs at each location 
within the genome-wide PWM hits of the representative TFs using four thresholds 
(same colors as in bar plots). 
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Figure 6. Motif coverage of human TFs, by DBD family. TFs are categorized into 
structural classes based on Lambert et al.1. See Table S10 for underlying information. 
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METHODS 601 

Plasmids and inserts. Sequences and accompanying information are given in Table 602 
S3, and the relationships between constructs, samples, and experiments are compiled 603 
in the information provided online at codebook.ccbr.utoronto.ca. Briefly, we selected 604 
Codebook TFs (and their DNA-binding domains catalogued) from information 605 
accompanying Lambert 20181) and posted at https://humantfs.ccbr.utoronto.ca. Inserts 606 
named with an “-FL” suffix correspond to the full-length ORF of a representative isoform 607 
of the protein. Those with a “-DBD” suffix contain all of the predicted DBDs in the protein 608 
flanked by either 50 amino-acids, or up to the N or C-terminus of the protein. Those with 609 
a “-DBD1”, “-DBD2” or “-DBD3” suffix contain a subset of the DBDs present in the 610 
proteins; these were designed manually, mainly for large C2H2-zf arrays. Inserts were 611 
obtained as recoded synthetic ORFs (BioBasic, US) flanked by AscI and SbfI sites, and 612 
subcloned into up to three plasmids: (i) pTH13195, a tetracycline-inducible, N-terminal 613 
eGFP-tagged expression vector with FLiP-in recombinase sites10; (ii) pTH6838, a T7-614 
promoter driven, N-terminal GST-tagged bacterial expression vector75, and (iii) 615 
pTH16500 (pF3A-ResEnz-egfp), an SP6-promoter driven, N-terminal eGFP-tagged 616 
bacterial expression vector, modified from pF3A–eGFP9 to contain the two restriction 617 
sites after the eGFP. 618 

Protein production. Each experiment used a protein expressed from one of the 619 
following systems: (a) FLiP-in HEK293 cells (catalog number: R78007), induced with 620 
Doxycycline for 24 hours, used for inserts in pTH13195; (b) PURExpress T7 621 
recombinant IVT system (NEB Cat.#E6800L), for inserts in pTH6838; or (c) SP6-driven 622 
wheat germ extract-based IVT (Promega Cat#L3260), for inserts in pTH16500. 623 

DNA binding assays. We followed previously-described methods for ChIP-seq10, 624 
PBMs32, and SMiLE-seq9. Detailed descriptions of GHT-SELEX, HT-SELEX, ChIP-seq, 625 
and SMiLE-seq data collection and initial analysis are found in the accompanying 626 
papers (Table S1). For PBMs, we analyzed proteins on two different PBM arrays (HK 627 
and ME), with differing probe sequences76. 628 

Data processing and motif derivation. The accompanying paper17 describes motif 629 
derivation and evaluation in detail. Briefly, after initial data processing steps, we 630 
obtained a set of 'true positive' (likely bound) sequences for each individual experiment. 631 
(721 / 4,873) experiments were removed at this step, due to a low number of peaks, or 632 
other technical issues, as documented in Table S5). We then applied a suite of tools to 633 
a training subset of the data from each experiment, and tested the resulting motifs on a 634 
test subset of the data from the same experiment, and also on the independent data for 635 
the same TF (i.e. the test sets from all other experiments done for the same TF). We 636 
employed a binary classification regime for all experiments and all motifs, and scored 637 
the motifs by a variety of criteria such as the areas under the receiver operating 638 
characteristic (AUROC) or the precision-recall curve (AUPRC).  639 

Experiment evaluation by expert curation. To gauge the success of individual 640 
experiments, we employed an “expert curation” workflow with an initial voting scheme in 641 
which a committee of annotators gauged whether individual experiments should be 642 
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“approved”, i.e. included in subsequent analyses. All experiments were examined by at 643 
least three annotators. A subcommittee (AJ, IVK, and TRH) jointly resolved all cases of 644 
disagreement among initial annotators (~300 experiments), and then reviewed all 645 
approved experiments. Annotators had available an early version of the MEX portal 646 
(https://mex.autosome.org) containing results of all PWMs scored against all 647 
experiments, and were tasked with gauging whether the experiments yielded PWMs 648 
that were similar across experiments, or scored highly across experiments. Annotators 649 
also considered whether the motif was consistent with those for other members of their 650 
protein family (e.g. BHLHA9 yielded an E-box-like motif, CAnCTG), and/or similar 651 
between closely related paralogs (e.g. ZXDA, ZXDB, and ZXDC all yielded similar 652 
motifs). We also considered whether (and how many) “peaks” were obtained from ChIP-653 
seq or GHT-SELEX, and whether these peaks were common to independent 654 
experiments (e.g. both ChIP-seq and GHT-SELEX). Annotators were further given a 655 
measure of similarity between Codebook PWMs and any PWMs in the public domain, 656 
as well as enrichment of known or suspected common contaminant motifs in any 657 
experiment.  658 

Post-evaluation peak processing. After identification of “approved” experiments, we 659 
re-derived peaks sets for ChIP-seq and GHT-SELEX experiments in order to obtain a 660 
single peak set for each TF, as described in the accompanying papers14,15. Briefly, for 661 
ChIP-seq we repeated the peak calling using MACS2 and experiment-specific 662 
background sets, using a procedure previously described10, then merged the peak sets 663 
for replicates of the same TF with BEDTools merge77 (see accompanying manuscript15: 664 
“ChIP peak replicate analysis and merging”). We derived GHT-SELEX peaks using a 665 
novel method that calculates enrichment of reads in each cycle, and treats different 666 
experiments as independent statistical samples in order to obtain a single enrichment 667 
coefficient per peak14. 668 

Expert motif curation. For this study, to identify a single representative PWM for each 669 
TF, we first compiled a set of highest-scoring candidate PWMs for each TF (as 670 
summarized above and elsewhere17, then ran additional tests with them, utilizing the 671 
reprocessed peak data, and manually evaluated the outputs. We first took the union of 672 
three sets of 20 PWMs for each TF: the 20 PWMs with the highest AUROC (as 673 
calculated elsewhere17) on (i) any approved ChIP-seq experiment for the given TF, (ii) 674 
any approved GHT-SELEX experiment for the given TF, and (iii) any approved HT-675 
SELEX experiment for the given TF. These PWMs were selected regardless of the data 676 
set from which they were derived. We then reassessed these PWMs against ChIP-seq 677 
and GHT-SELEX data with two parallel methodologies. First, we recalculated AUROC 678 
for each of the candidate top PWMs on the merged, thresholded sets of ChIP-seq 679 
peaks (P < 10-10)15 using AffiMX28 to score each peak. We generated negative sets 680 
using BEDTools shuffle77 with the -noOverlapping option to create sets of random 681 
genomic regions with the same number of peaks, and the same peak width distribution 682 
as the corresponding ChIP peak sets. We used the same technique to calculate 683 
AUROC values for GHT-SELEX, with thresholded peak sets (using a “Kneedle”78 684 
specificity value of 30 in the sorted enrichment values15). In parallel, we calculated the 685 
Jaccard index to measure the overlap between PWM hits (identified by MOODS79 with -686 
p 0.001) vs. the ChIP-seq peaks, and GHT-SELEX peaks, as two separate 687 
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measures. The overlap in each case was maximized by applying different thresholds on 688 
the peak sets and choosing the cutoff at which the Jaccard index was the highest14. We 689 
then applied expert curation (by a committee consisting of AJ, TRH, AF, KUL, RR, MA, 690 
and IY) to choose a single representative PWM with high performance on all compiled 691 
scores that, all else equal, also reflects reasonable expectation from the DBD class 692 
(including recognition-code predicted motifs, see accompanying manuscript14) and has 693 
high information content. 694 

Motif degeneracy analysis. We adjusted the information content (IC) of PWMs on a 695 
per-base-pair basis, with all locations boosted equally, by incrementally scaling weights 696 
(e.g. probabilities in the PWM) until the PWM reached an adjusted to an average IC of 1 697 
bit per base pair. The script, “logo_rescale.pl”, is available at 698 
https://gitlab.sib.swiss/EPD/pwmscan. 699 

Comparison to external peak sets and PWMs. We downloaded comparison peak 700 
sets from GTRD60 and ENCODE (4.12.2023)59, for all Codebook TFs. We then divided 701 
this date into four categories corresponding to cell type: HEK293/HEK293T, HepG2, 702 
K562, and other cells. Then, for each combination of TF and cell type category, we 703 
selected a single peak set. We preferentially selected the peak sets from GTRD, 704 
because it contains systematically derived peak sets; we also note that GTRD contains 705 
the majority of ENCODE consortium experiments, together with many non-ENCODE 706 
experiments. When multiple experiments were available for a TF in a cell type category, 707 
we selected the experiment with higher counts. If multiple computational methods had 708 
been used to derive peak sets for the selected experiment, we chose the peak set using 709 
a preferential order MACS, GEM, SISSRS, PICS and PEAKZILLA. See Table S7 for 710 
identifiers and metadata of the reference datasets. 711 

For PWM scoring, the external peak sets were used as downloaded, with the exception 712 
of peak sets that were generated with the GEM peak caller, which have a peak width of 713 
1, and were therefore expanded 250 bases in both directions. For Codebook data, we 714 
used the merged and thresholded Codebook ChIP peak sets as in “Expert motif 715 
curation”. We generated negative peak sets for each ChIP-seq peak set using 716 
BEDTools shuffle77 with the -noOverlapping option to create sets of random genomic 717 
regions with the same number of peaks and the same peak width distribution as the 718 
corresponding ChIP peak sets. We downloaded PWMs for all Codebook TFs from 719 
JASPAR80 (2024 version), HOCOMOCO13 (Version 12) and Factorbook12 (downloaded 720 
15.12.2023). We scanned Codebook and external peak sets (and corresponding 721 
negative sets) with the expert curated Codebook motifs as PWMs using AffiMX28, and 722 
calculated AUROC values. Additionally, for the 19 Codebook TFs with a successful 723 
Codebook ChIP-seq experiment, a Codebook PWM, an external ChIP-seq experiment, 724 
and an external PWM, we compared the performance of PWMs across the different 725 
peak sets as follows.  We first selected a single external PWM for each of the 19 TFs by 726 
scanning each PWM for a given TF on each external peak set for the same TF and 727 
identifying the PWM that produced the highest AUROC. We then used these highest 728 
scoring PWMs to scan the corresponding Codebook data and calculate AUROC values.  729 
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TOP (Triple Overlap) and CTOP (Conserved Triple Overlap) peak set analyses. To 730 
obtain TOP sites, we first identified thresholds for ChIP-seq peaks, GHT-SELEX peaks, 731 
and PWM score “peaks” that maximize the three-way Jaccard metric (overlap/union) of 732 
the three sets, with the thresholds calculated for each TF independently. We converted 733 
PWM hits (derived from MOODS79 using a p-value cut-off of 0.001) into peaks by 734 
merging neighboring matches with a distance less than 200bp and re-scoring them 735 
using the sum-of-affinities for clusters. We then identified TOPs were as peaks 736 
exceeding these thresholds in all three sets, and overlap in all three sets. To obtain 737 
CTOP sites, we then extracted PhyloP scores for each base at each TOP site (and 100 738 
flanking bases) from the Zoonomia consortium81, removed sites overlapping the 739 
ENCODE Blacklist82 or protein coding sequences (due to the skew in phyloP scores 740 
caused by codons), and applied three different statistical tests for significance of phyloP 741 
scores over the PWM hit: two that test correlation between the IC and the phyloP value 742 
at each base position of the PWM (using either Pearson correlation or linear 743 
regression), and one that tests for higher phyloP scores over the PWM hit (Wilcoxon 744 
test). Greater detail on these specific operations is given in the accompanying 745 
manuscripts14,15.  746 

Intersection of TOPs/CTOPs and genomic features. We first clustered all CTOPs 747 
using BEDTools merge77, with a max distance of 100 bp, then intersected with the 748 
following genomic feature sets: basic canonical protein coding promoters from 749 
GENCODE version 4483, defined as 1000 bp upstream and 500 bp downstream of the 750 
canonical TSS; the “Unmasked CpG Island” track, PhastCons Conserved Elements 751 
from the Multiz 470 Mammalian alignment, and RepeatMasker track from UCSC84; 752 
ChromHMM HEK293 enhancers15. We classified promoters as CpG island or non-CpG 753 
island based on the GENCODE basic TSS being within +/- 50 bp of a CpG island from 754 
the unmasked track. We classified the CTOP clusters as associated with a single type 755 
of genomic feature in the following order of priority: CpG island associated with a protein 756 
coding promoter; other CpG islands; a non-CpG island-associated protein-coding 757 
promoter; an enhancer; containing a CTCF binding site but not overlapping a CpG 758 
island, promoter or enhancer; overlapping a transposable element and none of the 759 
previous categories; overlapping a non-TE repeat and none of the prior categories; and 760 
“Other” for CTOP clusters not intersecting any examined features. 761 

SNV analyses. TOPs and CTOPs. For analysis of common variants, we intersected 762 
TOPs with the common short variants from dbSNP version 53, defined as a minor allele 763 
frequency of >= 1% in the 1000 Genomes project85. We determined genomic overlap 764 
enrichment between CTOPs/unconserved TOPs and dbSNP variants using the Fisher's 765 
Exact Test implemented in BEDTools77. 766 

Variant calling for allele-specific binding analysis. We performed variant calling on 767 
our GHT-SELEX and ChIP-seq datasets by mapping raw ChIP-Seq and pre-trimmed 768 
GHT-SELEX reads17 for 207 TFs to the hg38 human genome assembly using bwa-mem 769 
(v.0.7.1) with default settings (workflow is shown in Figure S5A). Next, we used 770 
filter_reads.py from stampipes (https://github.com/StamLab/stampipes/tree/encode-771 
release/, accessed Sept 2022) to filter out reads with >2 mismatches and mapping 772 
quality <10. Then, we used a previously-described approach86 for SNV calling and read 773 
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counting: (1) samtools reheader (v.1.16.1) was used to set the identical sample SM field 774 
in all alignment files; (2) SNP calling was performed using bcftools mpileup (v.1.10.2) 775 
with --redo-BAQ --adjust-MQ 50 --gap-frac 0.05 --max-depth 10000 and bcftools call 776 
with --keep-alts --multiallelic-caller; (3) the resulting SNPs were split into biallelic records 777 
using bcftools norm with --check-ref x -m - followed by filtering with bcftools filter -i 778 
"QUAL>=10 & FORMAT/GQ>=20 & FORMAT/DP>=10" --SnpGap 3 --IndelGap 10 and 779 
bcftools view -m2 -M2 -v snps leaving only biallelic SNPs covered by 10 or more reads; 780 
(4) SNPs were annotated using bcftools annotate with --columns ID,CAF,TOPMED and 781 
dbSNP (v.151)87 (5) heterozygous variants located on the reference chromosomes with 782 
GQ ≥20, depth ≥10, and allelic counts ≥5 on each allele were filtered with awk (v.5.0.1), 783 
(6) WASP (v.0.3.4)88 was used with bwa mem and filter_reads.py to account for 784 
reference mapping bias, (7) count_tags_pileup_new.py was used to obtain allelic read 785 
counts with pysam (v.0.20.0), (8) recode_vcf.py was used to convert the resulting BED 786 
files to VCF. In total, we made 925,003 candidate variant calls supported by five reads 787 
for both alleles and listed in the dbSNP common subset87. 788 

ASB calling and analysis. ASB calling was performed independently for GHT-SELEX 789 
and ChIP-seq data. To account for aneuploidy and copy-number variation, the profiles 790 
of relative background allelic dosage were reconstructed with BABACHI (v.2.0.26) using 791 
default settings (89, Abstract O3). The allelic imbalance was estimated with MIXALIME 792 
(v.2.14.7)68 starting with mixalime create. Next, we fitted a marginalized compound 793 
negative binomial model (MCNB) using mixalime fit specifying MCNB and setting --794 
window-size to 1000 and 10000 for GHT-SELEX and ChIP-Seq, respectively, taking into 795 
account lower coverage and SNP counts in GHT-SELEX. Finally, we used mixalime test 796 
followed by TF-wise mixalime combine to obtain the TF-specific ASB calls (Figure 797 
S5A). 798 

We then identified ASBs that overlap a PWM hit (P-value < 0.001) for the associated 799 
TF. For those ASBs, we calculated the PWM score for both alleles and estimated the P-800 
value of those scores against a uniform background distribution for each allele using 801 
PERFECTOS-APE90. The fold-change between allele P-values (P1/P2) was then 802 
calculated with the P-value of the more abundant allele as the numerator. ASBs with a 803 
log2(fold-change) >=1 were labelled “strongly concordant”, i.e., the allele we observed 804 
to be bound more often is consistent with the PWM score (Figure S5B).  805 

To assess the enrichment of Codebook ASBs within GTEx eQTLs67 and ADASTRA 806 
ASBs66 we combined the ASB P-values from ChIP-Seq and GHT-SELEX data across all 807 
TFs and datasets (logitp method91) to generate a single P-value for each TF (Figure 808 
S5C). 809 

Analysis of allele-specific chromatin accessibility. In this analysis, we relied on 321 810 
and 577 cell type-specific chromatin accessibility datasets derived from DNase- and 811 
ATAC-Seq experiments, respectively, and available in the UDACHA database (Release 812 
IceKing 1.0.3)68. We identified 4,048 instances in which ASVs in a specific cell type 813 
overlap significantly with PWM hits (P<0.0005) for a TF in the Codebook motif collection 814 
(236 PWMs) (Right-tailed Fisher’s exact test P < 0.05, and requiring 10 or more 815 
overlapping PWM hits) (Figure S5D). Then, for each ASV in each combination of TF 816 
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and cell type passing the PWM enrichment filter, we asked whether the change in the 817 
PWM score is concordant with the read imbalance in the ASVs, e.g. whether a higher 818 
PWM score at a given locus corresponds to a higher read count, and we assigned a P-819 
value for each combination of TF and cell type, using a right-tailed Fisher’s exact test, 820 
including only sites with at least two-fold change in PWM-predicted affinity. Finally, to 821 
obtain a single significance estimate per TF, we combined these P-values for each TF 822 
across the different cell types passing the first stage, i.e. for which the overlap between 823 
PWM hits and ASVs is significant (Fisher's method, considering DNase-Seq and ATAC-824 
Seq data separately and FDR-adjusted). TFs passing FDR < 0.05 in the final stage 825 
were considered ASV-concordant.  826 

To further verify the concordance between ASVs and Codebook motifs, we selected 34 827 
(out of 53 TFs) with at least one TOP region overlapping ASVs, and re-evaluated the 828 
concordant-to-discordant ratio for ASVs within peaks and TOP regions (see Results 829 
and Figure 5С). For this analysis, for each TF, we picked the most significant ASV at 830 
each unique genomic position (SNP) from all available cell types, and performed a right-831 
tailed Fisher's Exact Test (Table S9). At this stage, we considered SP140 and SP140L 832 
jointly they share short and highly similar DNA-binding motifs.  833 
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DATA AVAILABILITY 834 

The sequencing raw data for the HT-SELEX and GHT-SELEX experiments have been 835 
deposited into the SRA database under identifiers PRJEB78913 (ChIP-seq), 836 
PRJEB76622 (GHT-SELEX), and PRJEB61115 (HT-SELEX). Genomic interval 837 
information generated for the GHT-SELEX and ChIP-seq have been deposited into 838 
GEO under accessions GSE280248 (ChIP-seq) and GSE278858 (GHT-SELEX). PWMs 839 
can be browsed at https://mex.autosome.org and downloaded at 840 
https://doi.org/10.5281/ZENODO.8327372. An updated list of human TFs is available at 841 
https://humantfs.ccbr.utoronto.ca. Information on constructs, experiments, analyses, 842 
processed data, comparison tracks, and browsable pages with information and results 843 
for each TF is available at https://codebook.ccbr.utoronto.ca. 844 

ACKNOWLEDGEMENTS 845 

We thank the IT Group of the Institute of Computer Science at Halle University for 846 
computational resources, Maximilian Biermann for valuable technical support, Gherman 847 
Novakovsky for providing feedback, Berat Dogan for testing earlier versions of 848 
RCADEEM, and Debashish Ray for assistance with database depositions. 849 

This work was supported by the following: 850 
• Canadian Institutes of Health Research (CIHR) grants FDN-148403, PJT-851 

186136, PJT-191768, and PJT-191802, and NIH grant R21HG012258 to T.R.H 852 
• CIHR grant PJT-191802 to T.R.H. and H.S.N. 853 
• Natural Sciences and Engineering Research Council of Canada (NSERC) grant 854 

RGPIN-2018-05962 to H.S.N. 855 
• A Russian Science Foundation grant [20-74-10075] to I.V.K. 856 
• A Swiss National Science Foundation grant (no. 310030_197082) to B.D. 857 
• Marie Skłodowska-Curie (no. 895426) and EMBO long-term (1139-2019) 858 

fellowships to J.F.K. 859 
• NIH grants R01HG013328 and U24HG013078 to M.T.W., T.R.H., and Q.D.M. 860 
• NIH grants R01AR073228, P30AR070549, and R01AI173314 to M.T.W. 861 
• NIH grant P30CA008748 partially supported Q.M. 862 
• Canada Research Chairs funded by CIHR to T.R.H. and H.S.N. 863 
• Ontario Graduate Scholarships to K.U.L and I.Y. 864 
• A.J. was supported by Vetenskapsrådet (Swedish Research Council) 865 

Postdoctoral Fellowship (2016-00158) 866 
• The Billes Chair of Medical Research at the University of Toronto to T.R.H. 867 
• EPFL’s Center for Imaging 868 
• Resource allocations from Digital Research Alliance of Canada 869 

DECLARATION OF COMPETING INTERESTS 870 

O.F. is employed by Roche.  871 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.622097doi: bioRxiv preprint 

https://mex.autosome.org/
http://paperpile.com/b/PIlo2J/gTmT
http://dx.doi.org/10.5281/ZENODO.8327372
https://humantfs.ccbr.utoronto.ca/
https://codebook.ccbr.utoronto.ca/
https://doi.org/10.1101/2024.11.11.622097
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 
 

SUPPLEMENTARY TABLES 872 

Table S1. Accompanying manuscripts. Table lists the 5 studies performed by the 873 
Codebook Consortium, providing basic information for each of the manuscripts, 874 
including title and author list.  875 

Table S2. TF list and assay success. Table lists the Codebook proteins and positive 876 
control TFs that were analyzed in the Codebook studies and provides metadata and 877 
information on whether they showed sequence-specific DNA binding activities in 878 
different types of experiments, together with the ID of the representative PWM selected 879 
in this study, if any. 880 

Table S3. List of inserts used in this study.  Table provides the amino acid sequence 881 
and type (full-length or DBD) for the 716 inserts used in the Codebook studies. 882 

Table S4. List of plasmids used in this study.  Table lists the plasmid backbone and 883 
insert for each of the 1,387 plasmids used in the Codebook studies. 884 

Table S5. List of experiments performed in this study.  Table lists the 4,873 885 
experiments performed on Codebook and control TFs, along with 20 additional GFP 886 
control experiments. The experiment ID, experiment type, TF assayed, expert curation 887 
result, and plasmid ID are listed for each experiment. Each experiment is mapped to its 888 
ID in an accompanying manuscript17, and 9 additional experiments used only in an 889 
accompanying manuscript17 are listed. 890 

Table S6. Representative PWMs.  Table shows logo representations for the PWMs 891 
that were selected as the representative for each of the TFs (i.e. the expert-curated 892 
motifs) and provides metadata describing the role of the TF in the study, DBD that it 893 
belongs to, source of the experimental data and motif derivation approach.  894 

Table S7. External peak datasets. Table lists external peak location datasets obtained 895 
from GTRD database and ENCODE consortium, that were used in the comparisons 896 
carried out in this study. 897 

Table S8. External PWM datasets. Table lists PWM identifiers, manual curation and 898 
other metadata for external motifs available from the databases Jaspar, HOCOMOCO 899 
and Factorbook. 900 

Table S9. ASE and ASV data. Allele-specific binding sites detected in Codebook data 901 
and motif annotation of allele-specific chromatin accessibility events. 902 

Table S10. Updated census of human transcription factors and their motif 903 
coverage. Table is modified from Lambert et al. to display an updated motif coverage of 904 
human TFs.  905 
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Figure S1. Examples of evaluation of external PWMs. A, Cases in which the external 
PWM matches that of a well-studied TF that is a frequent “contaminant” motif in ChIP-
seq97. In each example, the top sequence logo represents the external PWM, and the 
bottom sequence logo represents a highly-similar CisBP PWM. B, Cases in which the 
external PWM (top in each example) is consistent with the Codebook PWM for the 
same TF (bottom in each example). C, External PWM sequence logos that cannot be 
explained as known contaminants or artifacts, some of which are supported by multiple 
lines of evidence, and thus appear accurate. 
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Figure S2. Motif degeneracy analysis. A, Histogram displays the maximum 
information content (IC) for any position within the expert-curated PWM for all 
Codebook and control TFs. Logos are shown for TFs at various maximum positional IC 
values, for illustration. Red dashed line indicates an IC of 1.4. B, and C, comparison of 
original PWMs to IC-increased PWMs for the 52 TF PWMs for which no base position 
exceeded an IC of 1.4. B, AUROC scores for original vs. IC-increased PWMs, 
discriminating ChIP-seq or GHT-SELEX peaks vs. random genomic background loci. C, 
Maximum Jaccard index for ChIP-seq or GHT-SELEX peak sets; using the approach 
described for optimized TOPs in Methods, for original vs. IC-increased PWMs. 
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Figure S3. Comparison to external ChIP-seq datasets and PWMs. A-D, Histograms 
of Jaccard indices measuring the overlap between two ChIP-seq peak sets for the same 
TF: A, Codebook ChIP-seq replicates; B, C, D: Codebook ChIP-seq vs. external ChIP-
seq performed in HEK293 cells (B), HepG2 cells (C), or K562 cells (D). E, AUROC 
scores for expert curated Codebook PWMs (columns), discriminating ChIP-seq peaks 
vs. random genomic background loci. Rows show different cell types. F, G, comparison 
of Codebook and external PWMs at the task of discriminating ChIP-seq peak sets from 
random sequences (as in E), for the 19 TFs that have a Codebook peak set (CP), a 
Codebook motif (CM), an external peak set (EP), and an external motif (EM), for 
Codebook ChIP-seq data (F) and external ChIP-seq data (G). The seven TFs with an 
AUROC of < 0.55 on either axis of either plot are highlighted. H, Sequence logos for the 
seven TFs highlighted in F and G. All Codebook PWMs shown are supported by ChIP-
seq, GHT-SELEX, and HT-SELEX. Asterisk indicates that the Codebook PWM is 
additionally supported by SMiLE-seq data.  
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Figure S4. Number of CTOP sites per TF. Bar graph displays the number of individual 
CTOP sites obtained for each TF. Heatmap and annotations below indicate other 
properties of each TF and its TOP sites. 
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Figure S5. Identifying allele-specific TF binding in HEK293 cells and analyzing 
allele-specific chromatin accessibility events using Codebook motifs.  
A, Codebook ASB calling workflow: SNP calling with bcftools, mapping bias correction 
with WASP, background allelic dosage reconstruction with BABACHI, statistical scoring 
of the allelic imbalance with MIXALIME, and motif annotation with PERFECTOS-APE. 
B, Motif concordance of Codebook ASBs. X-axis: ASB significance (i.e., allelic 
preference; log10 FDR, minus side: preference for Ref, plus side: preference for Alt). Y-
axis: log2 PWM score fold-change between Alt vs. Ref. The plot shows only strongly 
concordant and strongly discordant sites with |log2(Fold Change)| ≥ 1. C, Fraction of 
Codebook ASBs (combined) coinciding with GTEx eQTLs and ADASTRA known ASBs 
at different FDR thresholds for ASB calling. Fisher's exact test odds ratios (OR) and P-
values for ASBs at 5% FDR (covering 16,724 SNPs, dashed line) are labeled on the 
plot. D, Workflow for detection of TFs involved in allele-specific chromatin accessibility. 
UDACHA DNase-seq and ATAC-seq ASVs across different cell types were annotated 
with Codebook motifs, followed by motif enrichment and motif concordance analysis, 
combining the resulting P-values across the cell types, and FDR correction for multiple 
tested motifs. Central call-outs: details of the motif enrichment and motif concordance 
test using SP140 motif for illustration. SNPs (rs946245, rs77238721, rs11771930, 
rs2838028, rs2562353, rs12112389, rs147176938, rs6798390) illustrating the cells of 
the 2x2 contingency tables are actual UDACHA ASVs with or without motif hits of 
selected TFs. E, Scatterplot of Median Odds Ratios of PWM scores within the ASVs 
enriched in and concordant with the PWM matches. Motifs significant for both DNase-
seq and ATAC-seq (black), or just one assay (gray). The asterisk denotes TFs that 
exhibit significant enrichment considering peaks-supported PWM hits only. F, Bar plots: 
Fraction of ASVs overlapping with PWM hits for 13 TFs, using 4 different thresholds on 
ASV significance: all SNPs (blue), 25% FDR ASVs (yellow), 10% FDR ASVs (orange), 
and 5% FDR ASVs (red). Line plots: Fraction of ASVs at each location within the 
genome-wide PWM hits of the representative TFs (P-value<0.001) using four thresholds 
(the same colors as in bar plots). SNP: single-nucleotide polymorphism, ASB: allele-
specific binding, ASV: allele-specific chromatin accessibility variant. 
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