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Abstract

Motivation: Our work is motivated by an interest in constructing a protein–protein interaction net-

work that captures key features associated with Parkinson’s disease. While there is an abundance

of subnetwork construction methods available, it is often far from obvious which subnetwork is the

most suitable starting point for further investigation.

Results: We provide a method to assess whether a subnetwork constructed from a seed list (a list

of nodes known to be important in the area of interest) differs significantly from a randomly gener-

ated subnetwork. The proposed method uses a Monte Carlo approach. As different seed lists can

give rise to the same subnetwork, we control for redundancy by constructing a minimal seed list as

the starting point for the significance test. The null model is based on random seed lists of the

same length as a minimum seed list that generates the subnetwork; in this random seed list the

nodes have (approximately) the same degree distribution as the nodes in the minimum seed list.

We use this null model to select subnetworks which deviate significantly from random on an ap-

propriate set of statistics and might capture useful information for a real world protein–protein

interaction network.

Availability and implementation: The software used in this paper are available for download at

https://sites.google.com/site/elliottande/. The software is written in Python and uses the NetworkX

library.

Contact: ande.elliott@gmail.com or felix.reed-tsochas@sbs.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Network sampling is used in many different fields, such as biology

(Lim et al., 2006) and sociology (Bernard et al., 2010; Frank and

Snijders, 1994). Many studies sample a known network to produce

a subnetwork which is believed to be more relevant to their research

goals than the initial network such as a subnetwork associated with

metabolism. Frequently protein–protein interaction (PPI) networks

are sampled to form subnetworks that are associated with the dis-

ease or cellular processes of interest e.g. Hwang et al. (2008); Lim

et al. (2006); Gao et al. (2011); Goehler et al. (2004); Chuang et al.

(2007); Sharma et al. (2015); Ghiassian et al. (2015). An advantage

of such sampling is that on a small network an in-depth analysis,

such as verifying existing links, may be feasible. Network sampling

can also reflect empirical limitations such as the availability of par-

tial data for a given network (Bernard et al., 2010; Frank and

Snijders, 1994), or the exclusion of vertices that cannot be detected

(Salganik, 2006), with consequences for measured network statistics

(Kossinets et al., 2006).

Subnetwork construction methods are not without their own

problems, since they may induce artefacts in the subnetworks that

VC The Author 2017. Published by Oxford University Press. 64

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 34(1), 2018, 64–71

doi: 10.1093/bioinformatics/btx419

Advance Access Publication Date: 7 July 2017

Original Paper

https://sites.google.com/site/elliottande/
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: -
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: )
https://academic.oup.com/


they generate. Even the use of a PPI interactome as a starting point

already intrinsically reflects the effects of sampling, since different

experimental methods vary in their ability to identify particular

interactions. There are also inherent biases in the levels of evidence

available for different interactions, and generally PPI networks are

known to exhibit high rates of both false positives and false nega-

tives (Ali et al., 2011). Notably there is no gold standard method for

constructing a network representing a cellular process, although sev-

eral techniques have been proposed to achieve this aim. Some studies

test interactions experimentally between a subset of proteins

believed to be important to a disease process (Goehler et al., 2004;

Lim et al., 2006). Another approach is to locate proteins present in

the same cellular compartment as the process of interest, and add

edges between these proteins using a PPI database (Gao et al.,

2011). One can also form subnetworks from a larger PPI dataset

using a seed list in conjunction with a construction method, e.g.

snowball sampling (Martin et al., 2010), path based methods

(Berger et al., 2007), Steiner trees (White and Ma’ayan, 2007) or the

inclusion of nodes based on significance testing (Ghiassian et al.,

2015; Sharma et al., 2015). Finally one can also take a network dir-

ectly from a pathway database e.g. KEGG (Hwang et al., 2008).

The sampling techniques in this paper start from a list of seed

nodes and apply what we call a construction method to generate a

subnetwork from these seed nodes. Seed nodes are typically believed

to have certain attributes or associations, e.g. proteins implicated in

a disease. As the underlying PPI network is available, this approach

is subtly different from the standard use of these network sampling

techniques, namely sampling a large unknown network with the aim

of estimating global properties (Bernard et al., 2010; Frank, 1977;

Newman, 2010). The construction methods used in this paper fol-

lowing prior work on biological systems (Berger et al., 2007; Li

et al., 2012; Martin et al., 2010; Shi et al., 2014) are as follows:

(i) snowball sampling; (ii) all paths up to a given length; (iii) all

shortest paths between seed nodes. Snowball sampling has been

used in biological systems through easy to use plug-ins to popular

software applications; for instance the Cytoscape plug-in Bisogenet

(Martin et al., 2010) and to find hidden populations (e.g. drug users)

in Sociology (Bernard et al., 2010; Frank, 1977; Salganik, 2006). A

method using all paths up to a given length has been used in biology

through the Genes2Networks web app (Berger et al., 2007). We are

not aware of a published software package that uses shortest-path

sampling, although Li et al. (2012) have used shortest-path sampling

in a study on colorectal cancer and Keane et al. (2015) have used

shortest-path sampling to study Parkinson’s disease. It is important

to note that in general the effect of network sampling on network

statistics is non-trivial, and only well understood for very limited

combinations of sampling methods and underlying networks. For in-

stance, it has been shown that the degree distribution of a network

uniformly sampled from a scale free network is not itself scale free

(Stumpf et al., 2005). To select good subnetworks, guidance about

typical samples, or indeed atypical subnetworks, is required.

Here we provide a method to assess when a given subnetwork

differs significantly from randomly generated subnetworks. A sub-

network which differs significantly from a random network could

be viewed as containing relevant information, assuming that the

comparison with the random network is meaningful. Hence a key

question concerns the rules for constructing an appropriate null

model, or a correctly randomized subnetwork.

As there is no generally accepted parametric model of PPI net-

works (Rito et al., 2010), we are unable to construct a general null

model based on an ensemble of PPI networks. Instead, our method

compares a statistic of interest against that obtained for an ensemble

of subnetworks generated from the same underlying network using

a set of seed lists which are randomly chosen under certain con-

straints. First, we match the degree of the seeds with those of the ori-

ginal seed list. By contrast, the popular configuration model would

match the degree of all nodes in the subnetwork. Second, there is a

further feature in our null model, which relates to redundancy in the

seed list. Many different seed lists may give rise to the same subnet-

work. Hence given the construction method, we must also control

for the construction of the seed list. Some of these seed lists can be

constructed by removing nodes from the original seed list so that the

subnetwork that is generated from the modified seed list is identical

to the original one. We refer to the seed nodes that can be removed

without changing the subnetwork as ‘redundant seed nodes’. On

this basis we can then construct a meaningful null model using sub-

networks generated at random with the same (approximate) degree

distribution as the smallest subset of the original seed list which gen-

erates the same network (the minimum seed list). We use this null

model in a nonparametric significance test for features of sampled

networks. Our null model allows us to assess the significance of net-

work features given a construction method, rather than given a con-

struction method and a fixed seed list.

The test is first illustrated using simulated stochastic blockmodel

data for a network with two groups. A stochastic block model as-

signs each node to a group and then places edges between a pair of

nodes with a fixed probability based on the group to which the node

has been assigned. We demonstrate that significance under our test

is correlated in all but one case with two well-known measures: ac-

curacy (a measure of the completeness of sample) and purity (a

measure of the ability of the sampling method to select nodes from

the correct group). However, we note that one of the correlations is

weak. We then compare subnetworks generated by two seed lists

related to Parkinson’s disease (PD), namely gene data from the

OMIM database (Hamosh et al., 2005) and a seed list derived from

expression data of a PD cell model (Conn et al., 2003). We find that

the networks generated from the expression data seed list under the

‘all shortest paths between seed nodes’ sampling scheme and under

the ‘all paths up to length 2 (including paths of length 2)’ sampling

scheme have significant results under our null model (although

the latter is only partially robust to parameter choice), and there-

fore may have interesting properties for further analysis for our

work on PD.

We demonstrate the effect of redundant seed nodes, first through

simulations with randomly selected seed lists. Second, we investigate

the effect in our two seed lists related to PD, finding that redundant

seed nodes can have a strong impact on the perceived significance of

network statistics. We also demonstrate that our method compares

favourably to the configuration model on this class of network sam-

pling problems.

2 Materials and methods

2.1 Network sampling
The methods presented in this paper focus on techniques to form

subnetworks using a given seed list, where we use the following

three sampling techniques:

1. Snowball Sampling includes all nodes that are less than a given

graph distance from the nodes in a seed list; an example can be

found in Figure 1A. Depending on the implementation, the sub-

network can include only edges that were involved in the sam-

pling process, or also include additional edges between sampled

nodes, which we call cross-edges. In this paper we write Snow1
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for 1-hop snowball sampling, and Snow2 for 2-hop snowball

sampling.

2. All Paths � k (abbreviated Path2, Path3, Path4) includes all nodes

and edges that are on a path between seed nodes that is less than

or equal to k in length. An example can be found in Figure 1D.

3. Shortest-path Sampling (abbreviated Shortest) includes all short-

est paths between all pairs of seed proteins. An illustration can

be found in Figure 1B.

To illustrate the method, and following the approach of Ratmann et al.

(2009), we use a basket of commonly used network summary statistics,

namely assortativity, average degree, clustering coefficient and number

of nodes, using the following definitions. Other approaches are also

available, see for example Thorne and Stumpf (2012).

• Assortativity: The Pearson’s correlation coefficient between the

degree of nodes on either side of an edge;
• Average Degree: The mean number of edges per node;
• Average local Clustering Coefficient: The average of the local

clustering coefficient of each node. The local clustering coeffi-

cient is defined as the number of triangles a node is involved in

divided by the number of possible triangles (i.e. the number of

pairs of edges that a node has).
• Number of Nodes: The number of nodes in the sampled network.

We choose these summary statistics, as they are commonly used and

have low computational complexity. In the case that assortativity

is not defined, for example because in the Path� k sampling

method there are no paths � k between seed nodes, or because all

nodes in the sampled network have the same degree, the value of

assortativity is set to 0. Similarly, when there are no possible tri-

angles (i.e. no nodes with degree greater than 1), the clustering coef-

ficient is set to 0.

For Path�k sampling, when a seed node is not connected to any

of the other seed nodes with a path of length less or equal to k, this

seed node is ignored for the calculation of the summary statistics.

This choice is made to help interpret comparisons between subnet-

works generated by different seed lists.

2.2 Network data
To create our PPI network we use the yeast 2 hybrid (Y2H) experi-

mental results in the BioGRID database version 3.4.127

(Chatraryamontri et al., 2013; Stark et al., 2006). We remove all

interactions that do not include a human protein. We then reduce

the Y2H BioGRID network to its largest connected component, i.e.

the graph formed from the largest group of nodes for which there is

a path between any pair of nodes. The resulting network has 8292

nodes, 25 062 edges, a density of 0.00073, and an average local clus-

tering coefficient of 0.045.

2.3 Seed lists
We compare two different seed lists for PD. For the first seed list,

which we abbreviate OMIM, we assemble a list of genes known to

be involved in the disease taken from the OMIM database (Hamosh

et al., 2005). We convert the genes to proteins in the BioGRID data-

base using the relations provided in the BioGRID database

(Chatraryamontri et al., 2013; Stark et al., 2006), resulting in a seed

list with 16 proteins, of which 13 are present in our network, which

form the OMIM seed list.

We construct the second seed list from differential expression

data of 1185 genes in SH-SY5Y cells (a human cell line) before and

after treatment with MPPþ (a toxin used as a model for PD) (Conn

et al., 2003). In Conn et al. (2003) 313 genes were differentially ex-

pressed, 48 of which were deemed to be statistically significant. This

list includes genes that are up and down regulated by the cell when

presented with MPPþ. We convert the 48 significant genes to

BioGRID gene identifiers. There are multiple mappings for some of

these genes, resulting in 54 proteins, of which 46 are present in our

network and these form the Expression seed list.

There is no overlap between the Expression seed list and the

OMIM seed list. More information on the seed lists can be found in

Supplementary Information S1.

2.4 Minimum seed lists and redundant seed nodes
We define a ‘redundant seed node’ as a node in a seed list that can

be removed without changing the resulting subnetwork. For a given

seed list we then define the (set of) minimum seed list(s) as the small-

est non redundant subset (or set of subsets) of the original seed list

which produces the same subnetwork.

As an example consider a triangle with nodes 1, 2 and 3. In

1-hop snowball sampling with a seed list consisting of all nodes, the

set of minimum seed lists is ff1g; f2g; f3gg. In contrast, the set of

minimum seed lists using the seed list {1, 2} would be ff1g; f2gg.
Note that {3} is not present, as it is not a subset of the original seed

list.

Computing the minimum seed list for a given subnetwork by

considering all possible seed lists is computationally prohibitive. If

we can guarantee that removing seed nodes does not add any previ-

ously unseen nodes or edges to the subnetwork (which all tested

techniques in this paper satisfy), we can use the procedure below:

1. Remove each seed in turn and check if the number of nodes and

edges in the subnetwork do not change. If not, then add the

node to the list of redundant seeds.

2. Form a list of the remaining seeds.

3. Define a dummy variable L and set L ¼ 0

4. For lists of redundant seeds of length L

5. Test if sampling with the list of the remaining seeds and the se-

lected redundant seeds produce the same network.

6. Store all seed lists which pass the test.

A B

C D

Fig. 1. (A) 2-hop Snowball Sampling Example. The seed list consists of node

1 (circle) only. The shape of the other nodes represent the distances from the

seed node: squares represent nodes 1 hop from the seed, diamonds 2 hops

from a seed and triangles 3 hops from a seed. Dashed edges represent cross-

edges in a 2-hop snowball sample. (B)-(D) demonstrate sampling techniques

based on paths. The network in (C) represents the unsampled network. (B)

and (D) show the network in (C) sampled with the ‘All Shortest Paths’ (B) and

Path2 (D) methods respectively. Seed nodes are represented by circles and

other nodes are represented by squares (Color version of this figure is avail-

able at Bioinformatics online.)
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7. If there are no seed lists which pass the test, set L! Lþ 1 and

go to step 4.

8. Return the smallest seed list(s) that produce the same network.

However, it should be noted that it is possible that there is a smaller

seed list that generates the same network that is not a subset of the

original seed list. However, an advantage of our technique is that it

is globally applicable and computationally tractable.

If the above procedure proves to be computationally prohibitive

(which was not the case for results presented in this paper), we may

be able to convert the problem to an NP-hard problem and then use

current best known algorithms. For example, in the case of snowball

sampling the problem of finding the minimum seed list can be con-

verted to set cover. For further explanation and some other optimi-

zations for this problem see Supplementary Information S3.

2.5 The null model
For significance testing we would ideally want to use a parametric

null model (in this case a parametrized random network ensemble),

but currently no suitable parametric null model exists - for discus-

sions on PPI networks see e.g. Ali et al. (2011) or Rito et al. (2010).

As an alternative we create a null model using an ensemble of sub-

networks that have been generated from a random seed list of the

same size and (approximate) degree sequence as the original seed

list. To adjust for redundancy, we use the smallest possible seed list

that generates the same subnetwork. This model replicates the effect

of the sampling procedure on the network.

It is difficult to construct analytic results, due to the dependence

between seed nodes, while we can construct some results see Section

3.1, it is not computationally feasible to apply them to large net-

works. Thus we use Monte Carlo methods.

We create a null model by estimating the underlying distribution

using an ensemble of networks sampled using random seed lists of

the same length and (approximate) degree distribution as the min-

imum seed list. We then calculate the P-values for the statistic of

interest using a Monte Carlo test. Hence our procedure is as follows:

1. Construct the minimum seed list.

2. Generate many random seed lists with the same length and (ap-

proximate) degree distribution as the minimum seed list.

3. Generate a subnetwork for each seed list using the construction

method under consideration (as described above).

4. Calculate the test statistic on each of the subnetworks.

5. Compute the P-value by counting the number of subnetworks

with at least as extreme a test statistic as the subnetwork in

question.

A P-value is defined as the probability, under the null model, of get-

ting a value as least as extreme as the observed value. If T(X) is a

test statistic and we observe Tobs, then pðTobsÞ ¼ PðTðXÞ � TobsÞ.
Strictly enforcing the degree distribution may introduce prob-

lems in finite networks as there is a finite number of nodes of a given

degree, possibly leading to a small number of random choices for

some seed nodes. In order to alleviate this bias, the nodes are binned

by degree from the left, such that each bin contains at least a prede-

fined number of nodes, and the random selection of nodes is per-

formed inside each bin. Where feasible stability testing is then

performed over different bin sizes (5, 10, 20, 30 and 50) to guaran-

tee that the result is robust to the bin size. Here we show results for

bin size 20 only. Results for other bin sizes are in the Supplementary

Information S5; the conclusions drawn in this paper are robust to

the bin size unless otherwise stated. This is why our method for

constructing the null model specifies the (approximate) degree distri-

bution and not the exact degree distribution.

2.6 Benchmarking the approach
To gauge where it is appropriate to use this method, we test when

the method successfully selects subnetworks that better represent the

network of interest on a simple benchmark network. We construct

the benchmark network with known groups from a stochastic block-

model and then sample from it using a randomly selected seed list.

We start with 4000 nodes, and assign the first 2000 nodes to Block

1 and the second 2000 nodes to Block 2. We place an edge between

every pair of nodes in the same block with probability p¼0.01, and

we place an edge between every pair of nodes in the different blocks

with probability q¼0.001. We select 20 nodes from Block 1 to

form the seed list. We sample a network using this seed list and the

construction methods of interest; we record the P-value under the

null model proposed in this paper.

We then measure the success of the sampling by looking at the

accuracy (a measure of the completeness of the sample) and the pur-

ity (also called precision, a measure of the ability of the sample to se-

lect nodes from the correct block) of the classification which would

classify all nodes in the sampled subnetwork as Block 1 nodes. We

define C1 as the set of nodes that are selected in the sample and C2 is

the set of nodes that have not been selected.

In this context we define accuracy Acc as:

Acc ¼
jC1 \ Block 1j þ jC2 \ Block 2j

jC1j þ jC2j

and purity Pur as:

Pur ¼
jC1 \ Block 1j

jC1j
:

Due to computational demands of comparing these experiments

over the ensemble, we restrict the minimum bin size to 20. Here we

compare seed lists for a fixed method. For an exploratory analysis

we can also compare different methods for a fixed seed list.

2.7 Assessing a null model fit
To evaluate the significance of any statistic with respect to the possi-

bility of it being generated by random chance, the result must be

compared against a credible null model.

One basic test of the applicability of a null model to a particular

random process is to test if the distribution of P-values of randomly

generated results is uniform provided that the null distribution is

continuous. We can assess this hypothesis using the following

procedure:

1. Create random seed lists from a given network.

2. For each seed list create a subnetwork with the given technique.

3. Measure the statistic of interest on the subnetwork.

4. Use the null model of choice to calculate the P-value for the stat-

istic of interest.

If Tobs is drawn uniformly at random from the distribution of Tobs

and if this distribution is continuous, then under the null hypothesis

the random variable pðTobsÞ is uniformly distributed on [0,1]. We

can therefore assess the appropriateness of the null model by per-

forming a v2 goodness of fit test on the distribution of P.
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3 Results

3.1 Analytic null model statistics
The interdependence between seed nodes severely limits the range of

sampling techniques and statistics for which we can define tractable

analytic expressions for the distribution of the statistic of interest

over an ensemble. However, one case where we can derive an ana-

lytic solution is the number of nodes in n-hop snowball sampling

with a seed list of size s. Inspired by Frank (1977), we can derive

the mean and variance of the number of nodes X in a sampled net-

work for a random seed list S (see Supplementary Information S2):

EðX j jSj ¼ sÞ ¼ jVj �
X
J�V
jJj¼1

hð J; sÞ;

VarðX j jSj ¼ sÞ ¼
 X2

a¼1

a
X
J�V
jJj¼a

hð J; sÞ
!
�
 X

J�V
jJj¼1

hð J; sÞ
!2

; (1)

where jSj is the length of the seed list, V is the set of all nodes (of

size jVj), and h(J, s) is the probability that none of the s randomly

chosen seed nodes are within n hops of the nodes in J. The prob-

ability h(J, s) is calculated via a hypergeometric distribution, con-

sidering the network as fixed. This approach can be extended

to (approximate) degree distribution on the seed list by modifying

h and placing additional constraints on S (see Supplementary

Information S2).

The effect of seed list size on the distribution of the number of

nodes in a 1-hop snowball sample in the BioGRID PPI network

(Chatraryamontri et al., 2013; Stark et al., 2006) can be found in

Figure 1 in the Supplementary Information. A small change in the

number of seed nodes can have a large impact on the expected size

of the network.

3.2 Evaluation on the benchmark data
To test whether there is a negative relationship between the P-value

of our test and accuracy or purity, we use Kendall’s s statistic which

is a measure for association. The value is in ½�1; 1�; the closer to 61;

the stronger the association. We measure Kendall’s s with respect to

the minimum of the P-values of the two tails, as we do not specify in

which direction the statistics differ. Each of the P-values are com-

puted using 10 000 Monte Carlo realizations.

The results in Table 1 show that for all of the single construction

methods except for the Shortest Path construction method, there is

the desired negative association (the smaller the P-value, the better

the assignment to the block). Although, in the case of the Path2

method the correlation with purity is small, however the correlation

with accuracy is much stronger.

Note, here we compare seed lists for a fixed method. As part of

an exploratory analysis, we can also compare different methods for

a fixed seed list. We also note that the results obtained here are not

independent of the parameter choices.

For differentiating between subnetwork construction methods

we also investigated the trade-off between accuracy and purity. The

results in Figure 2 show that care must be taken in selecting the cor-

rect construction method for the problem at hand by considering the

trade-off between purity and accuracy of each of the methods. The

Path4 method has can achieve high accuracy but does not achieve

high purity, while Path2 achieves the highest purity overall, but has

low accuracy.

3.3 Comparing sampling methods and seed lists for PD
When trying to construct a subnetwork which reflects a disease pro-

cess, one is faced with a plethora of choices. In order to address this

problem in our work on Parkinson’s disease (PD) we compare how

far the subnetworks deviate from random according to the null

model described earlier in this paper. While we do not know if the

subnetwork that deviates the most from random will contain more

(or less) biological information than other subnetworks, it is pos-

sible that there are certain subsets of the sampling techniques

described above that identify interesting structural features which

may also be biologically meaningful. As we cannot test all possible

summary statistics, we use the statistics described in Section 2.1 as a

comparison.

To illustrate our approach we compare our two different seed

lists for PD, OMIM and Expression (see Section 2.3 for details),

across all of our sampling techniques and a reasonable parameter

range.

To contrast the different sampling techniques, we compute the

significance of all of the statistics in our set and select the smallest

P-value. We test in both tails, at significance level 0.025, and as we

compare 4 statistics we apply a Bonferroni correction resulting in a

significance test at level 0:025=4 ¼ 0:00625. The significance results

for the OMIM seed list and the Expression seed list can be found in

Table 1. Kendall’s s for the relationship between test P-value and

accuracy or purity in the benchmark dataset

Method Kendall’s s for accuracy Kendall’s s for purity

Snow1 �0.231 �0.184

Snow2 �0.115 �0.113

Shortest 0.534 �0.222

Path2 �0.594 �0.022

Path3 �0.265 �0.173

Path4 �0.113 �0.112

Note: The benchmark is a stochastic block model, consisting of two blocks

of size 2000 with an internal connection probability of 0.01 and an external

edge probability of 0.001. Further, details of this benchmark can be found in

Section 2.6.

Fig. 2. A scatter diagram of accuracy versus purity of benchmark networks in

which the sample is significant under our test (significance level 0:025=4 due

to a two-tailed adjustment and a Bonferroni correction) where colour repre-

sents the construction method used. An ideal method would have accur-

acy¼ 1 and purity¼1
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Figure 3. The P-values are plotted on a log-scale: the higher the box,

the smaller the P-value. The 0.00625 threshold is marked by a red

line.

Two networks show promising deviation from randomly

sampled networks. In the Expression seed list Path2 and Shortest

Path are significant, the Path2 method is robust in all but one bin

size (50) and the shortest path is robust in all bin sizes. In the

OMIM seed list while Snow1 is not significant it is approaching sig-

nificance with a P-value of 0.0063 and as such may deserve further

consideration. While we cannot claim that the other networks do

not have any information about the disease condition, the signifi-

cance of these networks suggests that these may be a good networks

on which to focus in depth analysis.

We also explored how many networks in each sampling tech-

nique have assortativity values which are assigned a value of 0.

Most construction methods very rarely experience this, however

11% of the OMIM Path2 Monte Carlo test null network ensemble

and 27% of the OMIM Path2 minimum Monte Carlo test null net-

work ensemble have assortativity values that are set to 0. This is

mostly due to the short seed list.

In view of Figure 2 which shows poor accuracy for Path2 sam-

pling, our preferred subnetworks are the networks created from the

Expression seed list via all shortest paths and the OMIM seed list

via snowball 1. This subnetwork contains 1383 nodes of the 8292

nodes in BioGRID; it contains 4252 of the 25 062 edges in

BioGRID. Its density of 0.0044 is markedly higher than the

BioGRID density (0.00073), while the average local clustering coef-

ficients are similar (0.044 versus 0.021).

3.4 Redundant seed nodes in PPI networks
As our null model starts with random seed lists of the same length and

(approximate) degree distribution as the chosen minimum seed list, our

test relies crucially on a minimum seed list. Without reducing the ori-

ginal seed list to a minimum seed list, the test results could be very dif-

ferent – we call these resulting P-values perceived P-values, the P-values

which we would perceive if we were not to correct for redundant seeds.

To demonstrate the effect of redundant seed proteins on per-

ceived P-value of network features first we add redundant seed

nodes to randomly selected seed lists in the BioGRID PPI network,

and second we compare the perceived P-value on the networks

based on PD seed lists. We illustrate our results for assortativity,

average degree, clustering and number of nodes.

We investigate the importance of accounting for redundant seed

proteins by comparing the significance of two seed lists that generate

the same network. We construct an ensemble of random seed lists of

length 25 sampled uniformly at random from all possible seed lists.

For each seed list, we construct the longest seed list that generates

the same network. We compute the difference between the perceived

left P-value in the original seed list and the left P-value of the longest

seed list. If there is little difference we would expect the results to be

close to 0. The algorithm used to construct the longest possible seed

list can be found in Supplementary Information S3. For simplicity in

cases where there is more than one longest seed list we select one

randomly.

On the BioGRID PPI network with the Snow2 construction method

(Fig. 4), we observe a large difference in P-values in all statistics. Figure

3 shows that while adjusting for minimum seeds often does not make a

large difference to perceived P-value, in the case where it does (Fig. 3

Expression seed list Path2), the change can be large.

Also adding redundant seed nodes to seed lists in the other sam-

pling techniques, may result in considerable changes in P-value, see

Supplementary Information S4. Thus, the finding that redundant

seed nodes can influence the P-value of statistics is not restricted to

our real-world examples.

3.5 Comparison with the configuration model
A popular null model in network science is the configuration model,

which has been widely used as a null model across application do-

mains. In the configuration model, the network is rewired randomly

while preserving the degree distribution of the network (Newman

et al., 2001). By contrast, the configuration model does not preserve

the structure induced by sampling in a network.

We compare the distribution of P-values for this null model and

the configuration model using the method presented in Section 2.7,

using 1000 randomly chosen seed lists of length 25 for assortativity

and clustering on the BioGRID network (Fig. 5). Assortativity and

Path2 Path3 Path4 Shortest Snow1 Snow2
0

1

2

3
Expression Orig.

Min
Sig

Path2 Path3 Path4 Shortest Snow1 Snow2
0

1

2

3

))eulav-p(ni
m(0 1gol-

OMIM

Assortativity Average Degree Clustering Number of Nodes
0

1

2

3
Path2 Expression

Fig. 3. Test results for different seed lists: smallest P-value, on a negative log

scale. Results are shown for the Expression seed list (first panel); OMIM seed

list (middle panel); and a breakdown of the P-value for the 4 statistics eval-

uated for the Path2 Expression network (final panel). Blue (left bar): original

seed list; yellow (right bar): minimum seed list; red (horizontal line): signifi-

cance level (0:025=4). Note due to the negative log scale on the y axis, values

above the red line are significant. Each of the P-values are computed using

15 000 Monte Carlo realizations (Color version of this figure is available at

Bioinformatics online.)

Fig. 4. Histogram of differences in P-values of 100 2-hop Snowball Sample in

the BioGRID PPI network with 25 initial random seed proteins and a bin size

of 20 generated by adding additional redundant seed nodes. Each of the

P-values are computed using 2000 Monte Carlo realizations (Color version of

this figure is available at Bioinformatics online.)
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clustering display a distribution which is approximately continuous.

In the configuration model, the P-values under the v2 test of assorta-

tivity and clustering are numerically equal to 0, providing strong evi-

dence to reject the configuration model. In contrast, under our model,

the same test produces a P-value of 0.2380 in assortativity and

0.9522 in Clustering Coefficient; there is no evidence to reject our

model. Results for the other sampling techniques can be found in

Supplementary Material S6.

While we cannot generalize from these results to all possible net-

works ensembles, and it is highly likely that there are network mod-

els and parameters ranges where the configuration model performs

well in subnetworks, the configuration model does not perform well

in general when comparing subnetworks based on seed lists. This

demonstrates the need for an alternative to the configuration model

for this task.

4 Discussion

There is a need for a robust and reliable nonparametric test when

testing the significance of summary statistics for sampling tech-

niques based on seed lists. Depending on the research question the

configuration model does not fulfil this role. Here we propose an al-

ternative null model that is based on an ensemble of seed lists gener-

ated from the minimum seed list.

We focus on the significance of network features, given a con-

struction method, rather than given a construction method and a

fixed seed list, as different seed lists may result in the same

subnetwork.

We have demonstrated that accounting for seed list construction

is important, by artificially increasing the significance of a randomly

chosen seed lists in a biological network, and through observing the

effect of this increase on the biologically motivated seed lists.

We have also shown through our benchmark that P-values from

our test are negatively correlated in all but one case with measures

of purity and accuracy of the sample (i.e. on average small P-values

result in more accurate/pure networks).

Our null model is not without issues. Notably, it is rare but pos-

sible for there to be more than one minimum seed list which then

requires a comparison with multiple seed lists. A further problem is

that the seed list does not have to be a global minimum; it is possible

that there is a seed list that is smaller than the supposed ‘minimum

seed list’. Finding this minimum seed list for an arbitrary technique

is computationally prohibitive. We believe that the very tractable

null model presented in this paper is superior to the model based on

a globally minimum seed list, due to its applicability to many differ-

ent problems.

For PPI networks, our nonparametric test allows us to choose a

subnetwork which may have interesting properties for further ana-

lysis for our work on PD. On the statistics tested many of the gener-

ated networks do not appear to deviate significantly from random,

unlike the results from the Expression seed list using Path2 and

Shortest Paths. Our work also highlights the need to focus more at-

tention on generative models of biological networks in order to gen-

erate parametric models of these systems.
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