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Abstract
Background The COVID-19 pandemic generated a massive amount of clinical data, which potentially hold yet undiscovered 
answers related to COVID-19 morbidity, mortality, long-term effects, and therapeutic solutions.
Objectives The objectives of this study were (1) to identify novel predictors of COVID-19 any cause mortality by employ-
ing artificial intelligence analytics on real-world data through a hypothesis-agnostic approach and (2) to determine if these 
effects are maintained after adjusting for potential confounders and to what degree they are moderated by other variables.
Methods A Bayesian statistics-based artificial intelligence data analytics tool  (bAIcis®) within the Interrogative  Biology® 
platform was used for Bayesian network learning and hypothesis generation to analyze 16,277 PCR+ patients from a database 
of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the 
first pandemic year in Central Florida. This approach generated Bayesian networks that enabled unbiased identification of 
significant predictors of any cause mortality for specific COVID-19 patient populations. These findings were further analyzed 
by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping.
Results We found that in the COVID-19 PCR+ patient cohort, early use of the antiemetic agent ondansetron was associated 
with decreased any cause mortality 30 days post-PCR+ testing in mechanically ventilated patients.
Conclusions The results demonstrate how a real-world COVID-19-focused data analysis using artificial intelligence can 
generate unexpected yet valid insights that could possibly support clinical decision making and minimize the future loss of 
lives and resources.
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Key Points 

Electronic health records data collected from 16,277 
patients with COVID-19 analyzed using artificial intel-
ligence found 223/239 and 3/239 significant variables 
to be associated with increased and decreased any cause 
mortality at any timepoint post-COVID-19 PCR+ test-
ing, respectively.

Two of three variables referred to the commonly pre-
scribed antiemetic ondansetron, showing that in hospital 
ondansetron treatment either early (less than 7 days) or 
late (more than 28 days) after a COVID-19 PCR+ test 
is associated with decreased any cause mortality at any 
timepoint post-COVID-19 PCR+ testing in patients aged 
under 60 years.

Inpatient sub-group analyses that accounted for variables 
associated with any cause mortality 30 days post-PCR+ 
testing and their interactions found that ondansetron 
treatment early (less than 7 days) after COVID-19 PCR+ 
testing is associated with decreased any cause mortal-
ity 30 days post-PCR+ testing in patients who received 
mechanical ventilation.

1 Introduction

1.1  Background and Significance

As of February 2022, an estimated 383 million cases of 
COVID-19 and over 5.6 million deaths have been reported 
worldwide [1]. The USA has reported the largest proportion 
of COVID-19 cases estimated at 40 million with approxi-
mately 900,000 reported deaths [1]. Worldwide efforts are 
currently focused on the implementation of an aggressive 
vaccination program to control the pandemic. Despite the 
control strategies of limiting COVID-19 infections by physi-
cal measures (use of masks, isolation, social distancing) and 
vaccination, the emergence of new SARS-CoV-2 variants 
across the globe, the increased incidence of breakthrough 
infections, especially in the younger population, and the 
evolving understanding of infection cycles and re-emergence 
provide impetus for continued investigation of real-world 
data (RWD). This investigation can generate insights into 
disease susceptibility and long-term effects, and can provide 
potential therapeutic strategies.

The revolution in computational analytics, including the 
considerable progress achieved in the application of arti-
ficial intelligence (AI) and machine learning capabilities, 

in tandem with access to high-density RWD and clini-
cal evidence, provides a suitable environment to generate 
hypothesis-agnostic insights for the management of health 
and disease. Further, the availability of supercomputers and 
cloud-based high-performance computing capabilities sig-
nificantly increases analytical depth and reduces the time 
required to perform higher order AI/machine learning ana-
lytics of large population-based datasets, thus permitting 
a better understanding of disease etiology and facilitating 
the identification of novel information pertinent to disease 
management.

Artificial intelligence has been extensively applied to 
analyze various COVID-19 data, including to aid diagnos-
tics and in therapeutic design [2]. In RWD AI, machine 
learning has been used to predict the probability of acute 
respiratory distress syndrome based on the clinical charac-
teristics of patients with COVID [3]. A further study, on 
3194 COVID-19 cases in the Emory Healthcare Network, 
assessed whether the need for hospitalization in a patient 
with COVID-19 can be predicted at the time of their RT-
PCR test using electronic medical record data prior to the 
test [4].

Although concern has been raised about the use of 
untested AI programs and small data sets in COVID-19 
research [5], AI continues to play a major role in COVID-
19 decision making. Of particular importance in the current 
pandemic is finding novel hypotheses for disease outcomes, 
and in this respect, Bayesian networks are ideal for taking 
an event that occurred and predicting the likelihood that 
any one of several possible causes was the main contribut-
ing factor. Bayesian networks create a network of depend-
ency links among variables of interest [6]. Such analysis 
has the benefit of determining which independent variables 
are directly associated with a clinical outcome variable of 
interest (e.g., death, admission to intensive care unit), and 
which variables are located further upstream. A drawback 
of Bayesian networks is that their computational complexity 
is relatively high, but this can be overcome with sufficiently 
large computational power.

The  bAIcis® algorithm generates a network of directed 
associations connecting variables present in the input data-
set. As described previously [7], the algorithm first generates 
many families, each consisting of combinations of parent 
variables for each child variable. Here, directed association 
flows from the parents to the child. Next, the many families 
are combined to produce a final network. The resulting net-
work topology may serve as a feature selection for subse-
quent multivariate modeling.

The current study combines a large amount of COVID-
19-focused RWD from AdventHealth that were analyzed 
using a Bayesian statistics-driven platform on a supercom-
puter at the Oak Ridge National Laboratory. The objective 
of this study was to generate Bayesian network models to 
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identify factors associated with any cause mortality post-
COVID-19 PCR+ testing, including drugs that have the 
potential to improve outcomes in patients with COVID-19. 
We proposed to employ the bAIcis algorithm [7] to develop 
Bayesian networks based on various patient subpopulations 
and patient features from different time windows, before 
and after COVID-19 diagnosis, in order to identify those 
variables having a likely association with any cause mor-
tality post-COVID-19 PCR+ testing. Finally, we wanted to 
determine if these effects are maintained after adjusting for 
potential confounders and to what degree they are moderated 
by other variables.

2  Materials and Methods

2.1  Data Collection

AdventHealth, headquartered in Orlando, Florida, is one of 
the largest non-profit healthcare systems in the USA with 
over 50 hospitals in 12 states, and 5 million patient encoun-
ters annually (including inpatient, outpatient, and emergency 
visits) [8]. Early in the COVID-19 pandemic, AdventHealth 
established the Registry and Biorepository of COVID-19 
(RECOVER-19), a registry of all patients tested for SARS-
CoV-2 within the AdventHealth Enterprise. The regis-
try comprised raw data extracted from the AdventHealth 
Cerner electronic health records system and was made 
available in the Data Lake powered by the Integrated Data 
for Enterprise Analytics platform. The registry collected 
associated data from inpatients and outpatients, structured 

in nine data tables, using the approach described in Table 1 
of the Electronic Supplementary Material (ESM): patient 
IDs, COVID-19 encounters, diagnoses, problems (patient 
personal medical history starting 2016), procedures related 
to the COVID-19 visit, clinical events, lab results, in-house 
medication administration records, and recorded home and 
prescription discharge medications. To facilitate a compre-
hensive selection and inclusion of data elements in potential 
studies using the registry data, the Clinical Classifications 
Software Refined was implemented [9]. This allowed the 
aggregation of diagnostic and procedure codes in a manage-
able number of clinical categories across clinical domains 
and body systems. This study was approved by the Adven-
tHealth Institutional Review Board (IRBnet #1590483).

2.2  Cohort Selection and Subgroup Definitions

We stratified the RECOVER-19 registry patients based 
on SARS-CoV-2 test type, as well as inpatient vs outpa-
tient status (Fig. 1). The RECOVER-19 registry included 
279,281 inpatients and outpatients tested for SARS-CoV-2 
infection by antigen, antibody, or PCR methods from Janu-
ary to December 2020. From the 35,504 positive patients 
thus found, we selected for this work a sub-cohort of PCR+ 
patients (n = 16,277), owing to the higher sensitivity and 
specificity of this diagnostic method (Fig. 1). This cohort 
was used for the initial AI analysis  (bAIcis®), with patients 
stratified by age, race, or ethnicity to identify potential fac-
tors related to any cause mortality post-COVID-19 PCR+ 
testing (Fig. 2). 

Positive inpatients and 
outpatients tested by 

Antigen/Antibody/PCR
n = 35,504

Positive inpatients 
and outpatients 
tested by PCR

n = 16,277
Positive inpatients 

tested by PCR
n = 3,082

COVID-19 Positive
Antigen/Antibody

COVID-19 Positive
PCR Outpatient

COVID-19 Positive
PCR Inpatient

COVID-19 
Negative

Inpatients and outpatients 
tested by 

Antigen/Antibody/PCR
n = 279,281

Fig. 1  RECOVER-19 registry included 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR meth-
ods from January to December 2020. There were 16,277 PCR+ patients selected for this analysis



362 G. M. Miller et al.

This cohort of 16,277 patients included a subset of indi-
viduals who were admitted to the inpatient setting (n = 
3082) (Fig. 1, Table 1). As most any cause mortality events 
post-COVID-19 PCR+ testing occurred in the inpatients 
group, further statistical analyses of factors relating to this 
mortality were focused on this smaller cohort. The inpatients 
cohort was divided into subgroups according to age: 18–39 
years (n = 389), 40–49 years (n = 391), 50–59 years (n = 
548), 60–69 years (n = 655), and 70+ years (n = 1099). To 
allow a less granular approach to patient age, two additional 
subgroups of inpatients were created: age < 60 years (n = 
1328) and age 60+ years (n = 1754).

2.3  Outcome Definition

The focus of this work was to identify factors associated 
with any cause of mortality in patients who received a posi-
tive RT-PCR test for COVID-19. During the initial discovery 
phase, patients with COVID-19 with any cause mortality 
were defined as having deceased_flag = 1 in the patients 
table at any timepoint, or having had an encounter with dis-
charge_disposition = “Expired – 20.” To better understand 
the effect of ondansetron use in the inpatient setting, this 
definition was refined to be 30-day any cause COVID-19 
mortality in the multivariate analysis portion of this work. 
Here, 30-day any cause of mortality following COVID-19 
was defined as having had an encounter with discharge_dis-
position = “Expired – 20” within 30 days of a COVID-19 
RT-PCR+ test.

2.4  Alignment of Patient Journeys

To enable Bayesian network inference, patients were aligned 
along their COVID-19 disease journey and features were 
defined in 11 time bins in relation to the time of a PCR+ 

specimen collection. The time windows utilized in the fea-
ture generation were: > 12, 9–12, 6–9, 3– 6, 1– 3, and < 1 
month prior to and < 7, 7–14, 14–21, 21–28, and >28 days 
after the time of COVID-19 PCR+ test sample collection 
(Fig. 3). Using these time bins, features were derived from 
all data tables.

The rationale for selecting time bins was as follows. 
First, time windows preceding a COVID-19 PCR+ test were 
selected to allow intermediate (on order of months prior to 
infection) to longer term (more than a year prior to infec-
tion) co-morbidities or prior procedures to be captured. Con-
versely, time windows following COVID-19 infection were 
selected on a shorter time period (weekly) to capture poten-
tial treatments administered according to COVID-19 disease 
progression. Finally, the overall number of time bins (n = 
11) was selected to keep the number of variables defined in 
the dataset manageable to reduce the computational com-
plexity for  bAIcis® learning.

2.5  Data Analysis Methodology Summary

Briefly, the analysis performed in this work involved the 
following steps:

(1) To identify factors associated with any cause mor-
tality after a COVID-19 PCR+ test in a hypothesis-
free manner, the bAIcis algorithm was used to learn 
Bayesian networks, consisting of clinical variables 
(e.g., demographics, medications, procedures, and lab 
tests) recorded for 16,277 patients with a COVID-19 
PCR+ test (inpatients and outpatients). Similarly, the 
bAIcis algorithm was also utilized to learn Bayesian 
networks generated from subsets of this patient cohort 
(e.g., patients with a COVID-19 PCR+ test who were 
admitted to an inpatient setting).

Fig. 2  Overview of the data processing workflow. LASSO least absolute shrinkage and selection operator, RWD real-world data
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(2) Based on the results of the first step of the analysis, 
we focused on a subset of 3082 hospitalized patients 
and examined whether the effect of ondansetron is 
independent of 24 other variables known or suspected 
to influence any cause mortality at a 30-day post-
COVID-19 PCR+ test. The presence of missing data in 
some of the variables of interest necessitated the use of 
imputation to create a complete data set amenable for 
logistic regression analysis. Because of the stochastic 
nature of the imputation method utilized, five versions 
of the imputed data were generated and analyzed inde-
pendently.

(3) The relationship between ondansetron and any cause 
mortality at 30 days after a COVID-19 PCR+ test was 
further investigated by accounting for possible interac-
tions effects between the 25 variables and this mortal-
ity. We considered 333 variables, including the original 
25 main-effect variables and their pairwise interaction 
terms. We used least absolute shrinkage and selection 
operator (LASSO) regression, a penalized regression 
approach, to identify the subset of these variables that 
are the most likely to explain any cause mortality at a 
30-day post-COVID-19 PCR+ test.

(4) Finally, we estimated the variability of our findings 
in step 3. This was done by (1) generating ten new 
independently imputed data sets, and (2) from each 
of these imputed data sets, generating 1000 data sets 
with similar patient distributions, and (3) applying 
LASSO regression as before. The results of this analy-
sis allowed the estimation of the variance of the regres-
sion coefficients for all the variables of interest.

2.6  Bayesian Network Learning and Hypotheses 
Generation

BAIcis® learning was employed to generate hypotheses of 
factors related to any cause mortality at any time after a 
COVID-19 PCR+ test. In the generated Bayesian networks, 
nodes represent the analyzed features and edges represent 
the directed relationships, and where an upstream/parent 
node drives changes in downstream/child nodes. In this 
context,  bAIcis® allows the pre-definition of network hier-
archies, thus variables can be constrained to not have parent 
nodes (constrained as ‘top’) or child nodes (constrained as 
bottom), such as, for example, the top variable, “Age” that 
is not driven by any other variable. In this regard, the top 
and bottom variables were selected in alignment with the 
data structure, and Bayesian networks were inferred contain-
ing the potential cause-and-effect relationships. Following 
 bAIcis® learning, features related to any cause mortality 
after a COVID-19 PCR+ test were identified by the follow-
ing approach. First, subgraphs were extracted from the origi-
nal  bAIcis® networks by removing infrequent edges (edges 
present in the ensemble model with a frequency ≤ 20%), 
then extracting the nodes connected to the any cause mortal-
ity post COVID-19 PCR+ test node by the first, second, or 
third degree (Table 2, column 4). All nodes selected by these 
criteria were then assessed by a univariate statistical analysis 
to have a significant relationship to any cause mortality after 
a COVID-19 PCR+ test in the respective patient cohort used 
for network learning. Features with a p-value ≥0.05 by the 
Fisher’s exact test were considered insignificant and those 
between a 0.67 and 1.5 odds ratio (OR) were considered 
of low effect size, and these were disregarded in a further 

Table 1  General characteristics of the two populations studied

COPD chronic obstructive pulmonary disorder
a Definition for ‘deceased’ is detailed in Sect.  2.3. Briefly, for ‘all 
patients’, deceased means any cause mortality at any time post-
COVID-19 PCR+ testing, and for all ‘inpatients’ deceased means any 
cause mortality at 30 days post-COVID-19 PCR+ testing

COVID-19 PCR+ 
patients

COVID-19 
PCR+ inpa-
tients

Deceaseda 373 (2.3%) 262 (8.5%)
Mechanical ventilation 444 (2.7%) 444 (14.4%)
Female 8441 (51.9%) 1473 (47.8%)
Male 7836 (48.1%) 1609 (52.2%)
White 7787 (47.8%) 1674 (54.3%)
African American 2417 (14.8%) 649 (21.1%)
Asian 166 (1%) 48 (1.6%)
Unknown race 2398 (14.7%) 48 (1.6%)
Hispanic 6072 (37.3%) 1231 (39.9%)
Not Hispanic 7047 (43.3%) 1737 (56.4%)
Unknown ethnicity 3158 (19.4%) 114 (3.7%)
Age, years
18–39 7146 (43.9%) 389 (12.6%)
40–49 2731 (16.8%) 391 (12.7%)
50–59 2615 (16.1%) 548 (17.8%)
60–69 1883 (11.6%) 655 (21.3%)
70+ 1902 (11.7%) 1099 (35.7%)
Heart failure 530 (3.3%) 452 (14.7%)
COPD 412 (2.5%) 330 (10.7%)
Asthma 1198 (7.4%) 348 (11.3%)
Kidney disease 765 (4.7%) 658 (21.3%)
Neoplastic disease 383 (2.4%) 186 (6%)
Ondansetron 1438 (8.8%) 924 (30%)
Dexamethasone 792 (4.9%) 540 (17.5%)
Tocilizumab 295 (1.8%) 295 (9.6%)
Convalescent plasma 321 (2%) 321 (10.4%)
Remdesivir 1158 (7.1%) 1158 (37.6%)
Azithromycin 1547 (9.5%) 1208 (39.2%)
All 16,277 3082
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analysis. Multiple testing correction was not applied to allow 
for more features to be included.

2.7  Computational Resources for Bayesian Network 
Training

The deep Bayesian networks for this COVID-19 effort 
were trained using the Andes supercomputer at the Oak 
Ridge Leadership Computing Facility. Andes is a 704-node 
machine with two AMD EPYC 7302 CPUs per node and is 
primarily focused on large-scale scientific discovery via data 
processing and modeling.

2.8  Multivariable Regression Analysis 
for Assessment of Validity of the Effect 
of Ondansetron on COVID‑19‑Associated 30‑Day 
All‑Cause Mortality

To clarify the relationship between ondansetron use and any 
cause mortality after a COVID-19 PCR+ test discovered 
by  bAIcis®, a multivariate regression analysis focused on 

inpatients was undertaken. In addition to ondansetron use, 
potential confounders (e.g., demographics, comorbidities, 
lab values, and medications) were included to fit a multivari-
able regression model with the outcome being 30-day any 
cause mortality following a COVID-19 PCR+ test. Specifi-
cally, the following groups, comprising 25 variables, were 
examined using multi-variable regression for their ability 
to predict mortality in a COVID-19+ patient cohort: demo-
graphics (age [approximate], sex, race, and ethnicity), medi-
cations (ondansetron, azithromycin, remdesivir, dexameth-
asone, tocilizumab, convalescent plasma), comorbidities 
(diabetes mellitus, chronic obstructive pulmonary disease, 
asthma, coronary artery disease, heart failure, neoplastic 
disease, kidney disease), laboratory analytes (C-reactive 
protein, D-dimer, alanine aminotransferase, ferritin, aspar-
tate transaminase, blood urea nitrogen, lymphocytes), and 
ventilator status. The de-identified dataset had patient ages 
structured in bins, such as 18–39, 40–49, …, 70+ years. 
For the purpose of regression modeling, these were con-
verted to approximate ages as 35 for the 18–39 bin and 45 
for the 40–49 bin. Out of the 3082 inpatients, 2259 had 

Fig. 3  Illustrative example of the analysis approach. Left: a visuali-
zation of the Bayesian artificial intelligence analytics  (bAIcis®) net-
work learned from the age < 60 years population admitted to the 
inpatient setting (n = 1328). Right: subgraph of the “Inpatients age 
< 60”  bAIcis® network illustrating the linkage between ondansetron 
use and any cause mortality at any time after the COVID-19 PCR+ 
test. Ondansetron use within the first week and after 28 days after the 
COVID-19 PCR+ test was significantly associated with decreased 

any cause mortality (highlighted nodes). Features were defined in 11 
time bins in relation to the time of COVID-19 PCR+ specimen col-
lection. The time windows utilized in feature generation were: > 12, 
9–12, 6–9, 3–6, 1–3, and < 1 months prior to the time of COVID-19 
PCR+ test sample collection and < 7, 7–14, 14–21, 21–28, and > 28 
days after the time of COVID-19 PCR+ test sample collection. CV 
COVID-19 visit, CRP C-reactive protein, DG diagnosis, EP endpoint, 
IM in-house medication, LB lab results, PC procedures, VS vital signs
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complete observations for the variables indicated above. To 
increase the statistical power, imputation of missing values 
was accomplished by a multiple imputation approach using 
the predictive mean matching method [10], as implemented 
by the R package mice [11] In the least-squares regression 
analysis and LASSO regression analysis, five imputed data 
sets were generated after 25 iterations of the predictive 
mean matching (pmm) method; in the bootstrap analysis, 
ten imputed datasets were generated with 100 iterations of 
the pmm method, as the basis for each bootstrap sampling.

To study the ondansetron-associated effect of the above 
variables on any cause 30-day mortality, a logistic regression 
was performed in a generalized linear model for the binary 
outcome of deceased or survived, using the R package glm. 
A subsequent analysis focused on fitting the logistic regres-
sion model to the 25 clinical variables (described above), 
the corresponding 300 (25 × 24/2) interaction terms (each 
equaling the pairwise product of their binary values), and 
the eight squared terms for the continuous terms, for a total 
of 333 terms. Because of the inherent limitation of logistic 
regression in fitting such a model to the available data, we 
used the LASSO regression method (as implemented by the 
R package glmnet (6), with the parameter alpha set to 1) to 
select those covariates most likely to have non-zero coef-
ficients. The lambda parameter was optimized with a cross-
validation approach using the cv.glmnet function. Lambda 

was set conservatively to a value that is one standard devia-
tion away from the minimum value determined from the 
cross-validation approach. In addition, ten versions of the 
dataset with imputed values were generated, and each of 
them in turn was used to generate a population of 1000 
datasets with similar underlying distributions, by the boot-
strap method. We ensured that each bootstrap sample was 
balanced in terms of the proportion of patient any cause 
30-day mortality. The 10,000 samples were each analyzed by 
LASSO regression. Bootstrapping was performed by sam-
pling with replacement of the dataset, while retaining the 
proportion of deceased to survived patients at 30 days after 
a COVID-19 PCR+ test in the bootstrap datasets.

3  Results

3.1  Studied Population Characteristics

The study population for the initial AI analysis comprised 
16,277 patients who were COVID-19 PCR+ (Table 1). 
In this cohort, the majority were female at 8441 (51.9%), 
7836 (48.1%) were male, 7787 (47.8%) were white, 6072 
(37.3%) were Hispanic, 2417 (14.8%) were black, and 166 
(1%) were Asian. This cohort included a subset of individu-
als who were admitted to the inpatient setting (n = 3082) 

Table 2  BERG’s Bayesian artificial intelligence analytics  (bAIcis®) generated 19 networks that enabled unbiased identification of significant 
predictors of any cause mortality post-COVID-19 PCR+ testing for specific patient populations

Name Num-
ber of 
patients

Number 
of fea-
tures

Number of features 
connected to any cause 
mortality

Number of selected signifi-
cant predictors of any cause 
mortality

All patients 16,277 2386 487 20
Inpatients 3082 1946 227 20
Inpatients post-COVID-19+ PCR test 3082 1285 100 20
Inpatients aged 60–69 655 796 32 20
Inpatients aged 70+ 1099 1238 32 20
Inpatients aged 60+ 1754 1570 77 20
Inpatients Hispanic 1231 1080 93 20
Inpatients white non-Hispanic 898 981 44 20
Inpatients aged < 60 1328 991 30 19
Inpatients pre-COVID-19+ PCR test 3082 678 23 17
Inpatients aged 40–49 391 448 26 10
Inpatients white non-Hispanic pre-COVID-19+ PCR test 898 315 7 7
Inpatients aged 60+ pre-COVID-19+ PCR test 1754 519 9 6
Inpatients Hispanic pre-COVID-19+ PCR test 1231 279 7 4
Inpatients aged 50–59 548 604 7 4
Inpatients age 18–39 389 386 7 3
Inpatients age <60 pre-COVID-19+ PCR test 1328 259 5 3
Inpatients African American Non-Hispanic 600 675 5 3
Inpatients African American Non-Hispanic pre-

COVID-19+ PCR test
600 161 16 3
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and was used for all subsequent analyses characterizing the 
effect of ondansetron on any cause mortality at 30 days after 
a COVID-19 PCR+ test. In the inpatient population, the 
majority were male at 1609 (52.2%), 1473 (47.8%) were 
female, 1674 (54.3%) were white, 1231 (39.9%) were His-
panic, 649 (21.1%) were black, and 48 (1.6%) were Asian. 
In the inpatient cohort, 444 (14.4%) were mechanically ven-
tilated and 262 (8.5%) were deceased. The comorbidity with 
the highest prevalence was kidney disease (21.3%), followed 
by heart failure (14.7%) and asthma (11.3%).

3.2  Features Associated with Increased COVID‑19 
Any Cause Mortality

Using data collected from 16,277 patients who were COVID-
19+ by a PCR test, we generated 19 networks that enabled 
unbiased identification of significant predictors of any cause 
mortality after a SARS-CoV-2 PCR+ test at any time for 
specific patient populations (Table 2, Table 3 of the ESM). 
These networks included inpatient cohorts of multiple age 
groups, races, and ethnicities, before (pre-COVID-19) and 
after (post-COVID-19) their PCR+ test. The “All patients” 
Bayesian network includes the full patient cohort of 16,277 
and exhibited 2386 features, 487 of which were connected 
to any cause mortality after a COVID-19 PCR+ test, with 20 
being significant predictors of this mortality. Other networks 
with high numbers of significant features were “Inpatients 
age 60 to 69”, “Inpatients age 70+”, “Inpatients Hispanic”, 
and “Inpatients White Non-Hispanic”.

Of the 239 significant any cause mortality post-
COVID-19 PCR+ test features identified in specific patient 
subpopulations, the majority (223/239) were found to be 
associated with increased any cause mortality at any time 
(Table 2 of the ESM). Thirteen of the identified significant 
any cause mortality features had more than two factor val-
ues, thus producing contingency tables larger than 2 × 2 
(Table 4 of the ESM).

As expected, being placed on a ventilator or being admit-
ted in the intensive care unit was found to be associated 
with increased any cause mortality consistently across 16/19 
networks (Table 3 of the ESM) and 11/19 networks, respec-
tively. Similarly, the length of stay was found to be associ-
ated with any cause mortality (with longer stays associated 

with higher mortality) across 6/19 networks (Table 2). As 
expected, inpatient medications commonly administered in 
the intensive care unit setting, such as fentanyl, midazolam, 
and cisatracurium, were also found to be associated with 
increased any cause mortality across multiple networks.

3.3  Features Associated with Decreased Any Cause 
Mortality

Three of the 239 significant features were found to be asso-
ciated with decreased any cause mortality post-COVID-19 
PCR+ testing (Table 3), two of which referred to the use of 
ondansetron in patients aged younger than 60 years (Table 3 
of the ESM). Within this patient population, in-hospital 
ondansetron treatment either early (< 7 days) or late (> 28 
days) after COVID-19 PCR+ testing was found to decrease 
any cause mortality (p = 0.03, OR = 0.45, 95% confidence 
interval [CI] 0.2, 0.93; and p = 0.001, OR = 0.079, 95% CI 
0.0019, 0.52, respectively) (Fig. 3). The third feature associ-
ated with decreased any cause mortality was the use of Inter-
national Statistical Classification of Diseases and Related 
Health Problems, 10th Revision code Z20.828 (“Contact 
with and (suspected) exposure to other viral communicable 
diseases”).

3.4  Multivariate Analysis of Variables Associated 
with Any Cause Mortality at 30 Days

To account for potential confounders in the association 
of ondansetron with decreased any cause mortality post-
COVID-19 PCR+ testing observed in the full clinical data 
set, we focused on a smaller subset of 3082 patients who 
were hospitalized with COVID-19. Together with ondanse-
tron, we included 24 other variables of relevance to COVID-
19 outcomes, including demographics, co-morbidities, and 
treatments received during hospitalization. Results from the 
logistic regression analysis performed to predict which vari-
ables are significantly associated with any cause mortality 
at 30 days post-COVID-19 PCR+ testing are summarized 
in Table 4. The 95% CIs for the coefficients obtained from 

Table 3  Features with significant relationship to decreased any cause mortality post- COVID-19 PCR+ testing

CI confidence interval, DG_ diagnosis, IM_ in-house medication, OR odds ratio

Network name Feature name P-value OR 95% CI

Inpatients post-
COVID-19+ PCR test

DG_> 28d_postCOVID-19 | Z20.828 | contact with and (sus-
pected) exposure to other viral communicable diseases

2.00E-07 0.16 0.06, 0.37

Inpatients age <60 IM_> 28d_postCOVID-19 | ondansetron 0.001 0.079 0.0019, 0.52
Inpatients age <60 IM_upto7d_postCOVID-19 | ondansetron 0.03 0.45 0.2, 0.93
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the five imputed data sets for the variables cover a relatively 
narrow range, and the p-values derived from each data set 
are essentially identical as presented in Table 4. We also 
performed the same analysis without using the data imputa-
tion method, on a set of 2259 patients who had complete 
data, and the results were similar (Table 5 of the ESM). In 
the dataset with imputed data, we set a logistic regression 
model on the effect of ondansetron on any cause mortal-
ity at 30 days post-COVID-19 PCR+ testing, adjusted for 
the possible confounding effect of the other 24 variables 
of interest. The direct effect of ondansetron on any cause 
30-day mortality was significant (p = 0.001) with a coef-
ficient of − 0.63 (95% CI − 0.64, − 0.62). In this analysis, 
we effectively simplified a possibly complex set of causal 
interactions involving ondansetron and any cause 30-day 
mortality into one that assumes only independent effects of 
these variables on this mortality. A descriptive statistic of 
the ondansetron-treated vs non-treated cohort is presented 
in Table 5 of the ESM.

3.5  Ondansetron Use in Conjunction 
with Mechanical Ventilation is Associated 
with Decreased Any Cause 30‑Day Mortality 
After Adjusting for Interactions

We used the elastic net regression method, a combination of 
the LASSO and ridge regression methods [12], to determine 
if previous findings related to any cause mortality at 30 days 
of COVID-19 PCR+ testing are maintained after adjusting 
for potential confounders. Using five versions of the dataset 
with imputed data resulted in the generation of five models 
(Table 5). The covariates Age, Heart_Failure, D-dimer, Fer-
ritin, BUN, and Mechanical_Ventilation were identified by 
LASSO in all five versions of the imputed dataset; all with 
positive coefficients, indicative that they associated with 
increased any cause mortality at 30 days. The covariate 
Ondansetron was selected in two of the five datasets, with 
negative coefficients, again supporting the potential reduc-
tion in any cause mortality at 30 days. Least absolute shrink-
age and selection operator identified additional covariates 

Table 4  Coefficient means and 
95% CIs of logistic regression 
fitted to five versions of imputed 
data, and ranked by their 
p-values

ALT alanine aminotransferase, AST aspartate transaminase, BUN blood urea nitrogen, CAD coronary artery 
disease, COPD chronic obstructive pulmonary disease, CRP C-reactive protein
a Denotes significance; negative sign means a significant association with decreased mortality

Covariate Coefficient (mean) Coefficient (95 CI) P-value

(Intercept) −7.26 (− 7.31, −7.21) < 0.001a

Age 0.047 (0.046, 0.048) < 0.001a

Ferritin 4.93E−05 (4.39e−05, 5.47e−05) < 0.001a

BUN 0.018 (0.017, 0.018) < 0.001a

Mechanical_Ventilation 2.83 (2.81, 2.85) < 0.001a

Ondansetron −0.63 (− 0.64, −0.62) 0.001a

Ddimer 0.043 (0.036, 0.051) 0.001a

Heart_Failure 0.47 (0.46, 0.49) 0.01a

Remdesivir 0.4 (0.38, 0.42) 0.03a

Neoplastic_Disease −0.76 (− 0.78, − 0.73) 0.03a

COPD 0.33 (0.32, 0.34) 0.13
Gender_male 0.24 (0.24, 0.25) 0.14
CRP 0.001 (0.001, 0.001) 0.15
Lymphocytes −0.16 (− 0.16, − 0.15) 0.17
CAD 0.26 (0.25, 0.26) 0.18
Dexamethasone −0.26 (− 0.27, − 0.25) 0.2
AST 0.002 (0.001, 0.002) 0.22
ALT −0.002 (− 0.002, −0.002) 0.24
Race_white −0.17 (−0.19, − 0.15) 0.26
Convalescent_plasma 0.2 (0 .19, 0.21) 0.34
Azithromycin −0.16 (− 0.17, − 0.15) 0.36
Ethnicity_Hispanic 0.068 (0.010, 0.126) 0.42
Diabetes −0.059 (− 0.068, − 0.051) 0.71
Tocilizumab −0.037 (− 0.052, − 0.022) 0.82
Asthma −0.05 (− 0.064, − 0.036) 0.82
Kidney_disease −0.02 (− 0.033, − 0.006) 0.87
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that were observed only once out of the five datasets, the 
interaction term Ondansetron:Mechanical_Ventilation (with 
a negative coefficient) being one of them. These results sug-
gested that the stochastic aspects of the data imputation and 
model fitting result in minor variability in the composition 
of the final model.

Table 6 lists the percentage of the 10,000 bootstrap sam-
ples for the top covariates selected by LASSO, their median 
coefficient values, as well as their 95% and 99% CIs. The 
LASSO regression results on the bootstrap samples show 
BUN and Mechanical_Ventilation identified as main (lin-
ear) terms, while the remaining covariates are interaction 
terms. Age is a quadratic (squared) term, indicating that 
any cause mortality at 30 days post-COVID-19 PCR+ test-
ing increases curvilinearly with age. The most frequently 

identified covariates are Mechanical_Ventilation and Age^2 
and both are positively associated with any cause mortality 
at 30 days. The interaction term Ondansetron:Mechanical_
Ventilation is identified in 74.4% of the bootstrap sample 
and is negatively associated with any cause mortality at 30 
days. None of the 95% confidence intervals, and except for 
COPD:Mechanical_Ventilation, none of the 99% confidence 
intervals of the coefficients include zero, suggesting that 
these coefficients are stable in their sign despite the vari-
ability in the sample sets.

From the regression analysis we conducted on the boot-
strapped samples of the dataset, the median value of the 
regression coefficient for mechanically ventilated patients 
treated with ondansetron was −0.365. This means that when 

Table 5  Covariates and their coefficients selected by least absolute shrinkage and selection operator regression on five versions of the datasets 
with imputed data

Covariates are listed alphabetically. All covariates are significant
Age approximate age of patient (one of 35, 45,…, 75 years), AST aspartate transaminase level, BUN blood urea nitrogen, CAD coronary artery 
disease, COPD chronic obstructive pulmonary disease, CRP C-reactive protein, : indicates interaction between two covariates
Negative sign means association with decreased mortality (bold)

Imputed dataset

Covariate 1 2 3 4 5

(Intercept) – 4.70E+00 – 4.78E+00 – 4.39E+00 – 4.77E+00 – 5.51E+00
Age 1.62E–02 1.90E–02 1.43E–02 1.89E–02 2.74E–02
Age:BUN 1.94E–04
Age:Ferritin 2.99E–07
Age:Mechanical_Ventilation 1.19E–02
Age:Remdesivir 1.14E–03
BUN 1.39E–02 1.36E–02 1.26E–02 1.35E–02 1.45E–02
CAD 5.77E–02
CAD:AST 7.32E–05
CAD:BUN 1.10E–03
COPD:BUN 1.47E–03
COPD:Mechanical_Ventilation 1.42E–01
CRP 8.50E–05
CRP:BUN 6.12E–06
Ddimer 1.29E–02 3.97E–03 4.67E–03 6.57E–03 2.84E–02
Ferritin 1.56E–05 1.03E–05 7.56E–06 1.23E–05 2.10E–05
Gender:Dimer 1.12E–02
Gender:Mechanical_Ventilation 2.02E–01
Heart Failure 1.73E–01 1.01E–01 2.47E–02 1.03E–01 2.35E–01
Heart_Failure:BUN 6.76E–04
Heart_Failure:CRP 1.06E–03
Heart_Failure:Dimer 1.21E–02
Mechanical_Ventilation 2.09E+00 2.53E+00 2.46E+00 2.52E+00 2.63E+00
Ondansetron – 7.97E–02 – 1.95E–01
Ondansetron:Mechanical_Ventilation – 8.09E–02
Remdesivir 3.87E–03
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this interaction term has a value of 1, the odds of any cause 
mortality at 30 days post-COVID-19 PCR+ testing are mul-
tiplied by  e(−0.365) = 0.694. We note that the coefficient for 
the effect of ondansetron on any cause mortality at 30 days is 
that of its total effect, while the coefficients for all the other 
variables (including the interaction terms that involve ondan-
setron) account for their direct effects on any cause 30-day 
mortality alone, disregarding any possible indirect effects.

3.6  Ondansetron Use Within 7 Days After 
a COVID‑19 PCR+ Test is Associated 
with Improved 30‑Day Survival

Regarding the timing of administration, of the 737 patients 
who received ondansetron at any time during the first 30 
days, the majority (84%) received it within the first week 
after a COVID-19 PCR+ test. Patients who received ondan-
setron in the first week after a PCR+ test had improved 
30-day survival compared with patients who did not (p < 
0.0001, log-rank test) (Fig. 4).

4  Discussion

The goal of this study, representing a multi-institutional 
collaborative effort of collecting, structuring, and analyz-
ing RWD through AI analytics, was to develop a model 
of COVID-19 any cause mortality-associated factors and 
identify potential new insights for therapeutic options for 
patients with COVID-19. The study involved two-stage data 
analytics: the primary discovery phase, involving a Bayesian 
statistics-based analysis to generate Bayesian networks of all 
patients to identify significant factors influencing any cause 
mortality at any time in the COVID-19+ cohort (Table 2), 
from a 12-month pre-PCR-based COVID-19 diagnosis to 
a 28-day post-PCR-based COVID-19 diagnosis; this was 
followed by an additional analysis incorporating potential 
confounders with the main findings on imputed and boot-
strapped data, from a multivariable regression analysis to 
the LASSO logistic regression analysis. The Bayesian net-
work findings were based on the analysis of demographic, 
clinical, and laboratory data from 16,277 patients with PCR-
confirmed COVID-19 representing a subset of the 279,281 
patients in the RECOVER-19 registry; the multivariate 
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Fig. 4  Kaplan–Meier curve showing 30-day survival rates of hospi-
talized patients who received (blue) or did not receive (red) ondan-
setron in the first week (Wk) after a COVID-19 PCR+ test. Patients 

who received ondansetron had improved 30-day survival compared 
with patients who did not (p < 0.0001, log-rank test)
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logistic regression analyses were performed on data from 
the 3082 hospitalized patients.

The value for the coefficient of ondansetron obtained in 
the logistic regression analysis (Table 4) is the conditional 
total effect of ondansetron on the log odds of any cause mor-
tality at 30 days after a COVID-19 PCR+ test, that is, the log 
OR for the total effect of ondansetron on this mortality at any 
given level of the 24 other variables that were considered in 
our model. It is important to note that the values of the other 
coefficients presented in Tables 4, 5, and 6 make a simplify-
ing assumption that all the covariates other than ondansetron 
have only direct and independent effects on any cause 30-day 
mortality. Thus, the values given in these tables for variables 
other than ondansetron do not reflect their total effect on any 
cause 30-day mortality, i.e., their direct and indirect effects. 
Possible indirect effects include the effect of ondansetron 
on any cause 30-day mortality being mediated by another 
variable; or one of the variables affecting both ondansetron 
use and this mortality. The same caveats apply to the results 
of the more complex models presented in Tables 5 and 6.

We note that mechanical ventilation use is different from 
the other variables we considered in our multivariate analy-
sis. Because it typically occurs later in time after hospitaliza-
tion than other treatments, it can be seen as an intermediate 
variable in predicting any cause mortality at 30 days after 
a COVID-19 PCR+ test, that is, it could conceivably be an 
outcome of some of the earlier treatments. However, it is 
also a potential confounder, in that severity of the disease 
is likely to be associated with both mechanical ventilation 
and any cause 30-day mortality. In fact, in our multivariate 
models the variable for mechanical ventilation has a posi-
tive sign, giving the appearance that it is a risk factor of any 
cause 30-day mortality. This actually reflects the fact that 
sicker patients are more likely to be administered this treat-
ment. Thus, ventilator use should be seen as a variable that 
modulates any cause 30-day mortality among patients with 
severe COVID-19. If we could have controlled for a con-
founder variable that reflected the severity of the disease, 
ventilator use would have had a negative association with 
any cause 30-day mortality. As with the other variables, 
controlling for ondansetron use did not cause ventilator use 
to acquire a negative coefficient. We conclude that ondan-
setron use does not predict disease severity. The beneficial 
effect of ondansetron is associated with its use during the 
first week of hospitalization, which is typically earlier than 
ventilator use, thus we considered the possibility that this 
effect is mediated by ventilator use. We found no evidence 
for this scenario, and conclude that ondansetron and ven-
tilator use act independently in their effects on any cause 
30-day mortality.

The LASSO regression analysis indicated that Ondanse-
tron and Mechanical_Ventilation are interacting variables, 
that is, ondansetron is modulating the effect of mechanical 

ventilation, which, as mentioned above, in turn modulates 
the effect of disease severity. It is possible that the benefi-
cial effects of ondansetron last long enough that by the time 
mechanical ventilation is applied, the disease has become 
less lethal and thus ventilation becomes more effective in 
preventing 30-day mortality.

Our use of bootstrapping to generate variants of our 
patient population with similar proportions was performed 
by preserving the proportion of cases and controls (stratified 
bootstrapping). By forcing this requirement on the bootstrap 
samples, we are moving away from the desired aim to gen-
erate populations similar to what would have been drawn 
from the general population. However, this method ensures 
against the bootstrap sample having too few deceased 
patients (6% of the inpatients had an outcome of any cause 
30-day mortality), which would lead to a loss of sensitiv-
ity in the characterization of this group. In a comparison 
of stratified bootstrapping with k-fold cross validation, the 
former appeared to be better in terms of bias and variance, 
when compared with regular cross-validation [13].

We identified ondansetron as the main factor associated 
with decreased any cause 30-day mortality in inpatients with 
COVID-19 who received mechanical ventilation. An initial 
unbiased search for predictors of any cause mortality after 
a COVID-19 PCR+ test at any time and within any patient 
population found ondansetron as the only medication asso-
ciated with decreased any cause mortality (Table 3). This 
association was initially identified within a specific inpa-
tient population (age < 60 years) and when ondansetron was 
administered at disparate times (up to 7 days and > 28 days 
post-COVID-19 diagnosis). To better quantify the relation-
ship between ondansetron use and any cause mortality at the 
30-day post-COVID-19 PCR+ test, multivariable logistic 
regression by LASSO showed significant effects for age and 
ondansetron use on this mortality. We found that the effect of 
ondansetron on any cause 30-day mortality is not mediated 
through the use of mechanical ventilation because ondanse-
tron use does not predict mechanical ventilator use. In addi-
tion, the absence of a significant Age:Ondansetron interac-
tion effect suggested that the effect of ondansetron applies 
to all age groups equally. However, it is the interaction term 
Ondansetron:Mechanical_Ventilation that is primarily 
selected by LASSO as a covariate of a non-zero coefficient, 
rather than the main term Ondansetron. This suggests that 
the beneficial effect of ondansetron is seen only in patients 
who received mechanical ventilation. This key finding com-
plements a study by Bayat et al. that reported a reduction 
in 30-day all-cause mortality for all inpatients (including 
intensive care unit) with early administration of ondansetron 
after admission [14]. Further validation in an independent 
cohort may clarify the interaction between ondansetron use, 
mechanical ventilation, and age.
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Ondansetron is a selective 5-HT3 serotonin recep-
tor antagonist used to prevent or treat nausea and vomit-
ing through both central and peripheral mechanisms [15]. 
Ondansetron is not regularly used in intubated patients. In 
our cohort of ventilated patients who received ondansetron, 
54% received it before ventilation and 46% received it after 
ventilation. This suggests that ondansetron is not a marker 
of surviving mechanical ventilation and it might have an 
effect on any cause mortality at different stages of disease 
progression.

It has been postulated that SARS-CoV-2 might have 
an indirect effect on enteroendocrine cells, triggering the 
release of neuroactive agents such as emesis-inducing sero-
tonin [16]. Most studies showed that patients with COVID-
19 have higher plasma serotonin levels and this correlates 
with increased interleukin-6 [17, 18], while others concluded 
they have decreased serotonin levels [19]. Considering the 
role of serotonin in regulating innate and adaptive immune 
responses [20], the observed beneficial effect of ondansetron 
might be due to the modulation of serotonin levels or could 
also be linked with a direct effect on the immune system [21] 
or on known COVID-19 comorbidities, such as liver and 
kidney disease or complications such as thrombosis [22–24]. 
There are also data suggesting that serotonin receptor sign-
aling influences cellular activities that regulate the entry of 
diverse virus families [25].

It is interesting to note that while we do not find convales-
cent plasma to be a significant predictor of any cause mortal-
ity at the 30-day post-COVID-19 PCR+ test, patients receiv-
ing ondansetron and convalescent plasma were more likely 
to die (Table 6), suggesting a complex interaction between 
ondansetron, ventilator use, and convalescent plasma. It is 
now known that high-titer convalescent plasma does not 
improve COVID-19 survival or clinical outcomes when used 
in both inpatients [26, 27] and high-risk outpatients [28] and 
when a beneficial effect on the risk of death was observed it 
was not maintained for patients who had received mechani-
cal ventilation [29]. As early in the pandemic convalescent 
plasma was usually reserved for patients with more severe 
COVID-19 pneumonia, this observed association might be 
explained by this confounding bias and not by a potential 
detrimental effect of convalescent plasma. In our cohort, 
tocilizumab had a similar effect on any cause mortality at 
30 days after a COVID-19 PCR+ test to ondansetron for 
mechanically ventilated patients, in line with published evi-
dence from large randomized controlled studies [30, 31].

Although being male is associated with COVID-19 mor-
tality, we find that in the context of neoplastic disease this is 
reversed. Our results show a negative association between 
the interaction term Gender:Neoplastic_Disease and any 
cause mortality at the 30-day post-COVID-19 PCR+ test. 
This may be because of an indirect effect of ondansetron, as 
this is often prescribed to patients with cancer undergoing 

chemotherapy, radiation therapy, and surgery. Thus, while 
being male is positively associated with any cause mortality 
at 30 days, in patients with cancer, this may be modulated by 
ondansetron use. Additionally, the association of COVID-19 
mortality with cancer is not straightforward. The COVID-
19 mortality of patients with cancer depends on the type of 
their cancer, with the main mortality drivers being age, sex, 
comorbidities, and hematological cancers [32–34].

In the present study, in addition to ondansetron and toci-
lizumab, other covariates interacting with ventilator use 
indicate that male individuals on a ventilator and patients 
with chronic obstructive pulmonary disease on a venti-
lator are more likely to have mortality from any cause at 
30-days after a COVID-19 PCR+ test. The former of these 
two findings agrees with Nicholson et al., who showed that 
male patients with COVID-19 on a ventilator have a higher 
mortality rate than female patients (after correcting for co-
morbidities) [35]. Chronic obstructive pulmonary disease is 
also an already established comorbidity associated with an 
increased odds of hospitalization and death in patients with 
COVID-19 [36, 37].

Looking at interactions between other covariates, we 
found that the C-reactive protein and blood urea nitrogen 
dyad, laboratory biomarkers that are found in prognostic 
models for COVID-19 mortality, are also associated with 
any cause 30-day mortality after a COVID-19 PCR+ test 
in our cohort [38, 39]. Similarly, the previously observed 
mortality link of interacting factors ferritin and age [40] as 
well as higher D-dimer levels in male individuals were also 
confirmed by our analyses [41]. The association between 
any cause 30-day mortality with a combination of age and 
age-squared agrees with a previous finding that the infec-
tion fatality ratio has a log-linear increase by age among 
individuals aged older than 30 years [42].

Although a US Food and Drug Administration-approved 
drug for COVID-19, remdesivir was not found to increase 
survival in large randomized controlled trials [43–45]. We 
find that age and remdesivir use interact to increase any 
cause 30-day mortality. This has not been reported previ-
ously and may suggest that we see a similar confounding 
bias with convalescent plasma, as remdesivir was reserved 
for patients with more severe disease earlier on.

Diagnostic code Z20.828 (“Contact with and (suspected) 
exposure to other viral communicable diseases”) was one 
of the three features with a significant relationship with 
decreased any cause mortality at any time following a 
COVID-19 PCR+ test in our analysis. This code was used in 
2020 when a clinician suspected exposure to SARS-CoV-2 
without a test result available. In the RECOVER-19 regis-
try, out of the approximately 200,000 unique patients seen 
with this diagnostic code in 2020, about 16,000 were found 
to be positive. We might see this mortality benefit because 
the patients who were COVID-19+ with the Z20.828 code 
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might have had a less severe form of COVID-19 (higher 
ambiguity without a positive test) or arrived earlier in the 
course of the disease and were designated patients under 
investigation, benefiting from early precautions. Gener-
ally, the patients admitted with a severe form of COVID-
19 would have received another more definitive diagnostic 
code.

The results described in this work have limitations that 
should be acknowledged. First, the additional analyses incor-
porating clinical variables of interest used to quantify the 
relationship between ondansetron and any cause mortality 
found in our initial  bAIcis® work were performed on a sub-
set of the same patient cohort, albeit by different methodol-
ogy (logistic regression and LASSO regression) and using 
data imputation methods. A more robust validation should 
be performed next, using an independent data set that had 
not been used during the initial discovery work.

Another limitation is related to the simplifying assump-
tions of the prediction model developed using the regression 
models. As stated previously, the models assume that the 
variables (or their interaction terms) other than ondansetron 
are only directly affecting any cause 30-day mortality and 
there are no indirect effects such as mediation or confound-
ing effects. Therefore, the predictive models presented here 
should only be viewed as a first approximation of the likely 
complex set of causal interactions between ondansetron use 
and any cause mortality at a 30-day post-COVID-19 PCR+ 
test.

5  Conclusions

To our knowledge, this is the first use of a Bayesian net-
work analysis of clinical data to report disease outcomes 
in patients with COVID-19. Using high-performance com-
puter-driven Bayesian AI, we report here a negative associa-
tion between any cause mortality at 30 days after a COVID-
19 PCR+ test and ondansetron treatment for mechanically 
ventilated patients, as well as confirming the beneficial 
effects of tocilizumab and validating some of the already 
established factors associated with COVID-19 increased 
mortality, such as higher blood urea nitrogen, C-reactive 
protein, ferritin, and D-dimer levels. These results suggest 
that the  bAIcis® platform can be used to generate hypotheses 
from RWD. Currently, there are no controlled trials examin-
ing the effect of ondansetron in patients with COVID-19. 
Our findings suggest that this Food and Drug Administra-
tion-approved drug should be investigated for its potential 
effectiveness against COVID-19.
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