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Background: Currently, active ingredients of herbal extracts that can suppress lipid
accumulation in the liver have been considered a potential treatment option for non-
alcoholic fatty liver disease.

Methods: Steatosis rat model was created by high fat and high sucrose diet feeding
and treated with oxymatrine (OMT). Serum biochemical parameters, liver histology and
lipid profiles were examined. Hepatic differentially expressed proteins (DEPs) which
were significantly changed by OMT treatment were identified by iTRAQ analysis. The
expressions of representative DEPs, Sirt1 and AMPKα were evaluated by western
blotting.

Results: OMT significantly reduced the body weight and liver weight of steatosis
animals, decreased the serum levels of triglyceride and total cholesterol as well
as the hepatic triglyceride and free fatty acid levels, and effectively alleviated fatty
degeneration in the liver. A list of OMT-related DEPs have been screened and evaluated
by bioinformatics analysis. OMT significantly decreased the expressions of L-FABP,
Plin2, FASN and SCD1 and increased Sirt1 expression and AMPKα phosphorylation
in the liver of rats with steatosis.

Conclusion: The present study has confirmed the significant efficacy of OMT for
improving steatosis and revealed hepatic proteomic changes and Sirt1/AMPK signaling
activation by OMT treatment in rats with steatosis.

Keywords: NAFLD, proteomic, iTRAQ, oxymatrine, sirtuin 1, AMPK

Abbreviations: ALT, alanine aminotransferase; AMPK, adenosine monophosphate- activated protein kinase; AST, aspartate
aminotransferase; BP, biological processes; CC, cellular component; DEPs, differentially expressed proteins; FASN, fatty acid
synthase; FDR, false discovery rate; FFA, free fatty acid; HFHSD, high fat and high sucrose diet; GO, Gene Ontology; IAA,
iodoacetamide; iTRAQ, isobaric tags for relative and absolute quantification; KEGG, Kyoto Encyclopedia of Genes and
Genomes; LCFAs, long-chain fatty acids; L-FABP, liver fatty acid-binding protein1; LXR, liver-X-receptor; MF, molecular
function; NAFLD, non-alcoholic fatty liver disease; OMT, oxymatrine; Plin2, perilipin2; PPARα, peroxisome proliferator
activated receptor alpha; SCD1, stearoyl-CoA desaturase 1; Sirt1, sirtuin 1; SREBF1, sterol regulatory element binding
transcription factor 1; SREBP, steroid regulatory element binding protein; TC, total cholesterol; TG, triglyceride.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD), an important
public health issue worldwide, includes a spectrum of
diseases ranging from simple steatosis to a more aggressive
condition of steatohepatitis. Steatohepatitis is characterized
by steatosis, inflammation, and hepatocyte injury and may
progress to cirrhosis. The high prevalence of NAFLD is
closely associated with the dramatic rise in obesity, diabetes
mellitus and dyslipidemia. It has been reported that NAFLD
affects approximately 60–90% of obese individuals, up to
70% of diabetics and 27–92% of patients with hyperlipidemia
(Pappachan et al., 2017; Younossi et al., 2018). NAFLD is
currently considered an independent predictor of long-time
adverse cardiovascular events (Wu et al., 2016). Thus, identifying
potential therapeutic targets and developing new drugs for
NAFLD would have substantial clinical value.

The development of NAFLD is a complex multi-factorial
process with strong genetic, environmental and metabolic
contributions. The traditional “two-hit” hypothesis, which is
widely accepted as a framework for guiding researches in the area,
states that insulin resistance and increased FFA contribute to
excessive lipid accumulation in hepatocytes in the first hit, while
the second hit represents increased oxidative stress initiating lipid
peroxidation and inflammatory insult to the liver (Basaranoglu
et al., 2013). Recently, the “multiple-hit” hypothesis has been
proposed as the more logical mechanism (Buzzetti et al., 2016).

Although comprehensive studies have been carried out
to investigate the complicated molecular mechanism of
NAFLD, its pathogenesis and progression still remain
elusive. Proteomics is a powerful tool for the identification
of novel biomarkers and potential therapeutic targets for
NAFLD. iTRAQ has been widely applied in comparative
proteomics due to the advantages of high throughput, high
sensitivity and superior accuracy over conventional approaches
(Unwin et al., 2010; Lim et al., 2014). Currently, increasing
efforts have been made to identify active ingredients of
herbal extracts, which have minimal side effects and aim at
multiple targets, to expand the treatment options for NAFLD
(Hsu et al., 2016).

Oxymatrine (OMT), a potent monosomic alkaloid derived
from the root of Sophora flavescens Ait, has been reported to
possess anti-inflammatory, anti-oxidative and hepatoprotective
activities (Lu et al., 2016; Zhao et al., 2016; Li et al., 2017).
Available studies revealed that OMT attenuated hepatic steatosis
through the down-regulation of sterol regulatory element
binding transcription factor 1 (SREBF1) and up-regulation
of peroxisome proliferator activated receptor alpha (PPARα)
mediated metabolic pathway (Shi L.J. et al., 2013). However,
these studies only superficially detected the mRNA and protein
expressions of SREBF1 and PPARα. The underlying mechanism
of OMT on improving steatosis is incompletely understood.

Therefore, in the present study, a rat model of hepatic steatosis
was created by high fat and high sucrose diet (HFHSD) feeding
and treated with OMT. The aim of our study was to identify a list
of DEPs in the liver by iTRAQ-based proteomic analysis to unveil
the potential therapeutic targets of OMT for improving steatosis.

MATERIALS AND METHODS

Reagents and Equipments
Oxymatrine (purity >98%) was purchased from Sigma-Aldrich.
Hepatic TG and FFA assay kits were from Nanjing Jiancheng
Bioengineering Institute. Sequencing-grade trypsin was from
Promega. iTRAQ reagent-8 plex multiplex kit was obtained from
Applied Biosystems. Triple TOF 5600 mass spectrometer and
Eksigent nanoLC-1D plus liquid chromatography were from
SCIEX. Rabbit anti-Plin2, rabbit anti-L-FABP, rabbit anti-FASN,
rabbit anti-Sirt1 and mouse anti-SCD1 monoclonal antibodies
were from Abcam. Rabbit anti-AMPKα (phospho-Thr172) and
rabbit anti-AMPKα monoclonal antibodies were from Cell
Signaling Technology.

Animals, Ethics Statement and
Treatment Protocol
Male Sprague-Dawley rats were obtained from Sino-British
SIPPR/BK Lab Animal Ltd (SCXK [Shanghai] 2013-0016) and
reared in the specific pathogen free facility of the Experimental
Animal Research Center, Zhejiang Chinese Medical University.
All animals received humane care with strict accordance to
the criteria outlined in the Guide for the Care and Use of
Laboratory Animals. The study was reviewed and approved by
the Committee on Animal Research and Ethics of Zhejiang
Chinese Medical University (number ZSLL-2014-36).

Steatosis was induced by HFHSD feeding for 8 weeks. Thirty
rats weighing 180–200 g were equally randomized into three
groups: control group (n = 10), model group (n = 10) and
OMT-treated group (n = 10). The rats in the model group and
OMT-treated group were fed with HFHSD, which consist of
74.25% standard chow, 10% sucrose, 0.5% cholesterol, 5% egg
yolk powder, 10% lard, 0.25% sodium cholate. The rats in OMT-
treated group additionally received intragastric administration of
OMT at a dose of 100 mg/kg/day. The control rats were fed a
standard chow and received normal saline intragastrically.

Serum Biochemical Assays
The activities of serum ALT and AST and the levels of triglyceride
(TG) and total cholesterol (TC) were determined by an Beckman
Coulter AU5800 automatic biochemical analyzer.

Liver Histological Examination
Liver specimens were fixed in 4% paraformaldehyde, dehydrated
in a graded alcohol series and embedded in paraffin. Sections of
4 µm thickness were stained with hematoxylin and eosin (H&E).
To determine hepatic lipid accumulation, fresh liver tissues were
embedded in OCT compound and frozen in liquid nitrogen.
Frozen sections (10 µm) were stained with Oil Red O. The
percentage of Oil Red-positive staining area was calculated by
using ImagePro Plus software from five to seven views per animal.

Hepatic Lipid Profiles
The levels of TG and FFA in the liver were determined using
commercial kits according to the manufacturer’s protocols.
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Protein Extraction, Digestion, and iTRAQ
Labeling
Frozen liver tissues were ground into powder using liquid
nitrogen. The powder was homogenated in ice-cold SDS lysis
buffer (containing 50 mM Tris, 0.1% SDS, 1% Triton X-100
and protease inhibitor cocktail). The lysate was centrifuged at
12,000 g, 4◦C for 15 min. The supernatant was collected and
precipitated with ice-cold acetone (1:5, v/v) at −20◦C overnight.
The pellet was collected by centrifugation, washed twice with
ice-cold acetone, dried and resolved with sample buffer (7 M
urea, 2 M thiourea, 50 mM DTT, 1 mM PMSF, 50 mM Tris,
1 mM RNAse, and 1 mM DNAse). Protein concentration was
determined and equal amount of total protein from several rats
in the same group were pooled together as a biological replicate
to alleviate the individual variability. Two or three biological
replicates were acquired.

A total of 200 µg of pooled proteins from each group was
reduced, alkylated, and digested by sequencing-grade trypsin.
Briefly, the samples were was incubated with 200 µl reducing
buffer (10 mM DTT, 8M urea, 100 mM TEAB, 150 mM Tris–HCl,
pH 8.0) for 1 h at 60◦C, cooled to room temperature, alkylated
with 50 mM iodoacetamide (IAA) for 1 h in darkness and
subjected to 10 kDa ultrafiltration. The sediment were collected
and digested by sequencing-grade trypsin at 37◦C for 16 h, with
ratios of protein to trypsin of 50:1, and labeled using iTRAQ
reagent-8 plex Multiplex Kit according to the manufacturer’s
protocol (Liu X. et al., 2017).

Reversed Phase Liquid Chromatography
Fractionation
The iTRAQ-labeled peptide mixtures were separated
using an Agilent Zorbax Extend RP column (C18, 5 µm,
150 mm × 2.1 mm). Mobile phases A (2% ACN in water) and B
(98% ACN in water) were used for gradient. The solvent gradient
was set as described previously (Hu et al., 2018). Peptides were
separated at a fluent flow rate of 300 µL/min and monitored at
210 nm and 280 nm. Dried samples were harvested from 8 to
50 min and elution buffer were collected in every minute and
numbered from 1 to 10 with pipeline. The separated peptides
were lyophilized for MS detection.

LC-MS/MS Analysis
All analyses were performed by a Triple TOF 5600 mass
spectrometer equipped with a Nanospray III source. Samples
were separated by a reverse-phase C18 column (15 cm × 75 µm,
3 µm, 120 Å) on an Eksigent nanoLC-1D plus system. Mobile
phase A = 2% ACN/0.1% FA and B = 95% ACN/0.1% FA. The
flow rate was 300 nL/min and linear gradient was set as described
previously (Hu et al., 2018).

Data were acquired with a 2.4 kV ion spray voltage, 35
psi curtain gas, 5 psi nebulizer gas, and an interface heater
temperature of 150◦C. The MS scanned between 400 and 1500
with an accumulation time of 250 ms. For IDA, 30 MS/MS spectra
(80 ms each, mass range 100–1500) of MS peaks above intensity
260 and having a charge state of between 2 and 5 were acquired.
A rolling collision energy voltage was used for CID fragmentation

for MS/MS spectra acquisitions. Mass was dynamically excluded
for 22 s (Yu et al., 2019).

Database Search
The original MS/MS file data were analyzed by ProteinPilot
Software v5.0. Processing parameters were set as follows: iTRAQ
8-plex quantification, cysteine modified with IAA; biological
modifications were selected as ID focus, trypsin digestion;
protein quantification and normalization were checked by the
Background Correction, Quantitate and Bias Correction (Yao
et al., 2018). Proteins with at least 95% confidence determined
by Protein Pilot Unused scores (≥1.3) were reported, and
the FDR was set up less than 1%. Fold changes ≥1.3 were
considered significant.

Bioinformatics Analysis
The interaction networks of DEPs were analyzed by STRING
database1. The BP, CC, and MF were analyzed by GO database2.
We defined the significance of GO enrichment according to
a P value <0.05. The pathway analysis was performed by
KEGG database3.

Western Blot Analysis
Samples were prepared as described previously (Xu et al., 2016).
Equal amounts (30–50 µg) of protein were loaded on 8%
or 12% SDS-polyacrylamide gel, separated and transferred to
polyvinylidene difluoride membranes. The blots were probed
with rabbit monoclonal antibodies against Plin2 (1:1000),
L-FABP (1:1000), FASN (1:1000), Sirt1 (1:1000), AMPKα

(1:1000), AMPKα (Thr172) (1:1000) and mouse monoclonal
antibody against SCD1 (1:1000) followed by HRP-conjugated
goat anti-rabbit IgG or rabbit anti-mouse IgG. Signals were
visualized by enhanced chemiluminescence detection.

Statistical Analysis
Statistical Package for the Social Sciences (SPSS version
20.0) software was used for the statistical analysis. Data are
presented as mean ± standard deviation (SD) and analyzed
by one-way ANOVA. Bonferroni’s correction was performed to
adjust for multiple comparisons. P < 0.05 was considered as
statistically significant.

RESULTS

OMT Reduces Body Weight and Liver
Weight in Steatosis Rats
Prior to the experiment, no differences were observed in body
weight among the three groups. After 8 weeks of HFHSD feeding,
macroscopic appearances of the livers from the model rats were
enlarged, yellowish and greasy, whereas the control rats displayed
brown, smooth, and shiny liver tissues. Accordingly, the animals

1http://string-db.org
2http://geneontology.org/
3http://www.genome.jp/kegg/mapper.html
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in the model group showed significantly increased body weight
and liver weight compared to those in the control. The abnormal
macroscopic appearance of the liver was significantly improved
by OMT treatment. Furthermore, OMT effectively decreased the
body weight as well as the liver weight (Figures 1A–C).

OMT Alleviates Hepatic Fatty
Degeneration
Representative images of randomly selected sections by H&E and
Oil Red O staining were shown in Figure 1D. The control rats
exhibited a normal liver architecture with well-arranged hepatic

FIGURE 1 | OMT reduces body weight and liver weight and alleviates hepatic
fatty degeneration in rats with steatosis. (A) Macroscopic evaluation of the
livers. (B) Body weights of the animals before the experiment and before the
sacrifice. #P < 0.01 vs. the control group, ∗P < 0.01 vs. the model group. (C)
Liver weight. #P < 0.01 vs. the control group, ∗P < 0.01 vs. the model group.
(D) Histological evaluation of liver tissues by H&E and Oil Red O staining.
Scale bar, 30 µm. (E) Quantitative analysis of liver steatosis by Oil Red O
staining. The percentage of Oil Red O-positive staining area was calculated
according to the following formula: Oil Red O-positive area/total area × 100%.
#P < 0.001 vs. the control group, ∗P < 0.001 vs. the model group.

lobules. Severe fatty degeneration with destroyed structure of
normal hepatic lobules was observed in the livers of the model
rats. The percentage of Oil Red O-positive staining area in the
model group was significantly higher than that in the control
(46.50 ± 9.08% vs. 0.90 ± 0.13%). The fatty degeneration was
noticeably improved by OMT treatment with the percentage of
Oil Red O-positive staining area (21.15 ± 3.40%) significantly
decreased compared to the model group (Figure 1E).

OMT Improves Serum and Hepatic Lipid
Profiles
Slightly but not statistically increased serum ALT and
AST levels were detected in the model group compared
to the control and OMT-treated groups (Figures 2A,B).
Compared to the control group, the levels of serum TG
and TC in the model group were remarkably increased
(2.68 ± 0.35 mmol/L vs. 1.22 ± 0.12 mmol/L and
2.67 ± 0.29 mmol/L vs. 1.44 ± 0.12 mmol/L, respectively).
OMT treatment significantly reduced serum TG and TC
levels to 2.13 ± 0.32 mmol/L and 2.15 ± 0.33 mmol/L,

FIGURE 2 | OMT improves serum and hepatic lipid profiles. Serum levels of
ALT (A) and AST (B) among the three groups were detected. Serum levels of
TG (C) and TC (D). Hepatic levels of TG (E) and FFA (F). Data are
representative of 10 rats in each group and expressed as mean ± SD.
#P < 0.01 vs. the control group, ∗P < 0.01 vs. the model group.
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respectively (Figures 2C,D). Similarly, the model group
displayed significantly higher hepatic TG and FFA levels than
the control (386.2 ± 47.8 µmol/g vs. 90.8 ± 22.7 µmol/g
and 812.0 ± 118.3 µmol/g vs. 398.4 ± 72.6 µmol/g,
respectively). OMT significantly decreased hepatic TG and
FFA levels (Figures 2E,F).

iTRAQ Quantitative of DEPs
iTRAQ-based proteomic analysis was used to detect DEPs in each
group. After merging the data from two or three independent
biological replicates, a total of 2859 proteins were identified
and quantified against the Rat Database (FDR < 1% and
containing at least two unique peptides). 173 DEPs (p < 0.05
and changes >1.3-fold) were identified between the model
group and the control group, of which 77 proteins were up-
regulated and 96 proteins were down-regulated. 173 DEPs were
identified between the OMT-treated group and the model group,
of which 88 proteins were up-regulated and 85 proteins were
down-regulated. Furthermore, 301 differential proteins were
identified between the OMT-treated group and the control
group with 141 proteins up-regulated and 60 proteins down-
regulated (Figure 3).

We classified all DEPs into two categories: steatosis-specific
DEPs, which were up-regulated or down-regulated significantly
in the liver of the model group compared to the control, and
OMT-related DEPs. OMT-related DEPs include a bunch of
steatosis-specific DEPs, which were regulated in an opposite

FIGURE 3 | Venn-diagram depicts the overlap of all DEPs among the three
groups.

way following OMT treatment. Representative proteins included
perilipin 2 (Plin2), liver fatty acid-binding protein (L-FABP,
also known as FABP1), FASN and stearoyl -CoA desaturase 1
(SCD1). The expressions of some proteins remained unchanged
throughout HFHSD feeding, but significantly changed by the
administration of OMT. After the removal of the proteins
overlapped with steatosis-specific DEPs, there were 177 DEPs
between the OMT-treated group and control group. These
proteins were also defined as OMT-related DEPs.

Representative OMT-related DEPs were shown in Table 1.
These proteins were mainly involved in fatty acid metabolism
(Fasn, Scd1, Fads2, Fdps, Plin2), fatty acid degradation (Ehhadh,
Acsl1), PPAR signaling pathway (Fads2, Ehhadh, Acsl1, Fabp1),
non-alcoholic fatty liver disease (Ehhadh, Pklr) and AMPK
signaling pathway (Fasn, Scd1, Hnf4a).

Functional Classifications of DEPs
All these DEPs were analyzed by searching GO database to
determine their participation in BP, CC and MF. As shown in
Figure 4, the DEPs were mainly located in the cytoplasm,
intracellular membrane-bounded organelle, membrane
and nucleus. Their major MFs were catalytic activity, ion
binding, protein binding, organic cyclic compound binding and
heterocyclic compound binding. OMT-related DEPs were mainly
involved in processes of small molecule metabolism, organic
substance biosynthesis, organic cyclic compound metabolism,
response to organic substance, organic acid metabolism,
transport and oxidation-reduction.

TABLE 1 | Representative OMT-related DEPs detected by iTRAQ analysis.

Protein
name

Uniprot
accession

Model/Control
(fold)

P value OMT/Model
(fold)

P value

Plin2 tr| Q5U2U5|
Q5U2U5_RAT

2.80 2.044E-05 0.54 0.000

Fabp1 sp| P02692|
FABP1_RAT

2.56 0.001 0.52 0.003

Fasn sp| P12785|
FAS_RAT

3.12 0.000 0.46 0.004

Scd1 sp| P07308|
ACOD1_RAT

2.43 0.000 0.48 0.000

Fads2 sp| Q9Z122|
FADS2_RAT

0.53 0.017 1.98 0.003

Hnf4a tr| G3V750|
G3V750_RAT

1.89 0.015 0.49 0.005

Pklr sp| P12928|
KPYR_RAT

2.23 0.007 0.54 0.006

Fdps tr| F1LND7|
F1LND7_RAT

0.35 0.000 1.97 0.001

Rab18 sp| Q5EB77|
RAB18_RAT

2.16 0.002 0.58 0.001

Ehhadh sp| P07896|
ECHP_RAT

0.56 0.005 1.76 0.001

Acsl1 sp| P18163|
ACSL1_RAT

1.88 0.001 0.62 0.004

Ppox tr| D3ZVN7|
D3ZVN7_RAT

2.03 0.007 0.60 0.003
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FIGURE 4 | GO classification analysis. GO classification of steatosis-specific DEPs (A) and OMT-related DEPs (B) based on their biological process, cellular
component and molecular function.

Frontiers in Pharmacology | www.frontiersin.org 6 March 2020 | Volume 11 | Article 216

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-11-00216 March 6, 2020 Time: 17:30 # 7

Xu et al. OMT Treatment for NAFLD

Pathway Enrichment and Protein-Protein
Network Analysis
KEGG enrichment was performed to uncover the signal
transduction pathways that DEPs may participate in. Steatosis-
specific DEPs were mainly involved in carbon metabolism,
biosynthesis of amino acids, arginine biosynthesis, cysteine and
methionine metabolism, PPAR signaling pathway, glycine, serine
and threonine metabolism, alanine, aspartate and glutamate
metabolism, metabolism of xenobiotics by cytochrome P450,
fatty acid metabolism and metabolic pathways. The top 10
signaling pathways that OMT-related DEPs participate in
included tyrosine metabolism, steroid hormone biosynthesis,
starch and sucrose metabolism, retinol metabolism, PPAR
signaling pathway, peroxisome, glutathione metabolism, drug
metabolism-cytochrome P450, fatty acid degradation and
metabolic pathways (Figure 5). As shown in Figure 6, String
network analysis identified various possible direct and indirect
interactions among these DEPs. These proteins were mainly
involved in fatty acid metabolism, fatty acid degradation, PPAR
signaling pathway, peroxisome, non-alcoholic fatty liver disease,
arginine biosynthesis, AMPK signaling pathway, biosynthesis of
unsaturated fatty acids and biosynthesis of amino acids.

Validation of Potential Therapeutic
Targets by Western Blot Analysis
Four significantly changed proteins: L-FABP, Plin2, FASN, and
SCD1 were chosen for validation by western blot analysis. As
shown in Figure 7, the expressions of L-FABP, Plin2, FASN,
and SCD1 in the liver were significantly increased in the model
group compared to the control and were 3.25-fold, 2.48-fold,
3.34-fold and 2.56-fold over the control, respectively. OMT
treatment caused significant reductions in the levels of L-FABP,
Plin2, FASN, and SCD1 by 52.92, 55.63, 52.69, and 57.42%,
respectively. These results are concordant with our findings
from iTRAQ analysis.

OMT Increases Sirt1 Expression and
AMPKα Phosphorylation
As shown in Figure 8, the expression of Sirt1 in the liver of the
model rats was significantly reduced to 58.03% of the control.
OMT caused a significant increase in Sirt1 expression up to 1.89-
fold over the model group. No significant changes were detected
in the protein expression of AMPKα among the three groups.
However, Thr172 phosphorylation of AMPKα was significantly
decreased compared to the control. In OMT-treated group,
Thr172 phosphorylation of AMPKα was significantly increased
and was 2.63-fold over the model group.

DISCUSSION

Current innovative strategies to treat NAFLD include identifying
active ingredients of herbal extracts that can suppress lipid
accumulation in the liver (Liu Q. et al., 2017; Zhang et al.,
2018). The present study is not the first one reporting the
anti-steatotic action of OMT. But importantly, this is for the

first time displaying hepatic proteomic response to oxymatrine
treatment in steatosis rats by iTRAQ analysis. Furthermore, our
data have provided the novel evidence that OMT activates hepatic
Sirt1/AMPK signaling which might be the potential therapeutic
target of OMT for improving steatosis.

Although the precise mechanisms underlying the
pathogenesis and progression of NAFLD still remain unclear,
excessive lipid accumulation in the liver serves as a precursor for
steatosis. It could stem from increased uptake of FFAs, elevated
de novo lipogenesis and impaired fatty acid β oxidation. SREBP
is a transcription activating factor of almost all genes that control
the synthesis of fatty acids and TG in the liver. PPARα is another
key regulator of the complex regulatory network of hepatic
lipid metabolism (Cobbina and Akhlaghi, 2017). Therapeutic
options targeting the improvement of lipid metabolism in the
liver are crucial for the management of NAFLD. By creating
HFHSD-induced steatosis rat model, we have provided strong
support for OMT as a potential candidate for NAFLD treatment
with high therapeutic efficiency. The body weight and liver
weight of animals with steatosis were significantly reduced
by OMT treatment. The sick greasy macroscopic appearances
of the livers were remarkably improved. The serum levels
of TG and TC as well as the hepatic TG and FFA levels
were significantly decreased. Histopathological examination
demonstrated that OMT effectively alleviated fatty degeneration
in the liver. Moreover, OMT significantly attenuated lipid
droplets (LDs) formation in oleic acid-induced steatotic
hepatocytes and reduced intracellular TG and TC levels (see
Supplementary Material).

Prior to the present study, limited literatures have documented
the protective effect of OMT against hepatic steatosis (Shi L.
et al., 2013). However, the starting point of these researches was
based on the important roles of SREBF1 and PPARα in lipid
synthesis and fatty acid β-oxidation, respectively. There were
not any more details except the determination of the mRNA
and protein expressions of SREBF1 and PPARα. A clear and
detailed mechanism by which OMT improves steatosis remains
largely unknown. In this study, by using iTRAQ-based proteomic
method, a bunch of DEPs which up-regulate or down-regulate
significantly by OMT treatment were identified. The data of GO
analysis suggested that OMT-related DEPs were mainly located
in the cytoplasm, intracellular membrane-bounded organelle,
membrane and nucleus, participating mainly in the processes
of small molecule metabolism, organic substance biosynthesis,
organic cyclic compound metabolism, response to organic
substance, organic acid metabolism, transport and oxidation-
reduction. KEGG enrichment revealed that they were closely
associated with following pathways: tyrosine metabolism, steroid
hormone biosynthesis, starch and sucrose metabolism, retinol
metabolism, PPAR signaling pathway, peroxisome, glutathione
metabolism, drug metabolism-cytochrome P450, fatty acid
degradation and metabolic pathways. Plin2, L-FABP, FASN,
and SCD1 were selected as the most significantly differentially
expressed targets.

Plin2 is constitutively located on the surface of LDs. It has
been considered a reliable and sensitive marker for LDs and
correlates positively with cytosolic TG content in hepatocytes.
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FIGURE 5 | Scatter diagram of enriched KEGG pathways. Enriched KEGG pathways of steatosis-specific DEPs (A) and OMT-related DEPs (B). Degree of
enrichment was determined by the number of genes that enriched in one pathway, Rich factor and P value and. Y-axis represents the name of signaling pathway,
X-axis represents the Rich factor. Point size means the number of differential expression genes in specific pathway, and the color of point means the range of P value.
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FIGURE 6 | String network analysis of DEPs identified by iTRAQ-LC-MS/MS.

Plin2 plays a key role in fatty acid uptake, stabilization of
LDs, lipid transport and storage. Plin2 regulated lipid exchange
from LDs by facilitating direct protein-lipid interactions on
the LDs surface (McIntosh et al., 2012). Study of clinical
liver biopsy discovered that Plin2 mainly targeted inflamed
ballooned hepatocytes. The frequency of Plin2-positive ballooned
hepatocytes was correlated to inflammation and NAFLD activity
score (Fujii et al., 2009). Suppression of Plin2 expression by
global or liver-specific ablation of plin2 gene resulted in decreased
hepatic lipid accumulation and protected against diet-induced
liver steatosis, inflammation and fibrosis (McManaman et al.,
2013; Najt et al., 2016). Furthermore, whole-body loss of Plin2
exerts a protective effect in animals exposed long-term Western
diet in part by suppressing hepatic SRBEP-1 and SRBEP-2 activity
(Libby et al., 2016).

L-FABP is a small 14 kDa soluble protein and abundantly
expressed in hepatocytes in high concentration, accounting for
2–5% of all soluble cytosolic proteins. L-FABP functions as
a transporter of fatty acid in the cytoplasm. It mediates the
transport of long-chain fatty acids (LCFAs) and other lipid
ligands from cytoplasm to various organelles, such as nucleus,
LDs, mitochondria, peroxisome and endoplasmic reticulum
(Wang et al., 2015). Ablation of L-FABP gene impaired the ability
of the liver to efficiently import and transfer fatty acids into

glycerolipid biosynthesis resulting in a reduction of hepatic TG
accumulation, and protected against diet-induced obesity and
hepatic steatosis (Newberry et al., 2006; Martin et al., 2009,
2017; Mukai et al., 2017). Studies discovered that L-FABP and
PPARα colocalized in the nucleus. L-FABP may serve to shuttle
LCFAs into the nucleus for donating the ligands to PPARα and
interacts directly with PPARα to influence transcriptional activity
(Wolfrum et al., 2001; Huang et al., 2004). FASN and SCD1 are
important lipogenesis-associated enzymes. FASN catalyzes the
last step in de novo fatty acid synthesis. SREBP1c is the major
transcriptional factor that regulates the expressions of FASN
and SCD1 (Angeles and Hudkins, 2016; Zhang et al., 2017).
FASN also controls the activation of PPARα under nutrient-
deficient conditions to promote the adaptive response to fasting
(Jensen-Urstad and Semenkovich, 2012).

Considering that OMT-related DEPs display a wide range of
functions including fatty acid uptake, synthesis, transport, storage
and degradation and participating PPAR signaling pathway, we
speculate that the therapeutic target of OMT may locate on
the upstream of the network of lipid metabolism regulation.
Available studies have revealed that sirtuin 1 (Sirt1)/adenosine
monophosphate-activated protein kinase (AMPK) signaling
plays a pivotal role in lipid metabolism in the liver. AMPK, which
serves as a sensor of cellular energy status, is a heterotrimeric
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FIGURE 7 | OMT decreases the expressions of L-FABP, Plin2, FASN and
SCD1 in the liver of rats with steatosis. (A,B) Representative western blots of
L-FABP, Plin2, FASN and SCD1 in liver tissues. GAPDH demonstrates the
equal loading of proteins. (C,D) Graphic presentations show the expressions
of L-FABP, Plin2, FASN and SCD1. The mean densities of these four proteins
were normalized by that of GAPDH. The control samples were assigned a
value of 1. Data are representative of 10 rats per group. #P < 0.001 vs. the
control, ∗P < 0.001 vs. the model group.

FIGURE 8 | OMT increases Sirt1 expression and AMPKα phosphorylation.
(A,B) Representative western blots of Sirt1, AMPKα and phospho-Thr172
AMPKα in liver tissues. GAPDH demonstrates the equal loading of proteins.
(C,D) Graphic presentations show the expressions of Sirt1 and AMPKα and
phosphorylation of Thr172 AMPKα. The mean densities of Sirt1 and AMPKα

were normalized by that of GAPDH. AMPKα phosphorylation is represented
as the relative ratio of the density of phospho-Thr172 AMPKα against that of
total AMPKα. The control samples were assigned a value of 1. Data are
representative of 10 rats per group. #P < 0.001 vs. the control, ∗P < 0.001
vs. the model group.

enzyme that is composed by AMPKα (a catalytic subunit),
AMPKβ (a scaffolding subunit) and AMPKγ (a regulatory
subunit) (Day et al., 2017). AMPK activation by phosphorylation

of Thr172 in α subunit decreases SREBP-1c expression to
suppress lipid biosynthesis and activates PPARα to promote fatty
acid β-oxidation (Smith et al., 2016). Sirt1, an NAD+ -dependent
protein deacetylase, is a critical regulator of AMPK activity
in controlling hepatocellular lipid metabolism (Liou et al.,
2018). Sirt1 deacetylated and inhibited the activity of SREBP-1c
(Ponugoti et al., 2010). Sirt1-deficient mice lacked AMPK activity
and had increased SREBP-1c expression that triggered hepatic
steatosis and obesity (Zhang et al., 2016). Hepatocyte-specific loss
of Sirt1 was shown to cause PPARα signal failure and a decrease
in fatty acid β-oxidation (Purushotham et al., 2009). Our data
indicated that OMT significantly increased hepatic expression
of Sirt1, which is down-regulated in the liver of steatosis rats.
Although the expression of total AMPKα remained unchanged,
Thr172 phosphorylation of AMPKα was significantly increased
following OMT treatment. The data have been further verified by
in vitro experiment (see Supplementary Material). Thus, OMT
may activate Sirt1/AMPK signaling to control the downstream
key regulators of lipid synthesis, transport and degradation.

In summary, the present study has provided the evidence to
confirm the efficacy of OMT on treating hepatic steatosis. A list
of DEPs in the liver of steatosis rats by OMT treatment has
been identified. Plin2, L-FABP, FASN, and SCD1 are considered
the most significantly DEPs. Our data suggest a strong link
between OMT and the BP of fatty acid uptake, synthesis,
transport, storage, and degradation. Importantly, OMT activates
the upstream Sirt1/AMPK signaling in the lipid metabolism
regulatory network in the liver. Further studies are required to
unravel the interaction, activity regulation, possible complexes
and substrates of these proteins, and how they “cross-talk” with
PPARα signaling pathway.
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