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Abstract: Background: The 14q32 cluster is among the largest polycistronic miRNA clusters. miRNAs
encoded here have been implicated in tumorigenesis of multiple organs including endocrine glands.
Methods: Critical review of miRNA studies performed in endocrine tumors have been performed.
The potential relevance of 14q32 miRNAs through investigating their targets, and integrating the
knowledge provided by literature data and bioinformatics predictions have been indicated. Results:
Pituitary adenoma, papillary thyroid cancer and a particular subset of pheochromocytoma and
adrenocortical cancer are characterized by the downregulation of miRNAs encoded by the 14q32
cluster. Pancreas neuroendocrine tumors, most of the adrenocortical cancer and medullary thyroid
cancer are particularly distinct, as 14q32 miRNAs were overexpressed. In pheochromocytoma and
growth-hormone producing pituitary adenoma, however, both increased and decreased expression of
14q32 miRNAs cluster members were observed. In the background of this phenomenon methodolog-
ical, technical and biological factors are hypothesized and discussed. The functions of 14q32 miRNAs
were also revealed by bioinformatics and literature data mining. Conclusions: 14q32 miRNAs have a
significant role in the tumorigenesis of endocrine organs. Regarding their stable expression in the
circulation of healthy individuals, further investigation of 14q32 miRNAs could provide a potential
for use as biomarkers (diagnostic or prognostic) in endocrine neoplasms.

Keywords: miRNA; 14q32; miRNA cluster; DLK1-MEG3 locus; endocrine tumor; pituitary adenoma;
adrenocortical cancer; neuroendocrine tumor; pheochromocytoma; thyroid cancer

1. Introduction

MicroRNAs (miRNAs) are single-stranded, small (~17–22 nucleotide long), protein
non-coding RNA molecules that regulate gene expression post-transcriptionally by RNA in-
terference. According to the canonical miRNA biogenesis, the mature miRNA is generated
from a hairpin RNA precursor molecule produced by RNA polymerase II or III [1].

After biogenesis, the mature miRNA incorporates into a protein complex called
miRISC (miRNA-induced silencing complex) [2]. In the miRISC complex miRNAs lead to
translational repression, mRNA destabilization or mRNA cleavage through miRNA-mRNA
interaction via base complementarity. MiRNAs target mRNAs mainly at 3′ untranslated
regions but even the coding sequence or 5′UTR have been described to be miRNA target
regions [2]. Recently, it has been discovered that in some particular cases miRNAs can even
enhance gene expression [2].

Approximately 30–50% of all protein-coding genes are thought to be controlled by
miRNAs [3]. As one miRNA targets several transcripts, and one mRNA is regulated by
numerous miRNAs, the net physiological outcome is the result of a miRNA-target network.
The role of miRNAs is primarily considered to set the gene expression to an optimal level
as an adaptive process called “fine tuning” [4].
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MiRNAs have been shown to be involved in the control of many physiological and
pathophysiological processes, such as proliferation, differentiation, metabolism and apop-
tosis through the modulation of target gene expression. Altered miRNA expression has
been identified in several endocrine diseases including neoplasms [5,6]. Depending on
their target molecules, miRNAs are considered as oncomiRs or tumor suppressor miRNAs,
and therefore they are often considered potentially useful biomarkers. MiRNAs are highly
tissue-specific, and they may be unique identifiers of certain tumor types, even having
different effects in different cell/tissue types.

The 14q32 miRNA cluster is among the largest polycistronic clusters comprising
almost a hundred small non-coding RNAs, including a significant number of miRNAs [7].
MiRNAs located in this region cover over 5% of the known human miRNA genes [8,9].

The 14q32 region is called the DLK1-DIO3 domain or DLK1-MEG3 cluster. Indeed,
this cluster contains protein-coding (Delta-like 1 (DLK1), Deiodinase Iodothyronine Type
III (DIO3) and Retrotransposon-like Gene 1 (RTL1)) and nonprotein-coding genes (ncRNAs,
such as Maternally Expressed Gene 3 (MEG3), Maternally Expressed Gene 8 (MEG8)
and RTL1 antisense (RTL1-AS)), small nucleolar RNAs (snoRNAs) and miRNAs. This
approximately 300 kilobase miRNA region can be divided into two parts: cluster A and
cluster B. Cluster A includes MEG3 and RTL1 genes, while cluster B can be found 5′ from
MEG9 and DIO3 genes (Figure 1A).
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used for low and red for high expression, grey represents monoallelic expression, white: no data available). 
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adult tissues [20]. This imprinted methylation pattern provides the reciprocal expression 
of DLK1 and MEG3. 

Accordingly, 14q32 miRNAs are also involved in the imprinting regulation [7,35] and 
altered 14q32 miRNA expression have been described in several diseases including ma-
lignancies [36–41]. Several studies have shown downregulation of miRNAs from the 
14q32 region in different types of cancer, such as ovarian, breast, prostate, bladder, osteo-
sarcoma, and gastrointestinal stromal, with significant correlations to poor prognosis and 
aggressiveness [42–48]. The tumor suppressor role has been recognized in several of the 
downregulated 14q32 miRNAs through targeting key oncogenes in glioblastoma, neuro-
blastoma, metastatic lung cancer, hepatic cancer and rhabdomyosarcoma [25,49–51]. In 
contrast, miRNAs from the 14q32 region may act as oncogenes as well [52–54], suggesting 
that these miRNAs may have different biological roles depending on the tissue of origin 
and genetic background. 

14q32 miRNAs also influence prognosis of various cancers. Oshima et al. presented 
that the expression of 14q32 miRNAs was a favorable prognostic factor in patients with 
metastatic cancer [41]. Based on studies of Lussier et al. 2011 and 2012, the term oligomiR 

Figure 1. The imprinted 14q32 region. (A) On the paternal and maternal alleles middle: exons colored by grey indicate
imprinted genes, exons colored by green indicate transcriptionally active state. DMR status is presented by grey (methylated)
and white (unmethylated) circles. Black stripes represent imprinted miRNA genes, red stripes represent transcriptionally
active miRNA genes. (B) On the heatmap (right): Representative expressional change of 14q32 miRNAs in endocrine
tumors (downregulation and overexpression are presented compared to physiological, monoallelic expression. Heatmap
was constructed using the data of 59 studies (see details in the methods section)). MiRNAs indicated on the heatmap are
listed in Table 1 indicating the exact chromosomal localization. Colors indicate expression (blue color was used for low and
red for high expression, grey represents monoallelic expression, white: no data available).

As miRNA expression can be influenced by several factors, Goossens and colleagues
investigated the effect of the most common confounding factors: sex and age on the
miRNA expression profile of this region [10]. The finding that 14q32 miRNA expression
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did not differ between men and women, and that no correlation with age was observed,
highlighted the importance of this miRNA cluster in cell biology [10]. This was further
supported by others who described that the 14q32 maternally imprinted locus was a
major source of longitudinally stable circulating miRNAs as measured by small RNA
sequencing of healthy individuals [11]. In addition, the serum level of 14q32 miRNAs was
not significantly affected by common confounders such as age, body mass index (BMI) or
time of centrifugation, nor alternative methods of expression data normalization [11].

14q32 miRNAs are frequently described deregulated in human diseases and can-
cers [12–14]. In line with the finding that miRNAs are highly tissue-specific [7,15], 14q32 miR-
NAs are considered both oncogenic and tumor suppressing depending on cell type [14,16].

The expression of 14q32 genes is regulated by genomic imprinting. The differential
expression of alleles inherited from a mother or father at the genomic imprinted loci
is realized by different methylation. The regulatory loci of the methylated nucleotides
are called differentially methylated regions (DMRs). Differential methylation patterns at
DMRs provide monoallelic expression from either maternal or paternal allele. Generally,
imprinted genes have a key role in regulating growth and other physiological functions
during embryonic development. Germline deletions and uniparental disomy of this locus
in humans associate with developmental abnormalities and dysmorphism, suggesting that
the 14q32 locus might have significant importance in development [17–24]. As several
maternally imprinted genes limit growth during development, they usually possess a
tumor-suppressor role in human cancer [25]. In line with this, the DLK1-MEG3 cluster
was frequently affected by allelic loss or epigenetic changes in various cancers [26–29].
In the 14q32 region, the paternally expressed protein coding genes are DLK1, DIO3 and
RTL1 [30]. From the maternal allele MEG3, MEG8 and RTL1-AS long noncoding RNAs are
expressed [9,31]. This imprinted gene expression of this locus is under the control of three
DMRs [20,32]: a DMR located 11 kb upstream of MEG3 (also called intergenic differentially
methylated region, IG DMR), a DMR 1.3 kb upstream of the MEG3 transcription start site
(MEG3-DMR) and a DMR found in the DLK1 promoter (DLK1-DMR) [33] (Figure 1A).

The MEG3-IG DMR, which is methylated on the paternal allele and unmethylated on
the maternal allele, functions as the primary imprinting control region (ICR) for the entire
locus during development [34], whereas MEG3-DMR serves as the principal regulator in
adult tissues [20]. This imprinted methylation pattern provides the reciprocal expression
of DLK1 and MEG3.

Accordingly, 14q32 miRNAs are also involved in the imprinting regulation [7,35]
and altered 14q32 miRNA expression have been described in several diseases including
malignancies [36–41]. Several studies have shown downregulation of miRNAs from
the 14q32 region in different types of cancer, such as ovarian, breast, prostate, bladder,
osteosarcoma, and gastrointestinal stromal, with significant correlations to poor prognosis
and aggressiveness [42–48]. The tumor suppressor role has been recognized in several
of the downregulated 14q32 miRNAs through targeting key oncogenes in glioblastoma,
neuroblastoma, metastatic lung cancer, hepatic cancer and rhabdomyosarcoma [25,49–51].
In contrast, miRNAs from the 14q32 region may act as oncogenes as well [52–54], suggesting
that these miRNAs may have different biological roles depending on the tissue of origin
and genetic background.

14q32 miRNAs also influence prognosis of various cancers. Oshima et al. presented
that the expression of 14q32 miRNAs was a favorable prognostic factor in patients with
metastatic cancer [41]. Based on studies of Lussier et al. 2011 and 2012, the term oligomiR
was introduced [55,56]. There were miRNAs differentially expressed between patients
with limited numbers and slow progression of metastases (oligometastases) compared to
patients with widely disseminated or rapidly progressive metastatic disease [55,56]. Inter-
estingly, miRNAs encoded in the 14q32 were significantly enriched among oligomiRs [22].
Additionally, 14q32 miRNAs suppressed lung and liver metastases and correlated with im-
proved clinical outcomes. In osteosarcoma 14q32 miRNAs also had prognostic significance,
as an inverse correlation was described between aggressive tumor behavior (increased
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metastatic potential and accelerated time to death) and the residual expression of this
miRNA locus [47].

Despite of the relevance of 14q32 miRNAs in other malignancies, regarding endocrine
tumors, there has no comprehensive review published about the role of 14q32 miRNA
cluster. In this work, the authors aimed to collect high-throughput miRNA studies per-
formed in endocrine tumor samples, to extract the role and potential relevance of 14q32
miRNAs through investigating miRNA targets and to integrate the knowledge provided
by literature data and bioinformatics predictions.

2. Materials and Methods

Literature mining was performed using Pubmed database using the following key-
words: “14q32” or “miRNA” or “DLK1-MEG3” and combined with either of “endocrine tu-
mors”, “neuroendocrine tumor”, “pituitary adenoma”, “adrenocortical tumor”, “pheochro-
mocytoma” or “thyroid cancer”. Publication focused on 14q32 miRNAs regarding en-
docrine tumors, and high-throughput miRNA profiling studies of endocrine tumors were
selected to construct an expression heatmap (Figure 1B, Table 1). Downregulated/over-
expressed miRNAs were included when at least one study reported it significantly with-
out conflict (conflict was considered when another study reported the opposite change).
When conflicting information was observed between studies, gradient colour was used.
Unfortunately, as in many studies, raw data were not available and only the significant
lists were reported; only “downregulated” and “overexpressed” characteristics could be
considered irrespectively of fold change. The heatmap itself was generated in Microsoft
Excel (Microsoft Office Professional Plus 2013).

Table 1. MiRNA studies used for heatmap generation.

Tumor Type Study miRNA Profiling Platform

NET Lung Yoshimoto et al., 2018 [57] microarray
Mairinger et al., 2014 [58] TaqMan array

Deng et al., 2014 [59] microarray
Rapa et al., 2015 [60] PCR array
Wong et al., 2020 [61] NGS

Pancreas Zimmermann et al., 2018 [62] TaqMan array
Roldo et al., 2006 [63] microarray
Jiang et al., 2015 [64] PCR array
Zhou et al., 2016 [65] microarray (GSE43796) reanalysis
Lee et al., 2015 [66] Nanostring nCounter

small intestinal Yoshimoto et al., 2018 [57] microarray
Arvidsson et al., 2018 [67] microarray

Li et al., 2013 [68] microarray
Miller et al., 2016 Nanostring nCounter

PPGL Castro-Vega et al., 2015 [69] NGS
Tömböl et al., 2010 [70] TaqMan array

de Cubas et al., 2013 [71] microarray
Meyer-Rochow et al., 2010 [72] microarray

Calsina et al., 2019 [73] individual qPCR

ACC Tömböl et al., 2009 [74] TaqMan array
Chabre et al., 2012 [54] microarray
Özata et al., 2011 [75] microarray
Assié et al., 2014 [76] NGS
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Table 1. Cont.

Tumor Type Study miRNA Profiling Platform

Pituitary GH Mao et al., 2010 [77] microarray
D’Angelo et al., 2012 [78] microarray

Bottoni et al., 2007 [79] microarray
Butz et al., 2009 [80] TaqMan array

Cheunsuchon et al., 2011 [81] individual qPCR
He et al., 2019 [82] NGS

ACTH Gentilin et al., 2013 [83] individual TaqMan assay
Amaral et al., 2009 [84] individual TaqMan assay
Stilling et al., 2010 [85] microarray

Cheunsuchon et al., 2011 [81] individual qPCR

PRL He et al., 2019 [82] NGS
Müssnich et al., 2015 [86] microarray

Chen et al., 2012 [87] NGS
Cheunsuchon et al., 2011 [81] individual qPCR

NFPA He et al., 2019 [82] NGS
Darvasi et al., 2019 [88] NGS, TaqMan array and microarray

Butz et al., 2011 [89] TaqMan array
Liang et al., 2015 [90] individual qPCR

Cheunsuchon et al., 2011 [81] individual qPCR
Müssnich et al., 2015 [86] microarray

Bottoni et al., 2007 [79] microarray

OC Krokker et al., 2019 [91] NGS

Thyroid MTC Lassalle et al., 2016 [92] microarray
Hudson et al., 2013 [93] Taqman array

Nikiforova et al., 2008 [94] Taqman array

PTC Geraldo et al., 2017 [95] NGS (obtained from The Cancer
Genome Atlas dataset)

Rosignolo et al., 2017 [96] Taqman array
Tetzlaff et al., 2007 [97] microarray
Linwah et al., 2011 [98] microarray
Jacques et al., 2013 [99] microarray

Lassalle et al., 2011 [100] microarray
Mancikova et al., 2015 [101] NGS

Peng et al., 2014 [102] microarray
Riesco-Eizaguirre et al., 2015 [103] NGS

Saiselet et al., 2015 [104] NGS
Swierniak et al., 2013 [105] NGS

FTC Nikiforova et al., 2008 [94] TaqMan array
Rossing et al., 2012 [106] microarray
Dettmer et al., 2013 [107] Taqman array
Jacques et al., 2013 [99] microarray

Lassalle et al., 2011 [100] microarray
Mancikova et al., 2015 [101] NGS

Wojtas et al., 2014 [108] microarray

ATC Hébrant et al., 2014 [109] microarray
Visone et al., 2007 [110] microarray

Boufraqech et al., 2015 [111] microarray
Braun et al., 2010 [112] microarray

ACC: adrenocortical carcinoma; ACTH: corticotroph adenoma; ATC: anaplastic thyroid cancer; FTC: follicular thyroid carcinoma; GH:
growth hormone; MTC: medullary thyroid carcinoma; NET: neuroendocrine tumor; NFPA: nonfunctional pituitary adenoma; OC:
oncocytoma; PPGL: pheochromocytoma-paraganglioma; PRL: prolactin; PTC: papillary thyroid carcinoma.

Also, miRbase MIMAT IDs of dominant mature 14q32 miRNAs were used for bioin-
formatics analysis (http://www.mirbase.org/, access date: 25 February 2021). Pathway
analysis for 14q32 miRNA targets by gene set enrichment analysis for KEGG pathways was

http://www.mirbase.org/
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performed using DIANA TOOLS miRPath v.3 following target prediction by microT-CDS
algorithm (http://snf-515788.vm.okeanos.grnet.gr/, access date: 25 February 2021). Gene
ontology was assessed using miRDB Target Ontology Analysis module by selecting en-
richment for Biological Process and Molecular Function (http://mirdb.org/ontology.html,
access date: 25 February 2021).

3. miRNAs in Endocrine Tumors
3.1. Neuroendocrine Tumors (NET)

Neuroendocrine tumors (NETs) are a group of heterogeneous neoplasms arising
from neuroendocrine cells throughout the body (most commonly from the gastrointestinal
system or lungs). Although gastro-entero-pancreatic NETs (GEP-NETs) represent less than
1% of all digestive system cancers it consists 7–21% of all neuroendocrine neoplasms [113].
Lung NETs originate from pulmonary neuroendocrine cells accounting for approximately
25% of primary lung neoplasms and they are classified into typical carcinoids (TCs, well
differentiated, low-grade), atypical carcinoids (ACs, well-differentiated, intermediate-
grade), large cell neuroendocrine carcinomas (LCNECs, poorly differentiated, high-grade)
and small cell lung cancer (SCLCs, poorly differentiated, high-grade) subtypes [114].

In GEP-NETs tissue, however, several miRNA studies have been published [115,116],
scarce information was available regarding 14q32 miRNA profiles. In the study by Jiang
et al., 29 overexpressed miRNAs derived from 14q32 were identified in insulinomas vs.
normal islets, and several showed high abundance in insulinoma cells [64,117]. Unfortu-
nately, this finding was not reported by others [65]. MiRNAs of this region were associated
with prognosis, since miR-485–3p encoded at 14q32 region was significantly elevated in the
metastatic tumors compared to the primary pancreatic NETs (pNET) (Table 2) [66]. Investi-
gating small intestine (siNET) and colorectal NET, studies did not identify differentially
expressed miRNAs encoded at 14q32 [118–121]. However, similar to pNET, miRNAs were
linked to progression as 14q32 encoded miR-494 was significantly overexpressed in metas-
tases compared to primary siNET [68]. Interestingly, by using miRNA expression profiling,
Yoshimoto et al. described a similar pattern of miRNAs of carcinoids of the lung and gas-
trointestinal NETs, which was different from adenocarcinomas, small cell lung cancers and
normal mucosal cells, suggesting a common origin of systemic carcinoids/NETs [57]. Also,
miR-494 was downregulated in carcinoid vs. adenocarcinoma/normal tissue group [57].
Regarding lung NET types, Rapa et al. detected several 14q32 miRNAs (miR-409-3p, miR-
409-5p, miR-376a, miR-376b, miR-381) upregulated in typical compared to atypical lung
carcinoids [60]. Measured on 46 lung carcinoid tumors, a more extensive list of miRNAs
expressed from 14q32 cluster detected as downregulated compared to their adjacent nor-
mal tissue pair samples by Deng et al. (miR-487b, miR-410, miR-369, miR-376a, miR-432,
miR-409, miR-494, miR-136, miR-370, miR-127 and miR-154) [59].

Table 2. Summary of the most important dysregulated, 14q32 encoded miRNAs in different endocrine neoplasms.

NET

miR-485-3p increased in the metastatic tumors compared to the primary pNET

miR-494
overexpressed in metastases compared to primary siNET

downregulated in carcinoid vs. adenocarcinoma/normal lung tissue

miR-376a, miR-376b, miR-381, miR-409-3p, miR-409-5p, upregulated in typical compared to atypical lung carcinoids

miR-127, miR-136, miR-154, miR-369, miR-370, miR-376a, miR-410,
miR-432, miR-409, miR-487b, miR-494 downregulated in lung carcinoid compared to adjacent normal tissue

miR-409-3p, miR-409-5p, miR-411, miR-431-5p, miR-485 and miR-539 downregulated in metastatic carcinoids compared to non-metastatic
lung NET

miR-127, miR-136, miR-154, miR-485, miR-770-5p negative correlation with tumor biology of lung NET

http://snf-515788.vm.okeanos.grnet.gr/
http://mirdb.org/ontology.html
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Table 2. Cont.

PPGL

miR-493-5p commonly downregulated in all PCC molecular subtypes (based on
germline mutation)

miR-127-3p, miR-136, miR-154-3p/5p, miR-323a-3p, miR-337-5p/-3p,
miR-369-5p, miR-370, miR-376a-5p, miR-376c, miR-377, miR-382,

miR-409-5p, miR-410, miR-485-3p és 5p, miR-487a, miR-495, miR-539,
miR-543, miR-758, miR-889

downregulation in MAX-related PPGLs and a subset of sporadic PCC

miR-154-3p, hsa-miR-369-5p, hsa-miR-485-5p, hsa-miR-487a,
hsa-miR-495, hsa-miR-543, hsa-miR-656, hsa-miR-889 overexpression in TMEM127-related PPGL cases

miR-541 overexpressed in VHL-related PCC vs. sporadic PCC, decreased
expression in recurrent tumors compared to primary tumors

miR-154, miR-337-3p upregulated in a subset of metastatic PCC compared to non-metastatic
cases

miR-409-3p, miR-369-3p downregulation in a subset of metastatic PCC compared to benign PCC

miR-431 upregulated in malignant tumors compared to benign

Adrenocortical Tumors

miR-370 overexpressed in APA compared to non-APA adrenal tumors

miR-299 downregulated in KCNJ5 mutant APA vs. non-KCNJ5 mutant samples

14q32 miRNA cluster whole miRNA cluster downregulation in Mi1 subset of ACC

miR-136, miR-127-3p, miR-487b, miR-376c and miR-432 overexpressed in ACC compared to normal adrenal cortex

miR-376a, miR-376b overexpression in ACC vs. ACA

miR-376a downregulated in ACC vs. NF adenoma, CPA and normal adrenal
cortex

miR-299-5p, miR-485-5p overexpressed in ACC vs. NF adenoma, CPA and normal adrenal cortex

miR-370, miR-376a, miR-376b, miR-376c, miR-377, miR-379, miR-382,
miR-411, miR-487a, miR-494, miR-495 downregulated in non-aggressive ACC as compared to aggressive ones

miRNA-665 overexpressed in ACC as compared to benign adrenocortical tumors

miR-431 implicated in adjuvant therapy response in ACC

PitNET

miR-127-3p, miR-154, miR-329, miR-337, miR-369-5p, miR-376c,
miR-432, miR-433 downregulated in PRL adenoma vs. normal

miR-410 overexpressed in PRL adenoma vs. normal

miR-411-3p overexpressed in GH adenoma vs. normal

miR-381, miR-654-3p downregulated in GH adenoma vs. normal

miR-127, miR-134, miR-136, miR-154, miR-323a, miR-337, miR-369,
miR-370, miR-376a-1, miR-376a-2, miR-376b, miR-376c, miR-379,

miR-380, miR-381, miR-382, miR-409, miR-410, miR-411, miR-431,
miR-432, miR-433, miR-487b, miR-493, miR-494, miR-495, miR-539,

miR-543, miR-544a, miR-654, miR-656, miR-770-5p, miR-889

downregulated in NF adenoma vs. normal

miR-1185-1-3p upregulated in NF adenoma vs. normal

miR-127-3p, miR-136, miR-154, miR-299-5p, miR-323-5p, miR-329,
miR-369-3p, miR-369-5p, miR-376c, miR-377, miR-411-3p, miR-431-3p,

miR-433, miR-493
downregulated in corticitroph adenoma vs. normal

miR-431, miR-493 overexpressed in corticotroph carcinoma vs. adenoma

miR-127, miR-136, miR-154, miR-299, miR-323a, miR-323b, miR-329-1,
miR-329-2, miR-369, miR-370, miR-376a-1, miR-376a-2, miR-376b,

miR-376c, miR-379, miR-381, miR-382, miR-409, miR-411, miR-431,
miR-485, miR-487b, miR-494, miR-539, miR-654, miR-889

downregulated in oncocytoma vs. normal

Thyroid Carcinoma

miR-9, miR-127, miR-136, miR-154, miR-323, miR-376a,c, miR-370,
miR-487b upregulated in MTC vs. normal

miR-299 downregulated in FTC
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Table 2. Cont.

miR-134, miR-136, miR-409, miR-654 overexpressed in PTC

miR-134, miR-300, miR-379, miR-382, miR-494-3p, miR-494-5p, miR-495 downregulated in PTC

miR-654-3p inverse correlation with PTC progression

ACA: adrenocortical adenoma; ACC: adrenocortical carcinoma; APA: aldosterone producing adenoma; CPA: cortisol producing adenoma;
FTC: follicular thyroid carcinoma; GH: growth hormone; KCNJ5: potassium inwardly rectifying channel subfamily J member 5; MAX:
MYC associated factor X; MTC: medullary thyroid carcinoma; NET: neuroendocrine tumor; NF: nonfunctional; PCC: pheochromocytoma;
pNET: pancreatic neuroendocrine tumor; PPGL: pheochromocytoma-paraganglioma; PRL: prolactin; PTC: papillary thyroid carcinoma;
siNET: small intestinal neuroendocrine tumor; TMEM127: transmembrane protein 127; VHL: von Hippel-Lindau tumor suppressor.

Several studies evaluated the role of miRNAs as prognostic markers [116]. Among oth-
ers, miR-409-3p, miR-409-5p, miR-431-5p, miR-411, miR-485 and miR-539 encoded at 14q32
were significantly downregulated in metastatic carcinoids compared to non-metastatic
lung NETs, while miR-409-3p, miR-409-5p and miR-431-5p were found downregulated in
cases with vascular invasion [60,116].

Also among 14q32 miRNAs, the expression of miR-127, miR-136, miR-154, miR-485,
miR-770-5p showed negative correlation with tumor biology of lung NET, and miR-377*
was identified, showing a significant impact on survival time [58].

A recent study reported that among the most abundant miRNAs in lung NET types,
miR-127 encoded at 14q32 showed high expression in typical carcinoids tumors [61].
Besides, no 14q32 miRNA was identified as discriminatory miRNAs characteristic to
typical carcinoid, atypical carcinoid, small cell lung cancer or large cell neuroendocrine
carcinomas in the study of Wong et al. [61].

3.2. Pheochromocytoma-Paraganglioma (PPGL)

The rare pheochromocytomas (PCC) and paragangliomas (PGL) (together PPGL,
incidence 1–8:1,000,000) arise from the same type of neural crest tissue of the sympathetic
and parasympathetic paraganglia [122]. While tumors of the adrenal medulla are called
PCCs, neoplasms developing from the head and neck, thoracic, abdominal or pelvic regions
paraganglia are referred as PGLs. These tumors are usually benign and the 10-year overall
survival is around ~96%, but 10% of PCC and even 40% of PGL occur as metastatic disease
resulting in a 5-year survival below 50% [122]. Interestingly, PPGL has an extremely
high rate of genetic susceptibility, when a germline mutation leads to autosomal dominant
genetic syndromes (multiple endocrine neoplasia type 2A and 2B caused by RET mutations,
von Hippel Lindau syndrome due to VHL mutations, neurofibromatosis type 1 with NF1
mutations or hereditary PG syndrome caused by mutations of succinate dehydrogenase
(SDH) genes, PPGL genes including KIF1b, PHD2, TMEM127, MAX, FH, MDH2, GOT2 and
SLC25A11 [123]. Unfortunately, there are neither clear histopathological signs of malignant
behavior or efficient therapy for malignant PPGL. Therefore, miRNAs have been good
candidates being potential biomarkers.

Expectedly, miRNA profile in different genetic subtypes was also distinct and based on
a high-throughput miRNA profiling [70,72,124] several 14q32 miRNAs were dysregulated
in PPGL [71]. 14q32 encoded miR-493* was commonly downregulated in all molecular
subtypes based on germline mutation [71]. The 14q32 miRNA profile (20 miRNAs) showed
significant downregulation in MAX-related PPGLs and a subset of sporadic PC samples
as well [71]. In TMEM127-related cases overexpression of eight 14q32 miRNAs were
detected [71]. MiR-541 was found significantly overexpressed in VHL-related PCCs vs.
sporadic counterparts, and these miRNAs had a lower level of expression in recurrent
tumors compared to primary PCC [70]. As hypermethylation of DLK-MEG3 locus was
reported in approximately 10% of PCC samples [69], the pathogenic role of downregulated
miRNAs located here was also proposed [125]. Indeed, in a comprehensive multi-omic
approach, miRNA profiling by next generation sequencing (NGS) revealed 7 homogeneous
subgroups of PCC. PCC samples of the Mi1,2 and Mi4-7 clusters exhibited higher 14q32
miRNA expression compared to Mi3 [69], while Mi3 subgroup was characterized by a
strong silencing of the imprinted DLK1-MEG3 cluster. In this study 15 of 17 tumors belong-
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ing to cluster Mi3 displayed loss-of-heterozygosity (LOH) at the 14q32 locus harboring
DLK1-MEG3. The authors hypothesized that the loss of the maternal unmethylated allele
might explain the repression of this imprinted miRNA cluster that was also supported by
the methylation analysis of MEG3 promoter [69]. Interestingly, PCC samples belonging to
this Mi3 cluster were not associated with any germline mutation (they were all sporadic
tumors) and they belonged to a distinct mRNA expression cluster (C2B) [69]. In line with
these results, another large-scale study found the upregulation of miR-154, miR-337-3p in
a subset of metastatic PCC compared to non-metastatic cases [73]. The downregulation
of miR-409-3p, miR-369-3p was also identified in a different subset of metastatic tumors
compared to benign ones [73]. In another study comparing benign and malignant cases,
miR-431 was detected as upregulated in malignant tumors [72].

3.3. Adrenocortical Tumors

In aldosterone producing adenomas (APA), no differentially expressed miRNAs en-
coded at 14q32 were detected [126–128]. Interestingly, another study identified miR-410
and miR-433 as Wnt/β-catenin signaling regulatory miRNAs with significantly different
expression between APA and peritumoral adrenal tissues using microarray [129]. A study
investigating APA compared to non-APA adrenal tumors (adrenocortical adenoma (ACA),
subclinical hypercortisolism (SH), non-functioning adrenal adenoma (NF)) identified miR-
370 as overexpressed in aldosterone producing tumors. Also, similar to pheochromocytoma,
in APA miRNA signature was also reflected in germline mutation carrier status [130], and
miR-299 from locus 14q32 was found downregulated in KCNJ5 mutant APA vs. non-KCNJ5
mutant samples [130].

Regarding adrenocortical carcinoma (ACC), a combined genomic approach classified
tumor samples into 3 clusters (Mi1-3) based on miRNA expression pattern [76]. ACC
samples in cluster Mi1 showed the largest miRNA expression differences relative to normal
adrenal samples. Samples in this Mi cluster were characterized by the downregulation of
38 miRNAs expressed from 14q32 locus and by the upregulation of miRNAs belonging
to the Xq27.3 miRNA cluster [76]. By using SNP array and DNA methylation analysis,
this study identified LOH of chromosome arm 14q in all Mi1 ACC tumors associated
with MEG3 promoter methylation. The authors suggested that the loss of the maternal
unmethylated allele resulted in silencing of the 14q32 miRNA cluster in Mi1 ACC tumors,
suggesting that this region had a key role in ACC pathogenesis [76]. Özata and his
colleagues, however, found 5 miRNAs from 14q32 (miR-136, miR-127-3p, miR-487b, miR-
376c and miR-432) overexpressed in ACC compared to normal adrenal cortex, but no 14q32
miRNAs were identified in association with survival [75]. Additionally, miR-376a and
miR-376b overexpression were also described in ACC vs. ACA samples [54]. Interestingly,
while miR-376a was detected as downregulated miRNA, miR-299-5p and miR-485-5p were
found overexpressed in ACC vs. hormonally nonfunctioning adenoma, cortisol-producing
adenoma and normal adrenal cortex [74].

Regarding ACC behavior miR-370, miR-376a, miR-376b, miR-376c, miR-377, miR-379,
miR-382, miR-411, miR-487a, miR-494, and miR-495 encoded at 14q32 miRNA cluster were
downregulated in non-aggressive ACC as compared to aggressive ones [54]. In another
study, miRNA-665 was overexpressed in ACC as compared to benign adrenocortical
tumors [131]. MiR-431 was also reported to be underexpressed in patients with ACC
with progressive disease undergoing adjuvant therapy (mitotane, chemotherapy, and
radiotherapy) compared to therapy responders [132]. Restoration of miR-431 increased cell
responses to adjuvant therapy and led to cell cycle arrest at S phase. Authors demonstrated
that Zinc Finger E-Box Binding Homeobox 1 (ZEB1), a target of miR-431, was implicated in
reversal of the epithelial-mesenchymal transition (EMT), leading to increased cell responses
to adjuvant therapies in ACC [132].

Interestingly, DLK1 was found as a marker of adrenal gland tumor, which was in line
with findings that 14q32 miRNAs (except for Mi1 subgroup) were upregulated in ACC
suggesting a common transcriptional regulation of the entire locus in ACC (Figure 1) [133].
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3.4. Pituitary Neuroendocrine Tumors (PitNET)

Pituitary adenomas are among the most frequent intracranial tumors with a high inci-
dence rate of approximately 10–15% [134]. Although the great majority of them are benign,
they represent significant morbidity by mass effect or by hormonal disturbance. Generally,
pituitary adenomas are sporadic; only 5% of them occur as part of genetic syndromes such
as MEN1, MEN4, Carney complex or McCune-Albright syndrome. Interestingly, miRNAs
has been extensively investigated in pituitary tumors, including not only expressional
reports, but functional studies [6]. As more than one hundred original publications have re-
ported, findings have been extensively summarized by excellent reviews [6,135,136]. Here,
authors aimed to only highlight the role of 14q32 miRNAs in pituitary adenomas using
high-throughput studies comparing pituitary adenoma samples to normal pituitary tissues.

Prolactinomas. In a work using next generation sequencing, no 14q32 miRNAs
were reported differentially expressed in prolactinomas [82]. However, with a targeted
approach, Cheunsuchon et al. found 7 of 18 investigated 14q32 miRNAs in prolactin (PRL)-
secreting tumors significantly down-regulated [81]. In line with these results, D’Angelo
et al. detected downregulated miR-432 in PRL adenoma tissues and using functional
in-vitro assays, high-mobility group AT-hook 2 mRNA (HMGA2) proved to be a miR-432
target [78]. On the contrary, Chen et al. detected miR-432 and miR-493 upregulation
compared to normal anterior pituitary gland samples; moreover, they reported a significant
positive correlation between the expression of the two miRNAs and the serum level
of prolactin [87]. Additionally, of the 14q32 miRNA cluster, miR-410 was found to be
upregulated in prolactinomas [86], as well as in 6 out of the 12 GH-secreting adenomas.
This finding suggested that a reduced miR-410 expression seemed to be restricted to
gonadotroph adenomas.

Growth hormone (GH) producing tumors. Numerous underexpressed miRNA located
at 14q32 were identified using NGS and PCR array [80,82] (Figure 1). However, this was not
entirely supported by other studies [77,78,81]. While some reported overexpression of miR-
136 in GH-producing adenomas based on microarray profiling [77], a recent study using
NGS and Bottoni et al. reported its downregulation compared to normal pituitary [79,82].
Nevertheless, miR-411-3p was overexpressed and miR-381 with miR-654-3p were down-
regulated from 14q32 locus [77,82]. MiR-370-3p was detected to be underexpressed in
pituitary adenomas compared to normal pituitary and in non-functional pituitary adeno-
mas (NFPA) compared to functional ones [137]. Furthermore, its level showed correlation
with GH expression determined by immunohistochemistry [137]. Palumbo et al. identified
17 miRNAs to be differentially expressed in GH-producing pituitary tumors; however,
none were encoded at 14q32 [138]. Pituitary tumor-transforming 1 (PTTG1) was iden-
tified as a target of miR-126 and miR-381 encoded at 14q32 cluster [139]. Also, Liang
et al. demonstrated that overexpression of 4 14q32 miRNAs (miR-655, miR-300, miR-381
and miR-329) inhibited proliferation, migration and invasion, but induced apoptosis in
GH3 and MMQ rat pituitary cells and regulated the PTTG1 expression [90]. The authors
suggested a negative feedback loop between PTTG1 targeting miRNAs, PTTG1 and p53
where p53 transcriptionally activated the expression of the four miRNAs, while PTTG1
inhibited the transcriptional activity of p53 [90]. Among 14q32 miRNAs the downregulated
miR-432 inhibited cell proliferation of GH3 cells and has a negative role on the growth
regulation of pituitary adenoma by targeting HMGA2 [78].

Non-functioning pituitary adenomas (NFPA). Several miRNAs mapped to 14q32
showed significant underexpression compared to normal pituitary in NFPA detected by
different platforms [86,88,89]. Besides 32 downregulated miRNAs, MEG3 and DLK1 also
showed underexpression in NFPA samples [89]. Indeed, another study investigating the
silencing of the imprinted DLK1-MEG3 locus in human NFPAs [81] also reported numer-
ous 14q32 encoded miRNAs expression as lost or significantly diminished compared to
normal pituitary. Furthermore, the authors identified these miRNA expression alterations
together with increased methylation of MEG3-IG DMR [81,140,141]. This was in line with
the finding that MEG3 was not expressed in NFPAs; therefore the authors suggested that
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the silencing of the DLK1-MEG3 locus played an important role in human NFPA pathogen-
esis [81,140,141]. Among 14q32 miRNAs miR-1185-1-3p was identified upregulated, while
miR-493 downregulated [82]. Bottoni et al. found that miR-154, miR-127 and miR-134
were downregulated in NFPA and were predictive miRNAs for the histotype [79]. Oth-
ers identified downregulation of miR-432 encoded at 14q32 in NFPA and gonadotroph
adenomas [90]. The functional role of miR-432 was investigated in HP75 human pituitary
adenoma cells, and miRNA transfection led to a significant reduction of cell number com-
pared to controls [78]. Regarding gonadotroph adenomas reduced miR-410 expression
seemed to be restricted to gonadotroph adenomas compared to other adenoma types [86].
Authors validated cyclin B1 (CCNB1) as target of miRNA-410 since its overexpression
reduced CCNB1 at protein and mRNA levels, decreasing cell proliferation.

Corticotroph adenomas. Cheunsuchon et al. investigated 18 members of the 14q32
miRNA cluster, among which several miRNAs identified as significantly downregulated
(miR-127-3p, miR-136, miR-154, miR-299-5p, miR-329, miR-369-3p, miR-369-5p, miR-376c,
miR-377 and miR-433) and only miR-431 was found overexpressed in tumors compared
to normal tissues [81]. Although more than a few downregulated miRNAs were detected
in adrenocorticotropin (ACTH)-secreting tumors, their expression levels were considered
significantly higher compared to those found in NFPAs [81]. Accordingly, DLK1 was found
downregulated in corticotroph tumors [81]. While Stilling et al. detected 5 other miRNAs
significantly downregulated located at 14q32 (miR-323-5p, miR-136*, miR-411*, miR-431*,
miR-493) in corticotroph adenomas [85], others failed to detect any differentially expressed
miRNAs from 14q32 region [84].

Pituitary carcinomas. In corticotroph carcinomas, miR-323-5p was downregulated
in comparison to normal pituitary, and miR-493 was upregulated in carcinoma vs. ade-
noma [85]. It was suggested that miRNA-493 interacted with galectin-3 (LGALS3, lectin,
galactoside-binding, soluble, 3) and Runt-related transcription factor 2 (RUNX2)
genes, [142–145]. These data also showed that galectin-3 had a role in regulating cell
proliferation and apoptosis of pituitary cells.

Pituitary oncocytoma. In pituitary oncocytoma, numerous underexpressed miRNAs
(40% of all downregulated miRNAs) compared to normal control were mapped to 14q32
region [91].

3.5. Thyroid Carcinoma

Thyroid cancer is the most frequent malignant endocrine tumor. The majority of
them (~95%) arise from follicular cells and classified as papillary (PTC, 75–80%), follicular
(FTC, 10–15%) or anaplastic thyroid cancer (ATC, 0.2–2%) [146]. Tumors developing from
calcitonin secreting parafollicular C cells are a distinct entity, and called medullary thyroid
cancer (MTC) representing ~5–10% of all thyroid cancers [146]. This subtype commonly
occur sporadically; however, approximately 10–25% of them are hereditary and appear as
part of MEN2 syndrome, caused by germline mutations of the RET proto-oncogene [146].
Most of the well differentiated thyroid cancer (including PTC, FTC) has excellent prognosis;
however, patients with ATC have 6–12 months median survival [147].

Nikiforova et al. detected markedly different profiles of miRNA expression between
MTC and all other thyroid tumors that derives from follicular cells, reflecting tissue-specific
characteristics of miRNAs [94]. Among these, several 14q32 miRNAs were overexpressed
in MTC compared to normal and other thyroid cancer types [94]. Expectedly, Lassalle et al.
detected numerous miRNAs differentially expressed between sporadic and hereditary
MTC cases including miR-136, miR-487b, miR-376a,c, and miR-127 located at 14q32 miRNA
cluster [92]. Interestingly, the highly expressed miR-375 was revealed as a novel circulating
prognostic marker for MTC patients as well, as MTC patients had significantly higher
miR-375 plasma levels than healthy controls and subjects in remission [148]. Additionally,
high circulating miR-375 level was associated with significantly reduced overall survival
and was a strong prognostic factor of poor prognosis [148].



Genes 2021, 12, 698 12 of 24

Numerous miRNAs were described in non-medullary thyroid cancer types, however,
with controversial results. Therefore, a comprehensive re-analysis integrating 21 thyroid
cancer miRNA studies by Saiselet et al. determined the commonly reported differentially
expressed miRNAs in non-medullary thyroid carcinomas compared to normal tissues [149].
Of the investigated studies, in FTC and ATC, no differentially expressed miRNA encoded
at 14q32 miRNAs occurred except the downregulated miR-299 in FTC [149,150]. However,
4 overexpressed (miR-134, miR-136, miR-409, miR-654) and several underexpressed (miR-
124, miR-134, miR-300, miR-379, miR-382 and miR-494-3p, miR-494-5p and miR-495) 14q32
miRNA were identified in PTC samples. In a more recent study, the global downregulation
of miRNAs from the 14q32 region in human PTC was also confirmed [95]. The decreased
miR-654-3p levels with long-term PTC progression in Tg-Braf mice was also observed
and the level of miR-654-3p inversely correlated with epithelial-mesenchymal transition
(EMT) [95]. The in-vitro restoration of miR-654-3p inhibited cell proliferation and migration
and induced reprogramming of metastasis-related genes, supporting the tumor suppressor
role for this miRNA [95]. Interestingly, in another study analyzing miRNA expression
profiles in classical-type PTC, follicular-variant PTC, and tall-cell variant, no 14q32 miRNA
was detected compared normal adjacent thyroid tissues [96].

From a clinical point of view miRNAs are suggested as potential biomarkers, as
cytology following fine-needle aspiration biopsy (FNAB) are interpreted as indeterminate
without definitive diagnosis regarding thyroid tumors in 3–6% to 10–25% [147]. However,
miRNAs located at 14q32 did not help in discriminating benign vs. malignant thyroid
lesions from FNAB samples [6].

4. Different Expression of 14q32 miRNA Cluster Members

14q32 locus contains more than forty miRNAs, and previously it had been thought
that they were generated from one polycistronic transcript containing the whole miRNA
cluster under a coordinated regulation with the MEG3 non-coding RNA located up-
stream [7,12,151]. Also, hyper-methylation of the 14q32 DMRs was described to asso-
ciate with decreased 14q32 miRNA expression and vice versa, suggesting that the entire
imprinted cluster is regulated jointly [37,44,45,152].

However, in several endocrine tumors, the pattern of 14q32 miRNAs were not
so homogenous. Indeed, in other tissues and tumor types, similar findings were de-
scribed [10,153,154]. Also, in non-tumorous cells not all of the members of 14q32 miRNA
cluster were expressed in all tissues and 14q32 miRNAs demonstrated varying level of
expression, suggesting other possible regulating mechanisms [155]. Indeed, the expression
of protein-coding and non-coding genes encoded at the 14q32 locus was regulated by
epigenetic changes, but the exact mechanism behind controlling this process is not entirely
known [21,36,46,68,156,157].

However, several mechanisms have been identified in the context of this variable
expression of the cluster members, among which methylation was the most obvious. Ge-
nomic imprinting imbalance could result in the differential modulation of paternally and
maternally expressed genes from the 14q32 region that might serve as an explanation, at
least in part, for the increased levels of DIO3 observed in some papillary thyroid cancer
samples [95,153,158]. Various DNA methylation patterns of the 14q32 locus were observed
in different blood vessel types, which were not associated with miRNA expression [10].
Direct correlation was not possible to be proven between 14q32 estimated methylation
fraction of multiple cytosines followed by guanine residues (CpG) in the 3 DMRs located
along 14q32 and 14q32 miRNA expression [10]. Moreover, neither DNMT gene expression
or DNA methylation did not correlate with primary or mature miRNA expression [10]. In
urothelial carcinoma, distinctive epigenetic alterations were again observed at the three
regions controlling DLK1 and MEG3 expression [154]. The authors suggested that altered
nucleosomal positioning could account for the irregular patterning of DNA methylation;
namely, that one specific CpG site became significantly hypomethylated in cancer cells,
while methylation of flanking sites rather increased [154].
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Recent studies have shown that chromatin remodeling by lncRNA-mediated mechanisms,
may also participate in regulating the expression of the 14q32-encoded miRNAs [46,68].

Additionally, Greife and colleagues demonstrated the loss of active and gain of repres-
sive histone modifications at all regulatory sequences using chromatin immunoprecipita-
tion [154].

Differences in miRNA splicing, primary transcript processing or pre-miRNA cleavage and
maturation were also reported related to 14q32 miRNAs [159]. Some suggested that the
expression of miRNA clustered on 14q32 might be particularly sensitive to changes in
the miRNA biogenesis pathway [159–161]. A large proportion of 14q32 encoded miRNAs
contained structural features associated with Dicer-independent processing [162], therefore
Ago2-dependent pre-miRNA processing [162,163] was particularly important for the bio-
genesis of miRNA in this cluster. Goossens et al. reinforced that miRNA-specific expression
fingerprints implied individual regulation of 14q32 miRNA expression [10].

RNA Binding Proteins (RBPs) were other post-transcriptional regulators of miRNA
expression. RBPs bound precursor miRNAs and promoted or inhibited their maturation.
For instance, Myocyte Enhancer Factor 2A (MEF2A) was such an RBP regulating miR-
329 and miR-494 encoded at 14q32 chromosomal region [164]. Cold-inducible RNA-
binding protein (CIRBP) and hydroxyacyl-CoA dehydrogenase trifunctional multienzyme
complex subunit β (HADHB) were also RNA binding proteins that regulated 14q32 miRNA
expression [165].

The different expressional pattern regarding this miRNA cluster was also observed
by Manodoro et al., who attributed it to the presence of the binding sites of CCCTC-
binding factor (CTCF) which was implicated in transcriptional activation/repression and
imprinting [32,157,166]. CTCF exerted its regulatory function by binding to unmethylated
DNA in an allele-specific manner [167,168]. Interestingly, it was found that different CTCF
binding sites display a different influence on 14q32 miRNA expression depending on the
position [157].

Altogether, these data suggest that multiple mechanisms other than genetic mutations
or chromosomal loss might be involved in the regulation of 14q32-encoded miRNAs.

5. Functional Impact of 14q32 miRNAs

By analyzing function of individual 14q32 miRNAs, besides several molecular func-
tions and biological processes, TGFβ and Wnt signaling were also identified, which are
frequently involved in tumor development (Supplementary Table S1).

However, as 14q32 miRNAs more or less function in cooperation, we performed
target prediction and gene set enrichment analysis to investigate the net effect of their
co-expressional pattern. Several cancer-related pathways (including TGF-β signaling, Ras
signaling, ErbB signaling), pathways involved in invasiveness and metastasis development
(e.g., proteoglycans in cancer, adherens junction) or influencing pluripotency and stemness
were identified as a potentially functional role (Table 3).

Literature/experimental data also suggested the regulation of axon guidance, actin
cytoskeleton, focal adhesion, mammalian target of rapamycin, calcium, mitogen-activated
protein kinase and ErbB signaling pathways by 14q32 miRNAs [159]. Liu et al. found
that these miRNAs were highly associated with cellular pluripotency [35]. Interestingly,
the transcription factor, MEF2A regulated the expression of 14q32 miRNAs being a direct
target of miR-329 [169]. Uppal and colleagues, using mRNA profiling and bioinformatics,
demonstrated that 14q32 miRNAs target genes in PI3K/AKT/mTOR and TGF-β pathways
were involved in focal adhesion, cell–extracellular matrix interactions, gap junctions and
actin cytoskeleton, resulting in impaired adhesion, invasion and migration, processes
that were essential for the development of metastases [22,170,171]. The regulation of
PI3K/AKT/mTOR and TGF-β pathways by 14q32 miRNAs was also strengthened by Qian
and colleagues in hemopoietic stem cells as well [172].



Genes 2021, 12, 698 14 of 24

Table 3. Top 20 significant signaling pathway regulated by 14q32 miRNAs.

KEGG Pathway p-Value # Genes # miRNAs

Hippo signaling pathway (hsa04390) 2.635 × 10−7 103 47
Proteoglycans in cancer (hsa05205) 2.507 × 10−6 132 48

Pathways in cancer (hsa05200) 3.424 × 10−6 255 48
Adherens junction (hsa04520) 1.345 × 10−5 57 41

TGF-β signaling pathway (hsa04350) 1.582 × 10−5 58 45
Axon guidance (hsa04360) 2.465 × 10−5 88 45

Rap1 signaling pathway (hsa04015) 3.946 × 10−5 141 48
Glioma (hsa05214) 4.825 × 10−5 47 43

Ras signaling pathway (hsa04014) 4.825 × 10−5 146 49
Circadian rhythm (hsa04710) 6.429 × 10−5 27 37

Lysine degradation (hsa00310) 9.643 × 10−5 33 43
Signaling pathways regulating pluripotency

of stem cells (hsa04550) 0.0001 96 50

FoxO signaling pathway (hsa04068) 0.0001 92 46
Thyroid hormone signaling

pathway (hsa04919) 0.0001 79 46

Ubiquitin mediated proteolysis (hsa04120) 0.0004 93 44
Dorso-ventral axis formation (hsa04320) 0.0006 24 36

Prion diseases (hsa05020) 0.0009 17 26
ErbB signaling pathway (hsa04012) 0.0011 63 45

Renal cell carcinoma (hsa05211) 0.0015 48 41
Pancreatic cancer (hsa05212) 0.0023 48 43

In osteosarcoma, the decrease of 14q32 miRNA levels stabilized c-MYC protoonco-
gene expression and consequently increased the level of oncogenic miR-17-92 miRNA
cluster [173]. Cell cycle and epithelial-mesenchymal transition (EMT) were also proved to
be influenced by 14q32 miRNAs [38,47,95,174]. Genes involved in metastasis development
were also enriched among 14q32 miRNA targets [47]. Cyclin dependent kinase 5 (CDK5)
and Twist Family BHLH Transcription Factor 1 (TWIST1) have been reported to increase
metastasis through regulating cell cycle and EMT and they were found to be upregulated in
osteosarcoma tumors with low levels of 14q32 miRNAs [47,174,175]. Furthermore, thymi-
dine kinase 1 (TK1), that expressed at high levels in proliferating cells and appeared to
correlate with high risk in multiple cancer types, was negatively correlated with 14q32
miRNA expression [47,176–178].

In thyroid cancer, the role of 14q32 miRNAs was particularly investigated. Geraldo
et al. showed that 14q32 miRNAs contributed to tumor progression and metastasis by
targeting key regulators of cell adhesion, migration, proliferation, hypoxic response and
wound healing [95]. The reintroduction of miR-654-3p reversed EMT by targeting, hence
increasing the expression of cadherin 1 (CDH1) and catenin α 1 (CTNNA1), and decreasing
the expression of Snail Family Transcriptional Repressor 2 (SNAI2) [95]. Also, it was
demonstrated that genes involved in tumor progression (ECM-remodeling and metastasis)
were restored after transfection of a miR-654-3p mimetic [95].

Angiogenesis and neovascularization were also significantly regulated by 14q32 miR-
NAs. This was confirmed by identifying vascular endothelial growth factor A (VEGFA)
as a target of miR-494 [169], as well as of miR-127 [179]. Furthermore, miR-495 were
demonstrated to target C-C motif chemokine ligand 2 (CCL2), through which it affects
proliferation and apoptosis of human umbilical vein endothelial cells (HUVECs) [180].
Forkhead box O1 (FOXO1) influencing endothelial growth and proliferation [181], wound
closure and vascular density was also identified as a target molecule of miR-544 in colorectal
cancer [181–183]. The role of 4 14q32 miRNAs was additionally proved in in vivo experi-
ments, as the inhibition of miR-329, miR-494, miR-487b and miR-495 in mice stimulated
neovascularization after hind limb ischemia [10,169].
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6. Summary and Discussion

Altogether, 14q32 miRNAs have an important role in development and tumorigenesis.
The importance of this miRNA cluster regulatory function is represented by the finding
that their expression is stable in healthy cells, and even in cell-free serum samples. Their
expression is also independent of the most common confounding factors, such as age, sex
or BMI. Several studies have shown downregulation of miRNAs from the 14q32 region in
different types of cancer; however, 14q32 miRNAs are overexpressed in some cancer types
reflecting the tissue-specificity of miRNA function.

Among different endocrine tumors in pituitary adenoma and oncocytoma, papillary
thyroid cancer and a particular subset of pheochromocytoma and adrenocortical cancer are
characterized by the downregulation of almost all miRNAs encoded by the 14q32 cluster.
In the subgroups of ACC and PCC, the silencing of the imprinted 14q32 cluster due to
LOH of chromosome arm 14q or 14q32 locus. In other tumor types including NFPA and/or
gonadotroph pituitary adenomas increased methylation of the region DMRs could explain
the orchestrated downregulation of the coding and non-coding gene expression of the
entire region.

Interestingly, pancreas NET, most of the adrenocortical cancer cases and medullary
thyroid cancer are particularly distinct, as 14q32 miRNAs are overexpressed in these
tumors. The role of these overexpressed miRNAs should be further investigated in relation
to tumorigenesis.

In the third group of endocrine tumor types such as pheochromocytoma and growth-
hormone producing tumors, and based on the expression pattern of 14q32 miRNAs, how-
ever, both increased and decreased expression of 14q32 miRNAs cluster members were
observed. In the background of this phenomenon, methodological, technical and biological
factors can be hypothesized as well. Different researcher groups applied different study
design, different sample numbers, RNA extraction and miRNA quantification methods
which all could lead to controversial results. Also, as detailed above, several biological
explanations have been revealed in the context of the various expressional pattern of the
different members of 14q32 miRNA clusters; e.g., different methylation pattern, chromatin
remodeling, histone modifications, alteration of miRNA biogenesis, the effects of RNA
binding proteins and transcription factors. These factors await being further investigated
in pheochromocytoma and growth-hormone producing pituitary adenomas.

Unfortunately, the function of 14q32 in endocrine tumors is not so broadly investigated
compared to other tumor types. However, in different types of pituitary adenoma cell lines,
14q32 miRNAs proved their tumor suppressor role by inducing cell cycle arrest and cell
growth inhibition by targeting PTTG1 and HMGA2. In PTC, the significance of another
14q32 miRNA, miR-654-3p, was demonstrated in in vivo experiments as it influenced
proliferation, migration, metastasis-related gene expression and EMT.

14q32 miRNAs are also associated with disease prognosis. In endocrine tumors several
14q32 miRNAs were identified as prognostic markers in pancreatic, small intestinal and
lung NET. Some of these miRNAs are also linked to patient survival in lung NET. In PCC
14q32 miRNAs indicated metastatic cases compared to non-metastatic cases, assisting the
discrimination of benign and malignant tumors. Also, the higher expression of miRNAs
encoded at 14q32 were associated with aggressive ACC cases. Finally, while in MTC, 14q32
miRNA miR-375 has not only been reported as a strong prognostic factor of poor prognosis,
but its higher level was associated with reduced overall survival, while on the contrary, the
decreased 14q32 miRNA in PTC was associated with long-term progression.

Based on data presented in Figure 1, we found some miRNAs unique among en-
docrine tumor types (miR-337 and miR-758 overexpression in pNET, miR-329 and miR-541
overexpression in PCC/PGL and miR-376c overexpression in MTC). However, there is
no full consensus among miRNA profiling studies; i.e., not all studies identified the same
miRNAs differentially expressed, and therefore these findings should be further validated.
The discrepancy can be due to different study design, difference in sample number (statisti-
cal power) and also due to technical factors (e.g., different platforms for high-throughput
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profiling). Analyzing expressional pattern of 14q32 miRNA cluster instead of individual
miRNAs, characteristic/unique expression profile was described in MTC compared to
other thyroid carcinoma type [94] or in different types of pituitary adenoma [79,81]. Fur-
thermore, even the same type of endocrine tumor, pheochromocytoma can be grouped
by different miRNA pattern according to germline mutational background [71]. As 14q32
miRNAs were found to be dysregulated in several cancer types, globally, they cannot be
considered as unique tissue biomarkers. Another level of use can be their application
in liquid biopsy samples e.g., in circulation. This is supported by the finding that 14q32
miRNAs were stable in serum and their level was not significantly affected by common con-
founder factors [11]. Already, the potential use of circulating miRNAs has been suggested
in endocrine tumors. In ACC a unique, tissue specific miRNA, miR-483-5p has been sug-
gested as a potential candidate as predictive marker for recurrence [54], and miR-146a-5p
and miR-221-3p as serum biomarkers for post-treatment monitoring of PTC patients [96].
Unfortunately, to our best knowledge, no 14q32 mapped miRNA in circulation has been
investigated in endocrine tumors. However, in non-endocrine tumor types their expression
indicate prognosis and survival [155]. Accordingly, this miRNA cluster was proved to
influence EMT process and metastasis development [95,132], hence, they may be used as
prognostic biomarker in endocrine tumors as well.

The evolutional role and constraint can be considered another point of view of im-
printed miRNAs [184–186]. It was suggested that imprinted noncoding RNAs was under
distinctive selective forces when regulating transcripts of the allele inherited from the
other parent [184–187]. Accordingly, when an mRNA had sequence complementary to an
imprinted miRNA, the complementary miRNA-mRNA sequences pair originated from dif-
ferent alleles. This can be considered a communication between the maternal and paternal
alleles, hence the two alleles coordinate their activities [186]. The kinship theory considers
genomic imprinting as a mechanism to change gene dosage, because it has a differential
effect on the fitness of matrilineal and patrilineal relatives [184–187]. Additionally, Haig
and Mainieri suggested that when an imprinted miRNA targets an unimprinted mRNA,
their interaction may have different fitness consequences for the loci encoding the miRNA
and mRNA [184]. In a recent study, HMGA2 was proposed as an attractive candidate to be
one of the original targets because its 3′ regulatory region contained multiple predicted
target sites for 14q32 miRNAs, with some of these target sites evolutionarily older than the
14q32 miRNA cluster [184]. HMGA2 have special role in this context as it has reported to
be overexpressed in several cancer type including endocrine tumors and often regulated
by miRNAs [188,189], which also highlights the role of 14q32 miRNAs in tumorigenesis.

7. Conclusions

Similar to other cancer types, 14q32 miRNAs have a significant role in the tumorigene-
sis of endocrine glands. In different endocrine tumor types this miRNA cluster reflects the
general tissue specificity of miRNAs regarding expression pattern, tumor suppressor or
oncogene function, and they have a significant impact on prognosis as well. Regarding
the stable expression of 14q32 miRNAs in healthy individuals in circulation, the further
investigation of this miRNA cluster could provide an option to use them as diagnostic or
prognostic biomarkers in endocrine neoplasms.
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