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Abstract: The worm-like chain is one of the best theoretical models of the semiflexible polymer.
The structure factor, which can be obtained by scattering experiment, characterizes the density
correlation in different length scales. In the present review, the numerical method to compute the
static structure factor of the worm-like chain model and its general properties are demonstrated.
Especially, the chain length and persistence length involved multi-scale nature of the worm-like chain
model are well discussed. Using the numerical structure factor, Gaussian fluctuation theory of the
worm-like chain model can be developed, which is a powerful tool to analyze the structure stability
and to predict the spinodal line of the system. The microphase separation of the worm-like diblock
copolymer is considered as an example to demonstrate the usage of Gaussian fluctuation theory.

Keywords: worm-like chain model; structure factor; Gaussian fluctuation theory; random
phase approximation

1. Introduction

In most theoretical research of polymers, the Gaussian chain (GSC) model has been employed
to describe the chain configuration of polymers. The GSC model utilizes a harmonic potential
for the intra-chain bonding interaction. It facilitates analytical and numerical calculations.
However, a number of unphysical properties arise simultaneously when it is subject to strong external
fields [1]. It is a coarse-grained model and only adequate for the flexible polymer on the level of the
mesoscopic scale comparable to the radius of gyration, Rg. For example, the short block copolymers
have drawn considerable attention recently because of their exciting new technological applications,
such as block copolymer lithography [2]. Besides, surfactants and lipids modeled as short amphiphilic
molecules from the view of coarse graining are being intensely researched, both experimentally and
theoretically for nano-technological and biological applications [3–5].

The above limitations primarily can be circumvented by introducing the semiflexible chain model,
such as the freely-jointed chain model [6], the rigid Gaussian chain model [7], the discrete [8] and
the continuous worm-like chain model [9]. Among these models, the worm-like chain (WLC) model,
where the polymer chain is theoretically treated as an inextensible thread with a fixed contour length
L and appears rigid approximately within a segment of a persistence length lp. Another advantage
of the WLC model is the additional orientational dependence. This is essential for dealing with
the spatially-inhomogeneous polymer liquid-crystal systems [10–13]. Moreover, the WLC model
is a multi-scale chain model. It can comprehensively describe the structural properties from the
microscopic persistence length to the mesoscopic chain length. In the experiment, the light- and
neutron-scattering techniques are employed to probe the density-density correlation of the polymer
chain in different length scales. The scattering pattern measured by the experiment is the structure
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factor of the target system. In theory, the structure factor S(k) is the Fourier transformation of the
density-density correlation function, i.e.,

S(k) ≡
∫

d∆r f (∆r) exp (ik · ∆r) (1)

In real space, the density-density correlation function of a homogeneous system is defined by [14]:

f (∆r) ≡ 〈φ̂(r)φ̂(r′)〉 (2)

where the 〈...〉 is the ensemble average and ∆r = r− r′. The monomer density operator for a given
configuration, R(s), of the chain in space is defined by:

φ̂(r) =
L

aρ0

∫ 1

0
dsδ[R(s)− r] (3)

where the average number density of monomers is given by ρ0 = nL/(aV), n is the chain number and
V is the volume of the system.

Many fundamental physical properties of polymers, such as molecular weight, the radius
of gyration, persistent length and the density–density correlation of the polymeric systems [15],
can be determined by fitting scattering data with a specific microscopic chain model. The theoretical
prediction of the structure factor from the microscopic chain models can be traced back to the early
development of polymer physics [16]. Therefore, the structure factor serves as a bridge connecting the
theory and experiment. One example is the structure factor of the GSC model, which is widely used to
study the small-angle scattering behaviors of the polymer chain with high a degree of polymerization.
It takes a well-known Debye function form [17],

SDebye(x) =
2
x2 [exp(−x)− 1 + x] (4)

where x = k2R2
g and Rg is the radius of gyration. Moreover, the bond correlation effect

becomes important for the semiflexible [18] and rigid chain [19]. From the structure factor, the
size and architectures (linear, ring or dendrimer) of the polymers can be studied by the scattering
experiment [20]. Furthermore, predicting the property of material from its structure is one of the
key problems the in material science. As defined in Equation (1), the structure factor is the Fourier
transformation of the second order moment of the density operator. The first order moment of the
density operator describes the structure of the system; while the second order moment of the density
operator characterizes the linear response of the structure to the external stimulation in different length
scales. Using the random phase approximation (RPA), the structure factor of an ordered structure can be
obtained based on the structure factor of a single chain in an external field as an input [21]. The intrinsic
eigenvalues of the structure factor are the linear elastic moduli of the structure, which depend on the
composition and interaction parameter. The spinodal boundary is the condition that makes one of the
moduli diminish, and then, the structure becomes unstable. This mode is called the soft mode of the
structure, and its corresponding eigenvector indicates the evaluating path of the unstable structure [14].
The successful determination of the spinodal curve for the formation of micro-domains in diblock
copolymers is an excellent example of using the structural factor [22]; the theory predicts the instability
of the homogenous state against inhomogeneous density perturbations that lead to the formation
of a microscopic structure based on the GSC model. The spinodal line of the ordered system can be
determined by the same theory. In the inhomogeneous system, the fluctuation become anisotropic,
and the structure factor of the ordered structure is needed; for example, the anisotropic fluctuation
effects of the self-assembly structure of the diblock copolymer [23].
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Incorporating the renormalization technology, the fluctuation effect can be investigated [24].
Moreover, the structure factor is also the starting point of the polymer reference interaction site model
(RISM) theory from which the close packing structure in the microscopic scale can be obtained [25].
The local structure is extremely crucial to understand the correlation effects in many important
polymeric systems, such as the polymer adsorption [26,27] and the polyelectrolytes [28–30]. In addition,
the correlation of the structure in different length scales is critical for the study of the dynamic
properties of polymeric systems far from equilibrium, such as the glass transition [31] and the diffusion
of nano-particles in polymer matrices [32].

There is, however, a large class of semiflexible polymer chains, where the effects of rigidity are
important, which cannot be described by the Gaussian chain model. In the WLC model proposed by
Saito, Takahashi and Yunoki [9], which is a continuous version of the Kratky–Porod model, a smooth
spacial curve R(s), where s is an arc-variable continuously varying from one end (s = 0) to another
(s = 1) of total length L, is used to describe the conformation of the polymer chain [9,17,33]. An energy
penalty relating to the local curvature of the curve is introduced to describe the rigidity of the chain.
The Boltzmann weight for such a configuration is then given by:

W[R(s)] = exp[−βH0] (5)

where β = 1/kBT, T is the temperature and kB the constant. The Hamiltonian:

βH0 =
a

4L

∫ 1

0
ds
∣∣∣∣dt(s)

ds

∣∣∣∣2+ L
a

∫ 1

0
dsw

[
R(s), t(s)

]
(6)

In a general case, the polymer chain is subject to an external field, w
[
R(s), t(s)

]
[34]. The tangent

vector t(s) ≡ (1/L)dR(s)/ds specifies the local orientation of the polymer chain at location s and
makes sure the curve is smooth. Moreover, the local inextensible condition is introduced by the
constraint of |t(s)| = 1. For comparison with the results of a Gaussian-chain model, the persistence
length lp is replaced by Kuhn length a by considering:

a = 2lp (7)

in this review. Then, the WLC model involves two characteristic length scales: the length of chain
L and the effective Kuhn length a.

The statistical properties of a WLC can be fully described by the propagator g(r− r′; t′, t; s). It is
the joint probability of finding a polymer chain section of contour length s along the chain, in such a
condition that the head is located at a position represented by the coordinate vector r′ and points to a
direction specified by a unit vector t′, as well as that the tail is located at a position represented by the
coordinate vector r and points to a direction specified by a unit vector t. Once a homogeneous system
with translational symmetry is considered, the propagator g only depends on ∆r ≡ r− r′.

Following the standard treatment, one can show that the calculation of the Green’s function in
three dimensions can proceed by solving the modified diffusion equation (MDE) [33]:

∂

∂s
g(r, r′; t′, t; s) =

[
L
a
∇2

t − Lt · ∇r + w(r, t)
]

g(r, r′; t′, t; s) (8)

which is subject to the initial condition g(r, r′; t′, t; 0) = δ(r− r′)δ(t− t′). The ensemble average of any
observable can be computed from the propagator. Then, the density-density correlation function can
be expressed as [14]:
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〈 f (r− r′)〉 =
1

(4π)4Q

∫ 1

0
ds
∫ s

0
ds′

∫
dt0dt′dtdt1

∫
dr0dr1

× g(r0 − r′; t0, t′; s′)g(r′ − r; t′, t; s− s′)g(r− r1; t, t1; 1− s) (9)

+
1

(4π)4Q

∫ 1

0
ds
∫ s

0
ds′

∫
dt0dt′dtdt1

∫
dr0dr1

× g(r0 − r; t0, t; s′)g(r− r′; t, t′; s− s′)g(r′ − r1; t′, t1; 1− s)

where Q is the single-chain partition function. Then, the structure factor can be obtained by performing
the Fourier transformation. For a general formation of w(r, t), it is difficult to obtain the full propagator,
g(∆r; t′, t; s) even through the numerical method due to its high dimensional dependence. In this
review, we consider the spacial homogeneous system where the translational symmetry is satisfied.
Namely, the field w only depends on t.

In this review: (a) the multi-scale behaviors of the WLC model are discussed by analyzing the
scattering function of the ideal WLC in Section 2; (b) the anisotropic behaviors of a single WLC in
a nematic field are shown in Section 3; (c) the spinodal lines of the self-assembly of the semiflexible
diblock copolymer are demonstrated in Section 4 as an example of the application of the structure factor
in Gaussian fluctuation theory; moreover, (d) the multi-scale nature of the WLC model microscopic
interaction range effects is discussed in Section 4.3.

2. Structure Factor of a Single Worm-Like Chain (WLC)

For the condition of an ideal chain in a spatially-homogenous and directionally-disordered system,
in which the external field w = 0, the end integral of the propagator can be obtained analytically,

1
4π

∫
dt0

∫
dr0g(r0 − r; t0, t; s) = 1 (10)

and
1

4π

∫
dt1

∫
dr1g(r− r1; t, t1; 1− s) = 1 (11)

for any r, t and s, as well as Q = 1. Thus, the density-density correlation function can be simplified as:

〈 f (r− r′)〉 =
1

(4π)2

∫ 1

0
ds
∫ s

0
ds′

∫
dt
∫

dt′
[

g(r− r′, t, t′; s− s′)

+g(r′ − r, t′, t; s− s′)
]

(12)

Additionally, then the structural factor can be accessed,

S(ka; L/a) ≡
∫

d∆r f (∆r) exp [−ik · ∆r]

=
1

4π

∫ 1

0
ds
∫ s

0
ds′

∫
dt
[

G(k, t, s− s′) + G(−k; t; s− s′)
]

(13)

Here, the end-integral propagator in Fourier space is defined as:

G(k, t; s) ≡
∫

dt′
[∫

d∆rg(∆r; t′, t; s) exp (ik · ∆r)
]

(14)

which satisfies:

∂

∂s
G(k, t, s) =

[
L
a
∇2

t + iLk · t
]

G(k, t, s) (15)
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with the initial condition of G(k, t, 0) = 1. Choose the direction of wave vector k as the z axis.
The MDE becomes:

∂

∂s
G(k, θ; s) =

L
a

1
sin θ

∂

∂θ

[
sin θ

∂G(k, θ, s)
∂θ

]
+ iLk cos θG(k, θ, s) (16)

and the structure factor only depends on wavenumber k:

S(ka; L/a) =
1
2

∫ 1

0
ds
∫ s

0
ds′

∫
d cos θ

[
G(k, θ, s− s′) + G(−k, θ, s− s′)

]
(17)

In summary, to calculate S(ka; L/a), first solve the MDE, Equation (16), for given wavenumber k
and L/a; then perform the integration according to Equation (17).

2.1. Rigid and Flexible Limit

An advantage of the WLC model is that it can describe the structural properties of the entire
range of flexibility, L/a. the Gaussian-chain and rigid-rod-chain structural factor can be analytically
recovered from the current model, at the limit of L/a� 1 and L/a� 1, respectively. To recover the
Gaussian chain model in the flexible chain limit, L/a � 1, expand G(k, θ, s) in terms of Legendre
functions Pl(cos θ),

G(k, θ, s) =
∞

∑
l = 0

γl(ka, s)Pl(cos θ) (18)

Substituting this expression into Equation (16), a set of differential equations for γl(ka, s) is
obtained. For l = 0,

∂

∂s
γ0(ka, s) = (ika)

1
3

L
a

γ1(ka, s) (19)

For l = 1, 2, 3, · · · ,

∂

∂s
γl(ka, s) = − L

a
l(l + 1)γl(ka, s) + (ika)

L
a

l
2l − 1

γl− 1(k, s)

+(ika)
L
a

l + 1
2l + 3

γl + 1(ka, s) (20)

In the flexible chain limit, the anisotropic components of the propagator should decay as quickly as
possible, which means ∂

∂s γl(ka, s) = 0 for l 6= 0. According to Equation (20), this requires ka ∼
√

a/L.
This means the orientational bias from the chain rigidity can be ignored on the length scale, which is
larger than a. In this regime, the isotropic component of the propagator satisfies:

∂

∂s
γ0(ka, s) = − (ka)2

6
L
a

γ0(ka, s) +O (ka)2 (21)

which is identical to the k-space representation of MDE for a GSC model. Its solution is
g(k, s) = exp[−(kRg)2s]. Using the definition of structure factor Equation (17), one can obtain the
Debye function as shown in Equation (4).

The solution of Equation (16) at the rigid limit (L/a� 1) was first determined by Neugebauer
in 1943 [35]. Within this limit, the first term on the right-hand side of Equation (16) disappears.
An analytical solution to this equation can be found:

G(ka, θ, s) = exp(isLk cos θ) (22)

Following the definition in Equation (17), the structure factor has the following expression,

Srod(kL) =
2

(kL)2

[
−1 + kL

∫ kL

0

sin y
y

dy + cos(kL)
]

(23)
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where the parameter a completely disappears from the expression on the right-hand side and the main
length scale in the problem is L. Thus, in the rigid regime (L/a ≤ 1), it makes sense to plot S directly
as a function of kL.

2.2. Asymptotic Behavior of the Structure Factor in Small and Large Wavenumbers

The light- and neutron-scattering techniques are usually employed to probe the structural
factor experimentally. The density-density correlation of the polymer chain in the different length scales
can be accessed from different k regimes in the scattering pattern. The low k region of the structure factor
corresponds to the signal of small-angle-scattering, which characterizes the overall structure of the
polymer chain, and the large k region of the structure factor corresponds to the wide-angle-scattering,
which characterizes the local structure. The structure factor satisfies S ∼ k−d, where d is the fractal
dimension of the structure. Because the polymer chain is a multi-scale system, in different length scale
regions, d has a different value. The boundaries between these regions define the characteristic length
scales of the polymer. There are two characteristic length scales, the radius of gyration, Rg, and the
Kuhn length, a. Consider the ideal flexible chain as an example, i.e., L/a � 1. For k � 2π/Rg,
the length scale is sufficiently large that the chain can be considered as a point with d = 0.
For 2π/a < k < 2π/Rg, the center limit theorem requires that the conformation of the chain is
a random walk. The fractal dimensions of the random walk are two. For k � 2π/a, the orientation
of adjacent bonds along the chain is highly correlated. The linear shape of the chain indicates its
fractal dimension is 1. In a double-logarithmic coordinate, the scattering data are a polygonal line with
different slopes in different wavenumber regions. In practice, Kratky function, which is defined as
k2S(k), is used to analyze the structure of the chain. In double-logarithmic coordinates, the slope of the
Kratky function is 2− d. Then the two-dimensional structure, which characterizes the random walk
behavior, is a platform. Therefore, it is convenient to check whether the conformation of the chain
satisfies the behavior of the random walk or not.

In the low k regime (commonly called the Guinier regime), the spatial resolution approaches the
overall size of the polymer chain. The global conformational information of the chain can be probed.
In this regime, the structure factor can be approximated by:

S(ka� 1, L/a) = 1− (Lk)2
〈

R2
g

〉
/3L2 + ... (24)

where
〈

R2
g

〉
is the radius of gyration.

〈
R2

g

〉
can be measured by the small angle scattering experiment.

The radius of gyration of the discrete non-Gaussian chain model including (1) the constant valence
angle chain with free rotation, (2) the discrete WLC and (3) the constant valence angle chain with
restricted rotation were predicted by Benoit and Doty in the 1950s [18].

〈
R2

g

〉
=

aL
6

[
1− 3a

2L
+

3a2

2L2 −
3a3

4L3

(
1− e−2L/a

)]
(25)

is the exact expression of the radius of gyration of a WLC [36]. For the flexible limit L/a >> 1,
< R2

g >= aL/6, which is consistent with the prediction of Gaussian chain model. According to
Equation (24), the structure factor is proportional to k2 in the low k region. In experiments, this relation
is used to predict Rg from scattering data.

The structural factor in the large-ka regime for any L/a can be analytically deducted from
Equation (16). Taking the ka� 1 limit, we can drop the first term on the right-hand side. Formally, the
solution can be connected with the rigid rod limit, because the mathematical formation of the MDE is
exactly the same. At the ka� 1 limit, S ∼ k−1:

S(ka� 1) =
2

kL

∫ ∞

0

sin y
y

dy + ... (26)
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Hence in the large k region of the Kratky plot,

(L/a)(ka)2S = πka + ... (27)

is a straight line that all data should merge together.
It should be emphasized that the GSC model is a coarse-grained model, which ignores all of

the information in the large k regime. The large k limit of its the structure factor of Equation (4),
SDebye(x) = 2/x. It is a plateau (ka)2S = 12/(L/a) (ka � 1) in the Kratky plot (black dash in
Figure 1), which can also be used to predict Rg from the scattering data. This behavior indicates in
the GSC model that the chain has a self-similar random walk structure, and its fractal dimension is
two. This approximation fails to describe local behavior on the length scales close to and below a.
The WLC model, on the other hand, gives rise to the correct physics and predicts another crossover to
a slope of one in the Kratky plot. The intersection of this asymptotic behavior with the GSC behavior
(L/a)(ka)2SDebye = 12.

k∗a = 12/π, (28)

which is indicated in Figure 1 by blue arrow is customarily considered the location that can be used to
define a/2, or the persistence length, from experimental measurements [37]. The crossovers between
these three regimes have been observed in both experiment [38] and computer simulation [39–42].

10-2 10-1 100 10110-1

100

101

102

SDebye

12

12

1

2

 L/a=1000
      =100 
      =10   
      =1     

 

(L
/a

)(
ka

)2 S

ka

0

Figure 1. Structure factor of the worm-like chain (WLC) for various L/a in a double-logarithmic Kratky
plot. Black solid lines with slopes of 2, 0 and 1 indicate the scaling behavior of the structure factor in
different wavenumber regions. The dashed line is the SDebye, and dots indicate the crossover region
between random walk behavior in the mesoscopic scale and the linear connection behavior in the
microscopic scale.

2.3. Structure Factor of WLC with Finite L/a

Although there has been a long standing interest in the theoretical calculation of S(ka; L/a) for a
WLC, analytical solutions can only be found in the limiting cases L/a� 1 (flexible chain) and L/a� 1
(rigid rod). Previous attempts were made by solving models that were modified from the statistical
weight in Equation (6) [43–47]. Kholodenko took the approach of directly approximating the Green’s
function, exploiting the similarity between the Green’s function of the semiflexible polymer model
and the propagator of Dirac’s fermion, in rigid and flexible limits. Using an interpolation method that
matches the two asymptotic limits, he proposed the following analytic formula for the structure factor.

S(ka; L/a) =
2
y

[
I(1)(y)−

1
y

I(2)(y)
]

, (29)
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where:

I(n)(y) =
1
E

∫ y

0

sinh(Ez)
sinh(z)

zn−1dz, (30)

y = 3L/a and E =
{

ζ[1− (ak/3)2]
}1/2, and

ζ =

{
1 ka ≤ 3
−1 ka > 3

(31)

His proposal is by far the simplest, comparing to the approximations proposed earlier by Yoshizaki
and Yamakawa [48] and later by Pedersen and Schurtenberger [49]. The Kholodenko formula is an
exact solution of Dirac’s fermion problem; however, it is not the solution of the original WLC model in
Equation (2). It has been adopted for data-fitting purposes by computational tools, such as FISH [50]
and SASFIT [51].

As an effective tool, Monte Carlo simulations can be performed on a discretized version of the
WLC model. Pedersen and Schurtenberger performed a series of Monte Carlo simulations of such
a chain, with and without the excluded-volume interaction. The structural factor can then be obtained
numerically from the simulations [49]. They have provided an empirical formula to represent their
simulation data.

S(ka; L/a) = SSBP + Sloc(1− P) (32)

where:

SSB = SDebye + b2
a
L

[
4

15
+

7
15x
−
(

11
15

+
7

15x
exp(−x)

)]
(33)

Sloc =
b1

Lak2 +
π

Lk
(34)

and the empirical weight function has the form of:

P = exp

[
−
(

ka
P2

)P1
]

(35)

To obtain good fitting on both conditions of the flexible and rigid chains, the parameters used in
Pedersen’s expression depend on L/a (listed in Table 1). Rg takes the general expression Equation (25)
for L/a ≤ 2 and La/6 for L/a > 2, respectively.

Table 1. Parameters used in Pedersen’s expression of the structure factor of the WLC model for both
rigid and flexible conditions.

b1 b2 P1 P2

L/a > 2 1 1 5.33 5.53
L/a ≤ 2 0.0625 0 3.95 11.7a/L

The MDE of the WLC model Equation (16) describes the diffusion of a particle on the surface
of a unit sphere with a bias external field ik cos θ. Then, the propagator can be expressed in terms
of the moment expansion by considering the state without the external field as a reference. In the
Fourier–Laplace space, the (2n + 1)-th order moments vanish, and the 2n-th order moments can be
computed using the so-called stone-fence diagram method [52]. Thus, finding these moments is
equivalent to solving the one-dimensional random walk problem for 2n steps with both ends fixed
at the same point. Stepanow and coworkers calculated this problem using the same method for
computing the dimensions of the irreducible representation of the Temperley–Lieb algebra [53,54].
Numerically, they must invert a matrix of the rank equivalent to the order of the truncated moment
in the expansion. A small number of leading moments is adequate for the prediction of the
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structural factor in the small k region. For large the k region, more moments are required for a
more precise calculation.

A direct calculation of S for the standard WLC model, expressed in Equation (6), was not made
until 2004 when Spakowitz and Wang provided a semi-analytic approach in the Fourier–Laplace space.
They used the constrained one-dimensional random walk to express the propagator of a WLC
exactly [55]. They re-grouped the random walk trajectories according to the number of loops.
Based on this consideration, the moment expansion can be expressed as an infinite continued fraction.
According to Fermat’s last theorem, the calculation of the continued fraction problem is equivalent to
inverting a matrix. In fact, the matrix expression of Spakowitz–Wang’s continued fraction has the same
format as the matrix used in Stepanow’s work. In order to find the structural factor, however, one
must go back to the numerical treatment of the formalism; in particular, an inverse numerical Laplace
transformation is needed [55,56]. Besides the linear shape WLC, the structure factor of worm-like rings
is studied by both the Monte Carlo simulation and the Daniels approximation [57]. A characteristic
peak appears around Rgk in the Kratky plot originating from the topological constraint of the ring.

A pseudo-spectral method to obtain G(k, t, s), which solves the MDE Equation (16) directly,
is developed to compute the structure factor. S(ka, L/a) [58]. In this method, the propagator is
updated by the algorithm of:

G(k, θ, s + ∆s) = ei∆sLk cos θ/2L̂−1

{
e−∆sl(l+1)(L/a)L̂

[
ei∆sLk cos θ/2G(k, θ, s)

]}
(36)

Here, L̂ and L̂−1 are the operators of Legendre transformation and the Legendre synthesis, respectively.
Comparing to the Crank–Nicolson method with a similar degree of complexity [59], this approach is
more efficient and easier to manage.

The resulting structure factors of different L/a computed by the above method are compared for
the entire wavenumber ka range in Figure 1 [58]. There is an excellent agreement between the two
exact numerical solutions by the infinite continued fraction method and the pseudo-spectral method.
The approximate analytical forms of the structural factor proposed by Kholodenko and Pedersen works
well in both the small and large ka regime. However, in the intermediate ka regime, both methods
show deviations, and their deviations depend on chain rigidity, L/a. Kholodenko’s expression has
good behavior for both small and large L/a limits, but not in the semiflexible condition, L/a ∼ 1.
Pedersen’s expression works well in the large L/a regime, but not in the low L/a regime.

A more specific chain model is the helical WLC model, which includes the energy penalty of the
twist conformation [52]. It is a better theoretical model for the biopolymers. However, the extra degree
of freedom increases the difficulty for the numerical algorithm. Only the asymptotic method has been
used to obtain the structure factor [60].

3. Structure Factor in the Orientational Field

The polymer chain can be elongated and orientated by the nematic solution. In the experiment,
DNA, neurofilaments and F-actin dispersed in the nematic phase of rod-like fd virus can experience
a coil-rod transition [34]. At the mean-field level, the interaction between the target chain and the
liquid-crystalline matrix can be studied by an isolated chain in an orientational field obtained from
self-consistent field theory. In the Maier–Saupe anisotropic interaction model [61,62], this effective
field has a quadrupolar formation w(t) = Γ

(
t2
z − 1

3

)
. Here, the major axis of the nematic phase has

been chosen as the z axis. The propagator of an isolated WLC in a nematic field satisfies the MDE:

∂

∂s
G(k; t′, t; s) =

[
L
a
∇2

t + iLt · k + Γ
(

t2
z −

1
3

)]
G(k; t′, t; s) (37)

which is subject to the initial condition G(k; t′, t; s = 0) = δ(t− t′).
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By introducing the end integral propagators:

1
4π

∫
dt0

∫
dr0g(r0 − r; t0, t; s) = q(t, s) (38)

and:
1

4π

∫
dt1

∫
dr1g(r− r1; t, t1; 1− s) = q(t, 1− s) (39)

the structural factor can be expressed as:

S(ka; L/a) =
1

(4π)2 Q

∫ 1

0
ds
∫ s

0
ds′

∫
dt′dt

[
q(t′, s′)G(k; t′; t, s− s′)q∗(t, 1− s)

+q(t, s′)G(−k; t, t′; s− s′)q∗(t′, 1− s)
]

(40)

The structure factor S(ka; L/a, Γ) can be calculated through the integration of Equation (40).
Its behaviors can be determined by two independent parameter L/a and Γ only.

Comparing to the structure factor without the orientational field as expressed by Equation (17),
the structure factor of the ideal chain in the orientational field, Equation (40), involves two double
integrals with respect to t(θ, φ) and t′(θ′, φ′). It is a formidable task to compute and store the t
and t′ dependent propagators, because a sufficiently large degree of discretization is required in
the orientational space to assure the accuracy of the multiple integral. This makes the difficulty in
computing the structure factor in a nematic field. It should be noted that the propagator G(k; t′; t, s− s′)
includes two underlying δ functions, δ[t(s)− t] and δ[t(s′)− t′]. The double integrals with respect to t
and t in the expression structure factor assure the smooth constraint at the connecting joints between
the propagators. Therefore, this can be performed analytically, and then, the numerical difficulty can
be avoided. According to this consideration, the structure factor can be expressed by a formation
similar to Equation (17).

S(ka; L/a) = 2
1

4πQ

∫ 1

0
ds1

∫ s1

0
ds2

∫
dtq̃(t, s; k, s1, s2) (41)

where the q̃ satisfies:

∂

∂s
q̃(t, s; k; s1, s2) =

[
L
a
∇2

t + η(k, t, s1, s2) + Γ
(

t2
z −

1
3

)]
q̃(t, s; k; s1, s2) (42)

where the external field depends on contour variable s:

η(k, t, s1, s2) =

{
iLk · t for s ∈ [s1, s2]

0 otherwise
(43)

and the initial condition is q̃(t, s = 0; k; s1, s2) = 1.
Choose the direction of the nematic as the z axis and the direction of the projection of vector

k in the x–y plane as the x axis. Thus, the structure factor of a WLC in a nematic phase is an
anisotropic function depending on the orientation of the wavevector with respect to the nematic axis,
θk. By considering the expression:

k · t = k(sin θk sin θ cos ϕ + cos θk cos θ) (44)

the MDE becomes:

∂

∂s
q̃(θ, ϕ, s; k, θk; s1, s2) =

[
L
a
∇2

t + η(k, θk, θ, ϕ, s1, s2) + Γ
(

cos2 θ − 1
3

)]
q̃(θ, ϕ, s; k, θk; s1, s2) (45)



Polymers 2016, 8, 301 11 of 22

where:

η(k, θk, θ, ϕ, s1, s2) =

{
iLk(sin θk sin θ cos φ + cos θk cos θ) for s ∈ [s1, s2]

0 otherwise
(46)

with initial condition, q̃(θ, ϕ, 0; k, θk; s1, s2) = 1. Given k(k, θk), the pattern of the structure factor
S(k, θk) can be obtained by the double integration in Equation (41). Its integrand can be computed by
solving Equation (45).

Taking the chain with L/a = 5 in the nematic matrix as an example, its structure factors parallel to
the nematic axis (θk = 0) and perpendicular to the nematic axis (θk = π/2) are plotted in the left panel
of Figure 2, and the whole structure factor S(θt, k) is demonstrated in the right panel. In the small k
region, both components satisfy the Guinier regime. In this condition, the chain is no longer isotropic,
since different components do not coincide with each other. Its inertia tensor has two independent
intrinsic values corresponding to Rg‖ and Rg⊥, respectively, which can be predicted by drawing the
S(θt = 0, k) and S(θt = π/2, k) in the Guinier plot. In order to give a comprehensive illustration of the
anisotropic properties of the WLC in an orientational field, S(θt, k) are plotted in a polar coordinate
depending on θt. The further effects of the orientational field on the conformation of semiflexible chain
can be found in [63].
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Figure 2. Structure factor, S(θt, k), of the WLC for L/a = 5 in a the nematic phase. The left panel shows
the component of θt = 0 and π/2 in double-logarithmic Kratky plot. The right panel demonstrates the
anisotropic properties of S(θt, k) in a polar coordinate.

4. Gaussian Fluctuation Theory and the Random Phase Approximation

The structure factor of the ideal chain determined in the previous section is the starting point of
Gaussian fluctuation theory. This theory is generally used to determine the structure factor of an order
structure and then to analyze its stability. Its idea is considering the weak fluctuation around the
reference state obtained form self-consistent field theory. Keeping secondary order approximation,
the secondary term of the effective Hamiltonian is a matrix. Diagnosing this matrix, this term can be
expressed as the summation of a set of harmonic oscillators. The moduli of these oscillators, which are
the intrinsic values of the matrix, are the energy costs of the intrinsic fluctuation modes of the order
structures. Moreover, due to this simple formation, its partition function can be obtained using the
Gaussian integral, and then, the free energy can be predicted approximately. This method is called
random phase approximation (RPA). This theory has been used to predict the structure factor of
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linear [22], comb, star [64] and miktoarm star [65] diblock copolymers. Furthermore, the dynamic
structure factor has been predicted by Semenov et al. [66].

In this section, the Gaussian fluctuation theory of the WLC model will be demonstrated using
the microphase separation in worm-like AB block copolymers as an example system. The WLC
model can describe the statistics of the polymer chain in the entire L/a range. Therefore, the Gaussian
fluctuation theory based on WLC is required for the comprehensive understanding of the phase
behavior of the diblock polymer system [58]. Because of the difficulty of obtaining the exact
structure factor of an ideal WLC, the Gaussian fluctuation theory had not been applied on the WLC
system for the entire range of L/a until 2014. Many attempts based on the approximate structure
factor of ideal WLC are made to predict the spinodal line of the semiflexible diblock copolymer.
Approximating a semiflexible chain by freely-jointed rods of finite total length, Singh et al. provided
a mechanism of constructing the correlation functions for such a chain [6]. In this model, the
polymer conformation is controlled by the total number of monomers contained in the chain and
the number of monomers in the rigid segment. As the ratio between these two numbers is large,
the physical behavior is governed by the random walk configurations; otherwise, as the the ratio
approaches unity, the physical behavior becomes rigid-rod alike. Coupling the expression with the
RPA method, they analyzed the phase behavior of diblock copolymers based on this model in a
number of scenarios, including the microphase separation of worm-like diblock copolymers from
a homogeneous solution. One interesting conclusion made by these authors is the critical point
where a system of homogenous symmetric AB diblock copolymers makes a phase transition to the
microphase separated ordered structure; their estimation of the transition point for flexible chains
gave (χL/a)c = 10.5, which matches that determined from a GSC model [22]. The transition point
for symmetric rod-rod copolymers where the two blocks can freely rotate around the joint gave
(χL/a)c = 8.3 [67]. Later work [68,69] predicts (χL/a)c = 6.135 for the symmetric rod-rod jointed
by a straight line. Friedel and coworkers estimated the structural factor of a semiflexible-chain
model in terms of a short cumulant expansion [70]. This approximation requires that the mean
monomer-monomer distance |R(s)−R(s′)| is much smaller than the typical wavelength 2π/k; in such
a circumstance, the local properties of the chain are totally ignored. Therefore, for the flexible-chain
limit, this approximation can effectively recover the prediction of the Gaussian-chain model. However,
for a polymer chain with finite rigidity, the approximation starts to suffer. Their prediction of
(χL/a)c = 8.4 for the critical point of the disorder-order transition in symmetric rod-rod copolymers is
above the value (χL/a)c = 6.135.

4.1. Gaussian Fluctuation Theory of the Worm-Like Diblock Copolymer

Consider an incompressible system of n monodisperse AB diblock copolymer chains, each with
NA and NB monomers for the A block and the B block, respectively. The fractional composition of the
polymer chains is given by f = NA/N. For the sake of simplicity, each type of block is assumed to have
the same Kuhn length a and equal monomer volume ρ−1

0 . The contour length for block copolymers
denoted by L is related to the segment number N = NA + NB by L = Na.

The local immiscibility can be described by the enthalpic penalty of mixing unlike segments in
terms of the Flory–Huggins-type expression [16]. Instead of taking the point-like δ function adopted
in most of the previous studies [14], we incorporate a generalizable function h(R) involving a finite
range ε explicitly accounting for the volume effect of segments as:

H1 = χρ0

∫
dr
∫

dr′h(|r− r′|)φ̂A(r)φ̂B(r′) (47)

The function h(R) is allowed to take any formalism as long as the normalization condition∫
dR h(R) = 1 is satisfied. With the assumption of the same form h(R) adopted for all pairs, A–A,

B–B and A–B, for convenience, the Flory–Huggins-like parameter χ manifests the net interaction
arising from all components. Furthermore, the effective interaction range ε can be calculated by
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ε2 =
∫

dR R2h(R). Without loss of generality, two interaction potential functions with finite interaction
are considered. First is a Gaussian distribution for the function:

h(R) =
1

(2π)3/2ε3 exp
(
− R2

2ε2

)
(48)

Second is the Yukawa-type potential, which is typically used to characterize the screening effects
on the pairwise interaction, such as in a polymer solution with high concentration and in
a polyelectrolyte system. It has the form of:

hY(r) =
1

4πε2r
exp

(
− r

ε

)
(49)

characterizing the screen effect with a finite screen length ε. The density operators for the each
component is defined respectively as:

φ̂A(r) ≡
N
ρ0

n

∑
k = 1

∫ f

0
dsδ[r− Rk(s)] (50)

φ̂B(r) ≡
N
ρ0

n

∑
k = 1

∫ 1

f
dsδ[r− Rk(s)] (51)

The effective Hamiltonian can be expressed by:

βF = − ln Q +
1
V

∫
dr
{

χN
∫

dr′h(|r− r′|)φA(r)φB(r′)− wA(r)φA(r)− wB(r)φB(r)

+ ξ(r) [φA(r) + φB(r)− 1]
}

(52)

It is a functional of the mean fields wA(r) and wB(r) that the components experience, the mean
volume fraction distributions φA(r) and φB(r) at coordinate r and a Lagrangian multiplier ξ(r) that
enforces the incompressibility constraint on the system. The reduced parameter χN denotes the
effective interaction between different blocks. The function Q called the single chain partition function
can be calculated from:

Q =
1

4πV

∫
drdtq(r, t, 1) (53)

The propagator q(r, t, s) can be obtained by solving the MDE: [14,33]

∂

∂s
q(r, t, s) =

[
N∇2

t − Lt · ∇r − w(r, t, s)
]

q(r, t, s) (54)

subject to the initial condition q(r, t, 0) = 1. For the current system,

w(r, t, s) =

{
wA(r, t), if 0 ≤ s ≤ f
wB(r, t), if f < s ≤ 1

A second segment distribution function q∗(r, t, s) complementary to q(r, t, s) is needed, due to the
distinct ends of the diblock copolymers. It satisfies a similar MDE:

∂

∂s
q∗(r, t, s) =

[
−N∇2

t − Lt · ∇r + w(r, s)
]

q∗(r, t, s) (55)

and is subject to the initial condition q∗(r, t, 1) = 1.
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The self-consistent field theory equations can be obtained by minimizing the free energy functional
in Equation (52) with respect to the functions δH/δζ = 0, where ζ = φA, φB, ξ, wA and wB,

wA(r) = χN
∫

dRh(R)φB(|r− R|) + ξ(r) (56)

wB(r) = χN
∫

dRh(R)φA(|r− R|) + ξ(r) (57)

φA(r) + φB(r) = 1 (58)

φA(r) =
1

4πQ

∫
dt
∫ f

0
dsq(r, t, s)q∗(r, t, s) (59)

and:

φB(r) =
1

4πQ

∫
dt
∫ 1

f
dsq(r, t, s)q∗(r, t, s) (60)

The solution of these equations, ζ∗(r), represents the equilibrium field configurations in the
mean-field level. Filling ζ∗(r) back into Equation (52), we can obtain F ∗ = H∗, the mean-field free
energy determined at the mean-field level.

The solution for the spatially-homogenous phase is r-independent. In order to examine
the stability of the homogeneous phase, one considers the weak inhomogeneous condition;
the self-consistent field theory (SCFT) equations can be solved by the random phase approximation
(RPA). This approach is based on the linear analysis of the structure, which can determine the
spinodal line and the most unstable fluctuation mode. Considering the fluctuations, δζ(r), around the
mean-field solution ζ∗,

ζ(r) = ζ∗ + δζ(r) (61)

The effective Hamiltonian can then be expressed as βF ≈ βF∗ + βF(2), where βF(2) is the Gaussian
fluctuation contribution [23]. The partition function can be approximated by:

Z ≈ exp(−βF∗)
∫
D{δφ} exp

{
−βF(2)[δφ]

}
(62)

where δφ ≡ δφA − δφB, and in the k space,

βF(2) =
1
2

∫ dk
(2π)3 δφ(k)C−1

RPA(k)δφ(−k) (63)

CRPA(k) is the k space representation of the so-called RPA correlation function. It is the effective
pairwise interaction between monomers. Its inverse is the structure factor of the multi-chain system,
which characterizes the modulus of its corresponding fluctuation mode, δφ(k). Because the spacial
homogeneous solution of the SCFT is considered as the reference state, the correlation function only
depends on the modulus of the wavevector, k. It can be expressed in terms of the intra-chain correlation
functions CAA, CBB and CAB,

C−1
RPA(k) ≡

CAA(k) + 2CAB(k) + CBB(k)
4
[
CAA(k)CBB(k)− C2

AB(k)
] − 1

2
χNh̃(k) (64)

The intra-chain correlation functions can be computed by the method discussed in the previous section,

CAA(k) =
1

4π

∫ f

0
ds
∫ s

0
ds′dt[G(k, t, s− s′) + G(−k, t, s− s′)],

CBB(k) =
1

4π

∫ 1− f

0
ds
∫ s

0
ds′dt[G(k, t, s− s′) + G(−k, t, s− s′)], (65)

CAB(k) = CBA(k) = [S(k)− CAA(k)− CBB(k)]/2
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In Equation (65), h̃(k) is the potential function in reciprocal space. For the Gaussian formation,

h̃G(k) = exp
(
− k2ε2

2

)
(66)

For the Yukawa formation,

h̃Y(k) =
1

k2ε2 + 1
(67)

Both types of potentials will be compared in the RPA approximation computation. C−1
RPA(k) can

be considered as the modulus of the fluctuation mode δφ(k). Once C−1
RPA(k) is determined, we search

for the minimum of this function numerically, which determines the soft mode k∗. As C−1
RPA(k

∗) is
decreased to zero, the homogenous phase loses its stability, and the spinodal point can be arrived at by:

(χN)s = min[C̃(k)/h̃(k)] (68)

where:

C̃(k) ≡ CAA(k) + 2CAB(k) + CBB(k)
2
[
CAA(k)CBB(k)− C2

AB(k)
] (69)

The domain size of the order structure formed by micro-phase separation can be determined
by D ≡ 2π/k∗.

4.2. Worm-Like Diblock Polymer with δ Interaction Potential

The numerical results of the spinodal curve for diblock polymers is presented in Figure 3 for
systems that have various degrees of flexibility L/a. In the current case, the phase diagram in the
entire range of the A volume fraction f = [0, 1] is symmetric with respect to f = 0.5. Only half of
the region f = [0, 0.5] is plotted in the figure. For comparison, the spinodal lines computed based
on the Gaussian chain model and rigid rod chain model, by directly using the analytic expressions
in Equations (4) and (23), respectively, are produced and plotted in the figure as the red and blue
dashed lines.

As the flexibility L/a increases, the WLC spinodal curve approaches the Gaussian-chain
spinodal curve. It takes as high as L/a = 100 to closely reach the red dashed curve in Figure 3.
Lowering of the flexibility helps the expansion of the ordered phase region. This can be qualitatively
explained by the consideration of the effects of the conformational entropy of a WLC. In the
ordered state, the Flory–Huggins repulsion between the A and Bblocks dominates and drives the
phase separation. The polymer chains are then stretched accompanied by a reduction of the chain
conformational entropy. Under otherwise the same physical conditions, a more rigid chain is always
more extended than a more flexible chain; hence, the entropic loss of a rigid chain in forming an
extended conformation in an ordered state is less than that of a flexible chain; accordingly, the ordered
region expands. As the flexibility L/a further decreases, the spinodal curve eventually approaches the
prediction obtained based on the rigid-rod model, the dashed blue curve in Figure 3. The curve for the
case of L/a = 0.1 already reaches the rigid rod limit significantly.
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Figure 3. Spinodal lines for a worm-like diblock copolymer melt for various chain flexibilities,
L/a = 0.1, 1, 5, 10 and 100, are shown. The curves are within the region bounded by an upper solid
red curve and a lower dashed blue curve, produced from the analytic expressions for the structure
factors of a Gaussian-chain model and a rigid-rod model, respectively.

For a fixed f = 1/2, the spinodal points as a function of L/a are represented as circle
symbols in Figure 4b. This is a case where the system undergoes a second-order phase transition
from the disordered state to the lamella state, as has been discussed previously in [68,69].
It is this special case where the spinonal curve coincides with the second-order transition curve.
Within the Gaussian chain model, the order-disorder-transition critical point for a symmetric
diblock copolymer melt occurs at χN = 10.495, which is a well-determined value in the
literature [22]. As the flexibility L/a is lowered, the critical point χN decreases as illustrated as
circle symbols in Figure 4b. When L/a � 1, the polymer chain becomes rigid, and the spinodal
curve approaches χL/a = 6.1352, in the rigid-rod limit. Both limits are represented as dots
in Figure 4. The spinodal curve (χN)s(L/a) for f = 0.5 predicted by Gaussian fluctuation
theory fully agrees with that of the binodal curve determined by SCFT [68,69]. This indicates
the in the mean-field theory level, f = 0.5 is a critical point for the entire range of L/a.
However, a further study on the rod-coil diblock copolymer spinodal curve and binodal curve shows
theynever intersect [71]. This means there is not any critical point in the rigidly-asymmetric block
copolymer. In the intermediate L/a ∈ (1, 100) range, the spinodal curve makes a sharp change. Within
this region, the statistical property of a worm-like chain is of a typical semiflexible nature.

4.3. Effects of the Finite Interaction Range

For short block copolymers, the size of the narrowing interfacial width is much less than the size
for long block copolymers, even less than one statistic Kuhn length [72]. Then, one anticipates that
the volume of the coarse-grained segment, which usually consists of several tens of monomers [14],
will play an extremely significant role in the phase separation for short block copolymers. The influence
of segmental volume is via the manner of the distance-dependent interactions between segments on
the stability of phase transitions of diblock copolymer melts.

In the field theory of polymeric systems, the coarse-grained δ function pair interaction potential
and Gaussian chain model are widely used. In this approximation, the properties on the length scale
of interaction range, ε, and the Kuhn length, a, are ignored. This is because the characteristic length
scale of the long chain systems in a weak inhomogeneous condition is around the radius of gyration of
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polymer chains, Rg. It is in the mesoscopic length scale and much larger than the microscopic length
scale of interaction range ε and Kuhn length a. According to the idea of renormalization, all of the
properties in the microscopic length scale are not important to the phase behaviors and can be ignored.
Therefore, the Gaussian chain model is a good approximation to characterize the statistic properties of
polymer in the mesoscopic length scale. Accordingly, the δ function potential is sufficient for the theory
using Gaussian chain model. Based on these coarse-grained models, the solution of the field theory is
greatly simplified, and the theory is widely used to study the phase behaviors of the polymeric system.
However, the phase behaviors of many polymeric systems involve multi-length scales. The WLC
model includes two length scales, the persistence length and the chain length. It extends the field
theory of the polymeric system to the condition of the chain with a small length and the condition of the
long chain in the fully stretched state. In these conditions, the characteristic length is much less than the
chain length, and the properties in the microscopic length scale become important. Because the WLC
model can resolve the length scale down to the Kuhn length, the interaction model should be consistent
with the resolution of the WLC model accordingly. However, the interaction range effects have not
been considered in the theory based on the WLC model before. The quantitative verification of the
coarse-grained approximation of the interaction potential is required. The validity of the δ function
potential is checked by solving the WLC model incorporating the potential function with a finite
explicit interaction range.

According to the RPA shown in Equation (64), the spinodal point, (χN)s, depends on the
formulation of potential function h̃(k), which has a characteristic length ε. For the limit of ε → 0,
h̃(k)→ 1 for both types of potential functions. Additionally, then, the spinodal point recovers to the
predication of the theory with the δ function type interaction, which can be determined by:

(χN)0 = min[C̃(k)] (70)

For the condition that a finite ε is considered, both the Gaussian-type potential and the Yukawa-type
potential have similar behaviors on the limits of both small and large length scales. For the length
scale much larger than ε, i.e., k → 0), h̃(k) → 1. The modulus of fluctuation δφ(k = 0) has the same
behavior of the system with δ function potential. For the length scale much less than ε, i.e., k → ∞,
h̃(k) approaches zero. It increases the modulus of fluctuation mode φ(k → ∞) dramatically, which
stabilizes the system with respect to the fluctuation with a wavelength smaller than the interaction
range ε, and it is hard to form a structure with a characteristic length much smaller than ε in this
system. For the fluctuation mode δφ with wavelength k around ε, the finite interaction range always
increases the modulus of the fluctuation and then increases the spinodal point (χN)s of the system.

Both the Gaussian-type potential and the Yukawa-type potential incorporating with the WLC
model are considered in the RPA computation to investigate the effect of the interaction range on
the phase behavior. The spinodal points of the block copolymer with f = 0.5 as a function of
interaction range ε/a for different N are compared in Figure 4a. For the limit of ε = 0, (χN)s increases
from 6.135–10.495, as N changes from 0–∞ monotonically. Because the finite interaction range tends
to stabilize the fluctuation except δφ(k = 0), the spinodal point (χN)s of the system with finite ε

always is larger than that of the system with ε = 0. As indicated by Figure 4a, the spinodal points
increases, as ε/a increases in a two-step process. A threshold of interaction range εc can be determined
for spinodal lines of all N. For ε < εc, the spinodal point is nearly independent of ε. On the contrary,
for ε > εc, the spinodal point increases rapidly as ε increases. In addition, the results of different
interaction potential formulations are distinct from each other. Here, the spinodal point of the system
with the Yukawa-type potential is higher than that with the Gaussian-type potential. The deviation
is up to 30%. These results indicate that εc serves as a criterion length of coarse-graining, which
indicates the resolution limit of the theory. The effect of the interaction range can be ignored for ε < εc.
For large N, e.g., N = 1000, εc/a ∼ 1. When interaction range ε is smaller than the Kuhn length
a, (χN)s ≈ 10.495, which almost does not depend on the microscopic details, the interaction range
and the formulation of the potential. In this condition, the effects of these microscopic properties of
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the system can be ignored, and the theory based on the Gaussian chain model and the δ function
interaction is a good approximation. While for ε is around or larger than a, the microscopic details
become important, and the theory based on the δ function interaction potential is not sufficient to
characterize the phase behavior of the polymeric system. The potential function with finite interaction
range becomes necessary. The εc depends on the chain length, N. As N decreases, εc/a decreases
continuously, which means the criterion that the interaction potential can be approximated by the
δ function potential decreases. For small N, e.g., N = 0.1, εc/a is less than 10−3, which means for
the chain with low molecular weight the microscopic details of the interaction cannot be ignored.
A tiny change of the interaction potential formulation or interaction range leads to a dramatic deviation
of the spinodal point. It can be concluded from Figure 4a that the δ function interaction is a good
coarse-grained approximation for the system only for the system with large N. For the low molecular
weight system, the interaction range affects the spinodal point seriously.
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Figure 4. Effects of the interaction range on the spinodal curve of a worm-like diblock copolymer as
functions of the interaction range ε/a and N [73]. In (a), intermediate cases for various N are shown,
between the flexible (large-N) and rod-like (small-N) limits. Solid and long-dashed curves represent
the numerical results of the Gaussian and Yukawa interaction functions, respectively. In (b), various
cases for interaction ranges as indicated are shown.

To demonstrate the N dependence of the effect of the interaction range, the spinodal point, (χN)s,
and the domain size, D/a, of the order structure formed by the phase separation are summarized in
Figure 4. For the limit of ε/a = 0 (circles in Figure 4b), (χN)s increases monotonically as N increases
for N ∈ (1, 00), while it almost does not change with N for both small and large N. This behavior is
from the increase of conformational entropy as N increases [58]. Once a finite interaction range ε is
considered in the model, the interaction range dramatically increases the spinodal point of the system
with small and medium N. As N increases, the effect of ε diminishes and at a finite Nc; the spinodal
point recovers to the result of ε = 0. For N > Nc, the effects of the interaction range can be ignored.
N has contradictory contributions to the entropy effect and interaction range effect. For small ε where
Nc < 100, these contradictory contributions make the function of (χN)s vs. N become concave,
and a minimum spinodal point appears. As ε increases, the effect of the iteration range is enhanced,
and Nc increases continuously. For the condition with a sufficiently large ε, Nc > 100, and then, (χN)s

becomes a monotonic decreasing function of N. Basically, the effects of the interaction range are from
the competition between the characteristic length of the phase separation, D/a, and the interaction
range, ε/a. As mentioned above, ṽ(k) → 0 for k larger than 2π/ε, which makes the modulus of the
fluctuation with high frequency increase rapidly and prevents the micro-phase separation. To make
the fluctuation δφ(k > 2π/ε) unstable, it will take much higher χN. This is from the excluded volume
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interaction to prevent the overlapping between monomers. Therefore, the interaction range ε serves as
a length scale cutoff. No structure with a length scale smaller than ε/a can be formed.

5. Summary

In summary, the recent development on the prediction of the structure factor of the WLC model
and its application in Gaussian fluctuation theory are reviewed. The WLC model is a typical multiscale
chain model, which can describe the statistic properties of the polymer chain from the Kuhn length,
a, to the chain length, L. It is a natural request to use the WLC model instead of the GSC model when
the system characteristic length scale is much lower than Rg. Besides the spacial degree of freedom,
the WLC model also includes the orientational degree of freedom. Therefore, studying the anisotropic
system, such as the liquid crystal WLC model, is required. Although the WLC model has been put
forward for many decades, the structure factor of WLC was not determined exactly for the entire
parameter space of L/a and ka until 2004 [54,55]. More recently, the numerical method based on direct
solving of the MDE in k space has been reported, which can be easily extended to the condition of WLC
in the external field. As a consequence, this method is useful for the Gaussian fluctuation field theory
in which the intra-chain coordination function is required. On the basis of the Gaussian fluctuation,
another length scale, i.e., the interaction potential range, which characterizes the thickness of the chain
can be studied in the framework of the WLC system. A number of other important polymer problems
can be examined using the current numerical method for WLCs, such as the fluctuation effect by
incorporating with the Hartree approximation and the correlation effect by introducing the liquid state
theory. Moreover, the RPA correlation function is the linear response function of the system to the
external stimulation. Therefore, Gaussian fluctuation theory can be used to predict the properties from
the structure of the material. More attention should be paid to the Gaussian fluctuation theory of the
WLC system for both functional material science and biological science.
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