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Embryonic stem (ES) cells have great therapeutic potential because they are capable of indefinite self-renewal and have the potential
to differentiate into over 200 different cell types that compose the human body. The switch from the pluripotent phenotype to a
differentiated cell involves many complex signaling pathways including those involving LIF/Stat3 and the transcription factors
Sox2, Nanog and Oct-4. Many nuclear receptors play an important role in the maintenance of pluripotence (ERRβ, SF-1, LRH-1,
DAX-1) repression of the ES cell phenotype (RAR, RXR, GCNF) and also the differentiation of ES cells (PPARγ). Here we review
the roles of the nuclear receptors involved in regulating these important processes in ES cells.
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1. INTRODUCTION

The nuclear receptor peroxisome proliferator activated re-
ceptor gamma (PPARγ) plays an important role in the dif-
ferentiation of adipose cells and osteoblasts, and thus has the
potential to direct embryonic stem (ES) cells to differenti-
ate into these cell types for future therapeutic uses in disease
treatment. This potential is real as nuclear receptor family
members regulate many of the key functions of ES cells, and
they are capable of unlimited self-renewal and can poten-
tially differentiate into any of over 200 cell types in the body.
They are derived from the inner cell mass of the mammalian
blastocyst [1–4]. The pluripotency of ES cells is maintained
by several key regulatory transcription factors and signaling
molecules, which establish precise patterns of gene expres-
sion that are characteristics of the undifferentiated pheno-
type of ES cell [5]. Some of these key regulators are leukemia
inhibitory factor (LIF) and the transcription factors Oct-4,
Sox2 and, Nanog [5]. LIF belongs to the interleukin-6 cy-
tokine family and binds to a heterodimeric receptor, which
then leads to activation of the Jak/Stat pathway. Activation of
Stat3 is essential and sufficient to maintain the mouse ES cell
pluripotence, however, the LIF STAT3 pathway is mouse spe-
cific (related to diapause) and does not play a role in human
embryonic stem cells [6–8]. Wnt3A is also important in the

maintenance of ES cell pluripotence [9]. It was found that its
presence in the media can maintain the pluripotent nature of
ES cells, but it appears that this action occurs synergistically
with LIF [10].

Oct-4 is a member of the POU homeodomain family of
transcription factors, which acts as a gatekeeper to prevent
ES cell differentiation by maintaining pluripotent gene ex-
pression and inhibiting expression of lineage determination
factors. When repressed or inactivated in ES cells, differen-
tiation occurs along the trophoectodermal lineage. Over ex-
pression of Oct-4 causes ES cells to differentiate mainly into
primitive endoderm-like derivatives [11]. These divergent ef-
fects of Oct-4 suggest that it regulates the transcription of
genes involved in coordination of multiple cellular functions
and early cell fate decisions. Oct-4 usually binds to the oc-
tamer DNA sequence ATGCAAAT in ES cell-specific genes,
and this binding often occurs in conjunction with Sox2 (a
member of The SRY HMG box family), which binds to a
neighboring Sox element [12, 13]. Nanog is an NK2 class
homeobox transcription factor that was identified as a fac-
tor, which when over expressed, can maintain pluripotency
even in the absence of LIF. Nanog-null embryos fail shortly
after implantation, and at first give rise to pluripotent cells
but these quickly differentiate along the extraembryonic en-
doderm lineage [14, 15].
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It has been proposed that there are two mechanisms by
which transcription factors play a role in the maintenance of
pluripotency. First, Boyer et al. showed that the Oct-4, SOX2
and, Nanog co-occupy a substantial proportion of their tar-
get genes, which are mainly transcription factors. In addi-
tion, Oct-4, SOX2, and Nanog collaborate to form regulatory
circuitry consisting of regulatory and feed forward loops that
lead to coordinated auto regulation of their own expression
[16]. Second, Ivanova et al. showed that the transcription
factor ERRβ, along with TBX3 and TCL1 can also regulate
pluripotency in ES cells, independently of the regulation by
Oct-4, Sox2, and Nanog, thus forming a second regulatory
axis [17].

ERRβ is a member of the nuclear receptor gene super-
family of ligand activated transcription factors [18–20]. The
nuclear receptor gene superfamily includes a related, but di-
verse, array of transcription factors; which include nuclear
hormone receptors such as the steroid receptors (NHRs) and
orphan nuclear receptors [21]. NHRs are receptors for which
hormonal ligands have been identified, whereas orphan re-
ceptors are so named because their ligands are unknown,
at least at the time the receptor is identified. Nuclear recep-
tors share structural motifs and domains that determine their
function: a central DNA binding domain (DBD), an inter-
vening hinge region, and a carboxy-terminal ligand binding
domain (LBD), which mediates ligand-induced transactiva-
tion and participates in receptor dimerization. Nuclear re-
ceptors can exist as monomers, or homo- or heterodimers
with each partner binding to specific sequences that exist as
half sites separated by variable length nucleotide spacers be-
tween direct or inverted half-site repeats [22–24]. ERRβ is
not the only nuclear receptor that has been implicated in reg-
ulation of ES cells, here we review the contributions of other
nuclear receptors to the maintenance of pluripotency, repres-
sion of the ES cell phenotype during differentiation, and dif-
ferentiation of ES cells.

1.1. Nuclear receptor contribution to the
maintenance of pluripotence

1.1.1. ERRβ (NR3B2)

The ERR subfamily of nuclear receptors consists of 3 mem-
bers, ERRα, ERRβ, and ERRγ. They display a high degree of
homology within their DBDs and LBDs, which indicates that
they probably bind to similar ligands and target the same
promoters and/or enhancers [25–29]. ERRα is broadly ex-
pressed in both the developing embryo and in the adult [30–
32]. ERRβ is expressed in the developing placenta in a subset
of cells in extraembryonic endoderm destined to become the
chorion. Knockout mice of ERRβ have impaired trophoblast
stem cell differentiation and the placenta fails to develop nor-
mally [33, 34]. ERRβ is highly restricted in the adult, being
detected at low levels in the liver, stomach, skeletal muscle,
heart, and kidney [25, 27]. Interestingly, Ivanova et al. iden-
tified ERRβ as having a role in the maintenance of pluripo-
tency. Although an ES cell-based phenotype is not observed
in the ERRβ KO, this might be due to maternal contribution
of protein, as it is expressed in the ovulated egg or due to

redundancy of expression with either ERRα or ERRγ, which
would be lost in cultured ES cells. They assessed the loss of
various proteins on ES cell capacity for self-renewal. Upon
loss of ERRβ by shRNA knockdown, ES cells differentiated
suggesting that ERRβ appeared necessary to repress differen-
tiation. Similar studies with TBX3 and TCL1 showed simi-
lar results and microarray analysis of gene alterations in the
absence these factors identified a significant overlapping set
of genes. Expression of 272 genes was up regulated by the
loss of ERRβ, TBX3, or TCL1. This set of genes was distinct
from those regulated by Oct-4, Sox2, and Nanog. In the same
set of experiments microarray analysis showed that expres-
sion of 474 genes was either up or down regulated by knock-
down of Nanog, Oct4, or Sox2 but unaffected by knockdown
of ERRβ, TBX3, or TCL1. This data provides evidence that
two independent transcriptional pathways are operating in
ES cells. The first is controlled by Oct-4, Sox2, and Nanog
and could be mainly responsible for maintenance of pluripo-
tency and repression of differentiation. The second pathway
involving ERRβ, TBX3, and TCL1 seems to be responsible for
repression of differentiation along specific cell lineages. How-
ever, there appears to be cross-talk between the two pathways
since slight over expression of Nanog compensated for loss
of ERRβ, TBX3, and TCL1 [17]. Wang et al. also identified
ERRβ as interacting with Nanog [35]. However, Sauter et al.
showed that there was no change in ERRβ levels when cells
are induced to differentiate upon removal of LIF [36]. Since
ERRα and ERRγ are involved in regulating metabolism and
mitochondrial activities, it is possible that ERRβ might not
be involved in maintenance of pluripotency directly but al-
ternatively may play a role in regulating ES cell metabolism
[25, 28–31, 33, 34].

1.1.2. SF-1 (NR5A1)

Steroidogenic Factor 1 (SF-1; NR5A1), an orphan nuclear re-
ceptor, is, as its name suggests, expressed in steroidogenic tis-
sues. SF-1 constitutively expressed in all three layers of the
adrenal cortex, testis Leydig, and Sertoli cells, placenta, pi-
tuitary, and the hypothalamus [37, 38]. It has been shown
to regulate the expression of each of the steroidogenic cy-
tochrome P450 enzyme genes involved in steroid produc-
tion [39–47], Mullerian inhibitory substance [48], and the
alpha and beta subunits of the gonadotropins [49–53]. It is
expressed in the urogenital ridge as early as day 9 of embryo-
genesis and displays dynamic expression profile in the devel-
oping gonads [37]. Disruption of SF-1 in mice leads to com-
plete lack of adrenal glands and gonads due to adrenal and
gonadal agenesis [38, 54]. A combination of the data shows
that SF-1 has a central role in the regulation of steroidogene-
sis, development, and reproduction. Crawford et al. showed
that stable expression of SF-1, which is not expressed in ES
cells, directs the cells toward a more steroidogenic pheno-
type, which was demonstrated by the generation of proges-
terone. The directed differentiation of ES cells by SF-1 did
not specifically require the AF2 domain but did require the
proximal ligand binding domain [55].

Although SF-1 is expressed in the inner cell mass of
mouse blastocysts, it is not expressed in mES cell lines.
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However, it was noted that the proximal promoter of murine
Oct-4 contains a consensus SF-1 responsive motif (PyCAAG-
GpyCPu). SF-1 was found to bind to this sequence and ac-
tivate transcription in embryonic carcinoma (EC) cell lines
P19 and NCCIT cells, where it is expressed [56, 57]. SF-1
and Oct-4 are coexpressed in these cell lines and when SF-
1 is over expressed there is approximately a 3-fold increase
in Oct-4 promoter activity in NCCIT cells. It was found that
there are 3 putative SF-1 sites in the human Oct-4 promoter
and that one SF-1 binding site in the evolutionarily con-
served region 1 (CR1) was primarily responsible for SF-1-
mediated transcription of the human Oct-4 promoter. Dif-
ferentiation of these EC cells with retinoic acid (RA) causes
a loss in expression of both SF-1 and Oct-4, thus indicating
the role of SF-1 in the maintenance of pluripotency in EC
cells [56, 57].

1.1.3. LRH-1 (NR5A2)

Comparison of SF-1 and Oct-4 knockout mouse models sug-
gests that although SF-1 can regulate Oct-4 expression in EC
cells, it is essential only in late organogenesis, therefore there
must be another factor that compensates for SF-1 to main-
tain Oct-4 expression during early embryogenesis [56]. The
orphan nuclear receptor liver receptor homolog-1 (LRH-1;
NR5A2) is closely related to SF-1 particularly in its DNA
binding domain and has the same DNA response element
as SF-1 [58]. LRH-1 is expressed in endoderm derived tis-
sues such as the liver, pancreas, and the intestines in the adult
and in developing embryos [58–60]. It is involved in bile acid
metabolism [61–63] and plays a role in liver development
by activating genes such as HNF4α, HNF1α, and HNF3β,
which coordinate hepatic gene expression [64, 65]. Like SF-
1, LRH-1 also regulates the expression of genes involved in
steroidogenesis. Importantly, LRH-1 is expressed at the in-
ner cell mass of the blastocyst, in the embryonic ectoderm
at the epiblast stage of embryonic development. Inactivation
results in death at day 6.5 before the initiation of liver de-
velopment [66]. In contrast to SF-1, which is expressed in
EC cells, LRH-1 is expressed in ES cells. Upon differenti-
ation with RA, Oct-4, and LRH-1 expression is down reg-
ulated. LRH-1 was found to bind to response elements in
both the Oct-4 proximal promoter and proximal enhancer,
which are evolutionarily conserved and activate its transcrip-
tion. LRH-1 KO mice die at embryonic days 6.5–9.5 depend-
ing on the model analyzed. Gu et al. observed a penetrant
phenotype with no embryos detected at day 7.5. However,
Labelle-Dumais et al. observed a less-penetrant phenotype.
Oct-4 is expressed in LRH-1−/− ES cells. However, upon RA
differentiation, Oct-4 expression is more rapidly lost than in
WT ES cells. Sox2, FGF4, UTF1, and REX1, which are reg-
ulated by Oct 4 and function in conjunction with it in ES
cells, are also more rapidly lost in LRH-1 KO ES cells than
in WT cells. The decreased expression of these genes is un-
likely to be a direct result of LRH-1 as they contain no pu-
tative LRH-1 binding sites in their promoters and is most
likely indirect due to the precocious loss of Oct-4 expression
[56]. Maintenance of Oct-4 expression is probably not the

only function of LRH-1 in ES cells, there are likely too nu-
merous other target genes. For example, in intestinal stem
cells, LRH-1 and β-catenin synergistically play an impor-
tant role in regulating proliferation through direct interac-
tion and regulation of cyclin G1 expression [67]. Inactivation
of the β-catenin gene is embryonic lethal at the same stage
as LRH-1 and presents a similar phenotype. Thus, LRH-1
and β-catenin may cooperate to regulate ES cell prolifera-
tion and expansion from an ICM in the blastocyst to a pre-
gastrulation epiblast [68]. Recently, it has also been found
that a novel promoter directs expression of LRH-1 in ES
cells and hence a novel transcript with the first ATG start
codon being in exon 3 of the regular LRH-1 transcript. The
novel and regular transcripts have partially overlapping tis-
sue distribution but have important temporal and spatial dif-
ferences [69]. Thus, the ES cell LRH-1 isoform may have
different transcriptional properties from other isoforms of
LRH-1.

1.1.4. DAX1 (NR0B1)

DAX1, which stands for dosage sensitive sex reversal (DSS),
adrenal hypoplasia congenital (AHC), locus on the X chro-
mosome, gene 1, is another orphan nuclear receptor that ap-
pears to be critical in early embryonic development [70]. In
contrast to canonical nuclear receptors, which have both a
DBD and an LBD, DAX1 contains only an LBD. In the N-
terminus there are 4 repeats purported to act as a DBD by
binding to stem loop structures [70–72]. DAX1 has a known
role in the establishment and maintenance of steroid produc-
ing tissues such as the testis and the adrenal cortex [73, 74].
DAX1 and SF-1 were shown to have a colocalized tissue ex-
pression in developing tissues [75, 76] and it has been shown
that DAX1 acts as a repressor of SF-1 in these tissues. This
transcriptional repression seems to involve direct protein-
protein interactions between DAX1 and DNA-bound SF-1
via the DAX1 N-terminal domain and with subsequent re-
cruitment of corepressors to the promoters of target genes via
a DAX1 c-terminal transcriptional silencing domain [77, 78].
DAX1 has also been shown to repress LRH-1, ER, AR, and
PR expression [79]. However, in contrast to molecular stud-
ies a genetic analysis of SF-1 and DAX1 in gonad develop-
ment showed that rather than DAX1 antagonizing the func-
tion of SF-1 it worked in concert with it to maintain Cyp17
expression [80]. Generation of a DAX1 KO mouse model
presented some problems as the gene is X-linked. The fail-
ure to generate a DAX1 knockout mouse suggests that DAX1
plays an earlier role in embryogenesis than just steroidogene-
sis. DAX1 was found to be expressed in early preimplantation
embryos as well as in ES cells [81]. Differentiation of ES cells
with RA caused a decrease in the expression of DAX1 similar
to that observed for Oct-4. Disruption of the expression of
DAX1 by RNA interference as well as a conditional knock-
out in ES cells caused their differentiation [82]. DAX-1 has
been further implicated in the maintenance of pluripotence
since it was discovered that it interacted with Nanog. Knock-
down of DAX1 using shRNAs led to a loss of pluripotence in
ES cells [35].
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1.2. Nuclear receptor mediated repression of the
ES cell phenotype

During ES cell differentiation two events must occur; one is
a loss of the original phenotype and two is the induction of a
new phenotype. Nuclear receptors play a role in both down-
regulation of the ES cell phenotype and the induction of a
new cell fate.

1.2.1. RARs and RXRs (NR1B1-3 and NR2B1-3)

The retinoid receptors play a prominent role in RA-mediated
differentiation of ES cells. There are three genes encoding
Retinoic Acid Receptors (RARα, β and γ), which bind both
all-trans RA and 9-cis RA and in response activate target
gene expression [83, 84]. There are also three genes encod-
ing Retinoid X receptors (RXRα, β, and γ), which bind 9-cis
retinoic acid (9-cis RA) and activate target gene expression.
RARs form functional heterodimers with RXRs [21]. Gene
targeting experiments in mice provided evidence that the
RXR/RAR heterodimer transduces the retinoid signal dur-
ing mouse development [85]. RXR enhances RAR’s efficiency
of binding to RA response elements (RAREs), the specificity
of RARE recognition, and modulate RAR signaling [86, 87].
Work in the EC cell line PCC7 suggested that RXRα and
RARγ are required for endodermal differentiation. Zechel
found that selective agonists of RARα, β, and γ cause the
downregulation of Oct-4, up regulation of GCNF, and the
induction of neuronal markers although these agonists had
distinct efficacy indicating a differential requirement of RAR
isotypes during the initial stages of neuronal differentiation
[88]. Since absence of RXR is embryonic lethal in mice due to
myocardial malformation, it is possible that RXR plays a role
in the differentiation of ES cells into cardiomyocytes. Honda
et al. found that the number of beating cardiomyocytes was
increased significantly following treatment with the agonist
PA024 in the absence of serum and that the number was sig-
nificantly decreased in the presence of the antagonist PA452,
suggesting that RXR signaling regulates cardiomyocyte num-
bers during ES cell differentiation and maybe in normal de-
velopment [89].

Early development is RA sensitive, yet thyroid hormone
Receptor alpha (TRα) is expressed along with the RARs. Loss
of TRα in mouse ES cells led to an increase in basal and
RA-induced expression [90]. This combined with transient
transfection experiments of RA responsive elements showed
that TR inhibits RA-responsive gene expression and modu-
lates RA-stimulated neural differentiation in ES cells [90].

Treatment of ES cells with RA induces not only differenti-
ation but also repression of pluripotency genes such as Oct-4.
Although there is evidence for direct regulation of Oct-4 ex-
pression by RARs in P19 cells, the inhibition of Oct-4 by RA
is likely indirect. Treatment of P19 cells with RA induces ex-
pression of the orphan receptor COUP-TF, which can bind
to a hormone response element in the Oct-4 proximal pro-
moter that overlaps with the LRH-1 element. However, the
expression and binding of COUP-TF occurs late in the dif-
ferentiation process, after Oct-4 has been repressed. Thus,

COUP-TFs are not likely to physiological mediator of Oct-
4 repression in response to RA treatment [91, 92].

2. GCNF (NR6A1)

In contrast to COUP-TFs the orphan nuclear receptor germ
cell nuclear factor (GCNF) is induced early during P19 cell
differentiation and thus was a likely candidate for Oct-4 re-
pression. GCNF is involved in regulating early embryonic
development and reproduction [93–96]. It is essential for
embryonic survival, normal development of the anterior-
posterior axis as well as organogenesis [95, 97]. In the adult
female, GCNF mRNA was detected in the growing oocytes
but not in oocytes in primordial follicles, suggesting a role
in oogenesis [94, 98, 99]. It also appears to play a role in
spermatogenesis and its expression is restricted to certain
stages of spermatogenesis [99]. GCNF-deficient mouse em-
bryos die at 10.5 dpc due to cardiovascular defects and fail-
ure to establish the correct chorioallantoic connection [95].
One of the molecular defects in the GCNF KO embryos is
an inability to repress and silence the Oct-4 gene [30]. In
GCNF knockout embryos Oct-4 expression was present in
both the primordial germ cells after gastrulation (normal)
and in somatic cells (abnormal). There was also no repres-
sion of Nanog in these embryos [100].

GCNF expression is induced in response to RA treatment
in P19 and ES cells and it binds to an evolutionarily con-
served DR0 element in the Oct-4 proximal promoter [100].
Recombinant GCNF can bind to DNA as a monomer, ho-
modimer, or heterodimer [101]. Dimerization of GCNF is
DNA-dependent and is initiated upon binding to a DR0 ele-
ment. However, endogenous GCNF induced by RA in ES cells
and EC cells forms a slower migrating form of GCNF; that
was shown not to be a homodimer but instead is composed
of a GCNF hexamer [100, 101]. This hexamer is termed the
transiently retinoid-induced factor (TRIF), which binds to
and represses transcription from the DR0 on the Oct-4 pro-
moter [96, 100, 102]. The expression pattern of GCNF in-
versely correlates with that of Oct-4 and Nanog in mouse
embryos, P19 cells, and ES cells. Generation of GCNF−/− ES
cells showed that GCNF is required to repress the expres-
sion of Oct-4, Nanog, and Sox2 upon differentiation with
RA [100]. This was a direct effect mediated through bind-
ing to DR0 elements in the Oct-4 and Nanog promoters;
and likely an indirect effect on Sox2, which itself is an Oct-
4 target gene [100]. Analysis of the repression mechanism
of GCNF showed that it plays an essential role in the re-
pression and silencing of Oct-4 through epigenetic modifi-
cations, especially DNA methylation. GCNF binding to the
Oct-4 promoter triggers initiation of promoter DNA methy-
lation. GCNF-dependent methylation of the Oct-4 promoter
is mediated by recruitment of MBD (methylated CpG bind-
ing domain) factors, which previous studies have shown to
be components of NURD repression complexes MBD3 and
MBD2 and de novo DNA methyltransferases [103, 104]. In
addition, GCNF interacts with DNA methyl transferase 3
(DNMT3) and likely recruits them to the Oct-4 promoter
[103, 104]. The Oct-4 promoter is hypomethylated and re-
cruitment of MBD3 and MBD2 is lost in GCNF−/−embryos.
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Table 1: Summary of involvement of nuclear receptors in mouse ES cell pluripotency and differentiation.

Nuclear receptor Function

ERRβ
Maintenance of pluripotency and repression of differentiation.

Repression of differentiation along specific cell lineages

SF-1 Maintenance of Oct-4 expression in embryonic carcinoma cells

LRH-1
Maintenance of Oct-4 expression in ES cells.

Interaction with β-catenin may play role in cell proliferation

DAX-1
May act as a repressor of SF-1, LRH-1, ER, AR, and PR.

Conditional KO causes loss of pluripotency and differentiation

RAR
Downregulation of Oct-4.

Upregulation of GCNF. Neuronal differentiation

RXR May play role in differentiation of cardiomyocytes

GCNF
GCNF required for repression of Oct-4, Nanog, and Sox2 upon differentiation with RA.

Repression of ES cell phenotype

PPARγ
Required in the early stages of adipose differentiation.

Differentiation down osteogenic lineage in siRNA experiments.

PPARγ agonist downregulated LIF-mediated self-renewal

Undifferentiated ES cells

Epiblast stage PE1 PE2 DR0

DegradationL

LLL

Proximal Enhancer Proximal promoter

Oct4

G G

GGG G

PE1 PE2 DR0

Oct4
Differentiated ES cells

Gastrulation stage

RA treatment or
embryonic development

Figure 1: Yin-yang regulation of Oct-4 expression during ES cell differentiation by LRH-1 and GCNF, which compete for the same element.
In undifferentiated ES cells LRH-1 binds to elements in the Oct-4 proximal enhancer and proximal promoter to maintain its expression
during the very earliest stages of differentiation. As differentiation progresses LRH-1 expression decreases and GCNF expression is induced.
At an intermediate point GCNF displaces LRH-1 and represses Oct-4 by recruiting the DNA methylation machinery that ultimately leads to
the silencing of Oct-4 expression in somatic cells.

RNAi-mediated knockdown of MBD3 and MBD2 leads to
reduced Oct-4 repression. Thus, GCNF appears to initiate re-
pression and leads to the methylation [103, 104]. In MBD3
knockout ES cells, there is still repression of Oct-4 which
is likely due to the reduction in the expression of activa-
tors such as LRH-1 after RA treatment [105, 106]. However,
maintained low-level expression of Oct-4 and hypomethy-
lation of the promoter were observed in the MBD3 KO ES
cells treated with RA after six days (unpublished data AJC
and PG), which means that precise repression and silencing
of Oct-4 requires both GCNF and MBD3.

Thus, GCNF is essential for the repression of pluripo-
tency genes such as Oct-4 and Nanog, and also in the ini-
tiation of differentiation where both transcriptional and epi-
genetic mechanisms play a role in its function (see Figure 1).

2.1. Nuclear receptor involvement in
ES cell differentiation

Because of the pluripotent nature of ES cells, many nuclear
receptors will, at some stage, play a role in their differentia-
tion to anyone of the 200 cell types found in our bodies. The
exact role of each nuclear receptor will depend on the cell
type that the ES cells are being differentiated into. An exam-
ple of the roles of nuclear receptors in ES cell differentiation
is the role of the nuclear receptor PPARγ in differentiation of
ES cells into adipocytes.

The peroxisome proliferator activated receptor gamma
(PPARγ) is expressed in adipose, heart, kidney, spleen, in-
testine, colon, epithelial cells, and skeletal muscle and has
been implicated in the differentiation of numerous cells and
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tissues including macrophages, breast, colon, and adipose
[107, 108]. Targeted disruption of PPARγ is embryonic lethal
and mice die and 10 dpc due to defects in the placental and
cardiac development and also displays adipose tissue defects
[109]. Rosen et al. showed that PPARγ is required for adi-
pose differentiation. Analysis of PPARγ+/+ ↔ PPARγ−/−

chimeric mice revealed that the adipose tissue in these mice
derived preferentially from WT cells and not the inserted
PPARγ−/− ES cells. Most other tissues had an almost even
distribution of cells derived from both WT and PPAR knock-
out cells. They also found that when PPARγ−/− ES cells were
differentiated using a protocol to differentiate them into fat
cells, no fat cells developed [110]. Vernochet et al. showed
that PPARγ is expressed early in embryoid bodies and in
mouse embryos at day E8.5. Addition of RA caused an in-
crease in adipogenesis, and addition of RA and PPARγ lig-
and caused a further increase. However, upon addition of a
PPARγ ligand alone to developing embryoid bodies overex-
pressing PPARγ, there was no commitment to the adipose
lineage. When PPARγ−/− embryoid bodies were differenti-
ated, only the preadipose markers C/EBPγ and C/EBPδ were
expressed. Although PPARδ was present it did not compen-
sate for PPARγ in terminal differentiation. They proposed
that PPAR is critical only in stages of adipose differentiation
but is not required for early differentiation of pluripotent ES
cells. The early steps of adipose differentiation are RA depen-
dent and the latter stages are PPARγ dependent [111]. In a
recent study, PPARγ expression was knocked down in ES cells
using RNA interference. When the cells were induced to dif-
ferentiate down an adipogenic lineage, they instead differen-
tiated down an osteogenic lineage shown by the expression of
the osteoblast markers collagen type 1, osteopontin, Cbfa1,
and osteocalcin [112]. An investigation of PPARγ expression
during ES cell proliferation and self-renewal showed that the
PPARγ agonist 15-deoxy-Δ12,14-Prostaglandin J2(15d-PGJ2)
down-regulated LIF-mediated self-renewal and proliferation
and that this PPARγ-mediated regulation occurred via the
JAK-STAT pathway [113].

2.2. Perspective

The maintenance of pluripotency and subsequent differenti-
ations of ES cells involves a great deal of complexity. There
are undoubtedly multiple mechanisms involved including
signal transduction pathways and transcription factors, all of
which interact to yield the phenotype of pluripotency, or of a
differentiated cell. Nuclear receptors interact with these path-
ways and can either maintain the pluripotent phenotype, re-
press the acquisition of a differentiated phenotype, or aid in
the acquisition of a differentiated cell type. As nuclear recep-
tors are ligand-activated transcription factors they are part
of what is now known as the druggable genome. They are
obvious targets to manipulate ES cells in culture with small
molecules. Based on genetic models, ligands for LRH-1 or
GCNF would be predicted to affect the maintenance or re-
pression of pluripotent gene expression mediated by these
factors [56, 100] (see Figure 1). Thus, agonists for LRH-1 or
antagonists for GCNF would be expected to maintain ES cell
pluripotence and self-renewal, which would be optimum for

large-scale culture of ES cells in the absence of LIF for thera-
peutic purposes. Likewise, LRH-1 antagonists or GCNF ago-
nists would promote the silencing of pluripotency genes like
Oct-4 and Nanog, which would be beneficial for differentiat-
ing ES cells into target cells. Similarly nuclear receptors can
be targeted by small molecules to influence ES cell differen-
tiation along specific pathways, for example, PPARγ agonists
could promote osteoblast differentiation of ES cells. The real-
ization of the therapeutic potential of ES cells will be greatly
enhanced by the application of strategies that target nuclear
receptors, or other components of the druggable genome, to
push these cells into the desired cell type. Much of the pio-
neering works in ES cells has been performed in the mouse
and each significant finding and potential target needs to be
validated in human ES cells.
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