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Assessment of the estrous cycle of mature female mammals is an important component of verifying the efficacy and
safety of drug candidates. The common pathological approach of relying on expert observation has several drawbacks,
including laborious work and inter-viewer variability. The recent advent of image recognition technologies using deep
learning is expected to bring substantial benefits to such pathological assessments. We herein propose 2 distinct deep
learning-based workflows to classify the estrous cycle stage from tissue images of the uterine horn and vagina, respec-
tively. These constructed models were able to classify the estrous cycle stages with accuracy comparable with that of
expert pathologists. Our digital workflows allowefficient pathological assessments of the estrous cycle stage in rats and
are thus expected to accelerate drug research and development.
Introduction

In the process of drug development, preclinical efficacy and toxicology
studies using laboratory animals such as mice, rats, dogs, and monkeys are
routinely conducted. Sexually mature female animals exhibit an estrous
cycle comprising the diestrous (D), proestrous (P), estrous (E), and
metestrous (M) stages. This cycle entails changes in hormone levels1 and
gene expression,2 consequently affecting responsiveness to drugs.3 Thus,
whendrugs are tested in vivo, knowledge of the estrous cycle stage of female
individuals is preferable for precise interpretation of the results. In toxicol-
ogy settings, vigilance regarding drug-related risks such as disruption or
prolongation of the cycle is needed from the viewpoint of reproductive
safety.2,4 Because drugs might exhibit tissue-specific effects according to
their mode of action, assessment of each reproductive tissue (e.g., ovary,
uterus, and vagina) is desirable. Such assessments are usually performed
pathologically by experts to elucidate morphological features; however,
they have the disadvantages of a laborious workload, intra- and inter-
viewer variability,5,6 subjectivity, and potential for bias.
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Recent advancements in deep learning-based image recognition tech-
nologies are rapidly transforming broad pathology tasks that range from
gaining new insights to assisting with routine work.7,8 To extend the appli-
cation of deep learning-based image recognition technologies to estrous
cycle stage assessment, one study introduced the “Stage Estimator of
estrous Cycle of RodEnt using an Image-recognition Technique” (SECREIT)
framework.9 This framework distinguishes 3 stages of the estrous cycle (D,
E, and P) from rodent vaginal smear cytology images using convolutional
neural network (CNN). Another study applied Faster region CNN (Faster
R-CNN)10 to whole slide images (WSIs) of hematoxylin and eosin stained
ovaries to quantify 3 classes of ovarian follicles that are susceptible to the
estrous cycle.4 In this report, we present 2 alternative deep learning-based
workflows for discriminating 4 stages of the estrous cycle in the uterine
horns and vaginas of rats on WSIs by detecting tissue-level features and ag-
gregating patch-level features, respectively. These approaches are robust
against variations in tissue alignments on slides and enable automatic es-
trous cycle stage assessment with accuracy comparable with that of experi-
enced pathologists. Together, these proposed workflows should contribute
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Table 1
Estrous cycle stages of uterine horn and vagina.

Stage Criterion

Uterus
D Shortest epithelium and narrow lumen
P Expanded lumen, round or oval stromal cells, and edematous stroma
E Tall epithelium containing cellular debris
M Short epithelium containing decreased apoptoses and increased mitosis

Vaginaa

D Epithelium with few neutrophils and without mucus
P Epithelium with mucus
E Keratinized epithelium
M Thickened epithelium with neutrophils

D, diestrous; P, proestrous; E, estrous; M, metestrous
a Judged in peripheral mucosa

Fig. 1. (a) Overview of workflow for analyzing uterine horns in whole slide images.
metestrous. WSIs, whole slide images; D, diestrous; P, proestrous; E, estrous; M, metestr
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to the efficiency of toxicological evaluation processes using laboratory ani-
mals.
Methods

Dataset

NinetyWSIs containing rat uterine horn and vagina tissueswere collected
from 5 independent archived toxicology studies. In those studies, all animal
procedures were conducted in accordance with the Institute’s Guide for the
Care and Use of Laboratory Animals, and all experimental protocols were ap-
proved by the Institutional Animal Care and Use Committee.

WSIs commonly containmultiple reproductive tissues such as the ovary,
uterine horn, uterine cervix, and vagina in different combinations
(b) Representative images of uterine horns in diestrous, proestrous, estrous, and
ous.
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depending on the purpose of the study, as shown in Fig. S1. Uterine horns
and vaginas were independently examined by 5 certified pathologists
using actual glass slides orWSIs andwere annotated for estrous cycle stages
using the criteria listed in Table 1.

Workflow for uterine horn

Model for detecting stage-specific uterine horn in WSIs
When developing a prediction model for the estrous cycle stages of re-

productive tissues, WSIs containing multiple tissues should be used with
caution. Tissues in the same individual normally show the same estrous
cycle; thus, information from other tissues may distract models from the
Fig. 2. (a) Overview of workflow for analyzing vaginas in whole slide images. This wor
indicate the stages of the estrous cycle using an image classification model, and the
classified into each stage using machine learning. The performance of the workflow fo
labels for the evaluation data for every pair of pathologist and machine. (b) Representa
cycle and Other. ML, machine learning; D, diestrous; P, proestrous; E, estrous; M, metes
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learning features of each tissue. In the uterine horns, the estrous cycle
stage can be recognized using whole tissue at low magnification as shown
in Table 1. Therefore, an object detection approach was employed. The
overview is illustrated in Fig. 1a. Sixty-eight WSIs with more than 4 votes
from pathologists for the same stage were randomly divided into a training
dataset (48 WSIs) and a validation dataset (20 WSIs). All WSIs were com-
pressed so that the long side was 2000 pixels. The uterine horns and their
estrous cycle stage were annotated by bounding corresponding objects in
images using Visual Inspection (1.3.0.1, IBM), a multi-purpose image rec-
ognition system that can be applied to tasks in bio-medical fields.11,12 Ex-
amples are shown in Fig. 1b. Annotated images were augmented with the
following parameters: color-brightness = 20, color-contrast = 20, color-
kflow mainly consists of 2 processes: the former process of identifying patches that
latter process of assessing the final label by aggregating the number of patches
r the vagina was investigated by comparing the agreement score of classification
tive patches for diestrous, proestrous, estrous, and metestrous stages of the estrous
trous.
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hue = 20, color-saturation = 20, blur = 20, sharpen = 20, noise = 20,
vertical flip = TRUE, and horizontal flip = TRUE, yielding 1344 images.
The object detection model to identify a uterine horn in the D, P, E, or M
stage in a given image was then generated with the following parameters:
algorithm = Faster R-CNN and iteration = 4000.

Workflow for vagina

Model for assessing vagina in WSIs
Local morphological changes in the vaginal mucosa are indicative of es-

trous cycle stages. A critical issue of applying image recognition technology
to pathological assessment is thatWSIs generally exhibit over-resolution for
most available deep learning algorithms.13,14 Image compression is often
used at this process, but inevitably causes information loss, making local
features of the estrous cycle stage in the vagina indistinguishable (examples
are shown in Fig. S2). In the preliminary study, the object detection ap-
proach for the vagina was tested but did not give satisfactory results, unlike
in the uterine horn cases (data not shown). Thus, an approach of patch-level
inference followed by aggregation of patch counts was adopted. The utility
of this approach in pathological assessments was described in a recent re-
view article.14 This workflow, as indicated in Fig. 2a, consists of:
(i) distinguishing indicative patches for estrous cycle stages using the
image classification model and (ii) aggregating patch counts to manifest a
final label using a conventional machine learning model.

Building the patch-level classification model
Seventy-five WSIs were split into patches with 300 × 300 pixels with-

out overlapping using image processing Python libraries (numpy v1.20.3,
openslide v1.1.2, pillow v8.2.0, and PyTorch v1.8.1). Yielded patches
were down-sampled and manually assessed by a pathologist with a focus
on following local morphologic features of the vaginal mucosa in each
stage: D, epitheliumwith few neutrophils andwithoutmucus; P, epithelium
Fig. 3. Evaluation of differences betweenmodel and pathologist labels in vaginal patch cl
pathologist re-labeled the 500 patches determined by the classificationmodel. x-axis: con
for each patch when Visual Inspection is applied in the classification model. y-axis: the n
between patches classified by themodel and pathologist according to the threshold of the
that were detected according to the threshold of the confidence score. Dotted and dashe
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with mucus; E, keratinized epithelium; and M, thickened epithelium with
neutrophils (Table 1). Representative patches of the D (n = 275), P (n =
243), E (n=266), and M (n=179) stages of the vaginal mucosa were col-
lected to form corresponding patch classes. To explicitly distinguish irrele-
vant images from estrous cycle-indicative images, 2346 patches such as
blood, fatty tissue, fibrous tissue, skeletal muscle, skin, uterus, gland, and
blank were also picked up to form the “Other” class. Example patches for
each class are shown in Fig. 2b. The patches of D, P, E, and M were aug-
mented using Visual Inspection with the following parameters: color-
brightness = 20, color-contrast = 20, color-hue = 20, color-saturation
=20, blur=20, sharpen=20, noise=20, vertical flip=TRUE, and hor-
izontal flip=TRUE, and other patches were augmented with the following
parameters: color-brightness = 20, color-contrast = 20, color-hue = 20,
color-saturation = 20, vertical flip = TRUE, and horizontal flip = TRUE.
These processes yielded a total of 45732 patches. The patch-level classifica-
tion model for the estrous cycle stage was then generated with the follow-
ing parameters: algorithm= GoogLeNet15 and iterations = 1500.

Though the learning history from Visual Inspection suggested a suffi-
ciently high accuracy (98%) for the resultingmodel (Fig. S3), the actual ac-
curacy in practice was investigated as follows. One hundred patches with a
confidence score (a number between 0 and 1 representing the confidence of
prediction) >0.99 were selected from each machine-predicted D, P, E, M,
and Other classes. Those 500 patches were re-labeled by one pathologist,
re-filtered with range of confidence scores (0.99~0.999). Then, the agree-
ment and F1-score between pathologist label andmachine predictionswere
examined (Fig. 3a, 3b, and 3c). As expected, machine predictions with
higher confidence score tended to be consistentwith the pathologist’s anno-
tation. However, inevitably, the adaptation of a more stringent confidence
score as a threshold resulted in decrease of the number of detected patches
(Fig. 3d), making development of an aggregation model difficult. This
trade-off was considered in more detail when building the aggregation
model, as described in the next section.
assification analysis. (a) The number of consistent and inconsistent patcheswhen the
fidence score (a number between 0 and 1 representing the confidence of prediction)
umber of patches counted. (b and c) Changes in the (b) agreement and (c) F1-score
confidence score. (d) Changes in the average number of labelled patches per sample
d lines indicate a confidence score threshold of 0.990 and 0.999, respectively.
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Building the aggregation model
WSIs in the training datasetswere split into patches of 300×300 pixels

with no overlap. The patch-level classification model was applied to them.
Fig. 4. Schema for comparison of 10 conventional machine learning algorithms. (a) Over
to be adopted in the workflow. The hyperparameters of each model were optimized to
separated training and test data. The mean accuracy of each model to the test data by
was selected as the algorithm to be integrated into the workflow. (b) Distribution and
cross validation. (d) Distribution and (e) matrix of the macro F1-scores and their m
prediction of the final label by the best aggregation model, SVM, when using the respe
model was then compared to the test data by 5-fold cross validation. CV, cross validatio
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In this step, patches indicative of the estrous cycle stage were detected, as
shown in Fig. 2a. The number of patches for each WSI was then summa-
rized by the predicted patch classes.
viewof the optimization of eachmachine learningmodel and the selection ofmodels
provide the highest accuracy against the test data by grid search using randomly
5-fold cross validation was then compared, and the model with the highest value
(c) matrix of the accuracies and their means for the test data computed by 5-fold
eans for the test data computed by 5-fold cross validation. (f) Accuracy of the
ctive confidence score thresholds of 0.990 and 0.999. The mean accuracy of each
n; ML, machine learning; SD, standard deviation
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To build the appropriate classifier for enabling tissue-level prediction
from patch counts, several parameters were considered (Fig. 4). Regarding
the algorithm, 10 conventional machine learning algorithms were consid-
ered: decision tree, support vector machine (SVM), kernel SVM, linear re-
gression, k-nearest neighbor (kNN), bagging type kNN, random forest,
gradient boosting, ada boosting, and stacking model. By taking patch
counts as explanatory variables and ground truth as objective variables,
models were generated in a grid search manner for hyperparameters and
were tested by 5-fold cross validation (Fig. 4a). Comparing their perfor-
mance by accuracy and F1 score, SVM was selected as the best algorithm
candidate (Fig. 4b, 4c, 4d, and 4e). Then, the influence of the selection of
confidence score for patch-level classification on the accuracy of aggrega-
tion models was examined. The result indicated that an aggregation
model with a confidence score >0.999 had lower accuracy than that with
a confidence score >0.99 (Fig. 4f). Therefore, confidence score = 0.99
was adopted as threshold.

Results

Validation of model for uterine horn

The model for detecting the stage-specific uterine horn was applied to
the validation dataset. When multiple objects were detected in the same
Fig. 5. (a) Agreement and (b) Cohen’s kappa coefficient (Kcoef) for every pair of patho
(a and b) Matrix (top) and distribution (bottom) of the (a) agreement and (b) Kcoef fo
the uterine horn. The Kcoef is based on the difference between the observed agreem
(see Cohen16). Patho, pathologist.
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WSI, the candidate with highest confidence score was adopted. The perfor-
mance of the prediction was examined with the agreement coefficient and
Cohen’s kappa coefficient (Kcoef)6,16 between every pair of pathologist and
machine (Fig. 5a and 5b). The mean agreement of the classification for
pathologist–pathologist pairs was 0.84 ± 0.06, depicting the inter-viewer
variability. The mean agreement for pathologist–machine pairs was
0.87 ± 0.05. The mean Kcoef for pathologist–pathologist pairs and
pathologist–machine pairs was 0.77± 0.08 and 0.81± 0.07, respectively.
These matrices indicated the pathologist-level performance of our
workflow for the uterine horn.
Validation of model for vagina

Using the validation dataset, the performance of the aggregation model
was examined with the agreement coefficient and Kcoef for classifications
between every pair of pathologist and machine (Fig. 6a and 6b).
The mean agreement for pathologist–pathologist pairs was 0.77 ± 0.12.
The mean agreement for pathologist–machine pairs was 0.80 ± 0.07. The
mean Kcoef for pathologist–pathologist pairs and pathologist–machine
pairs were 0.65 ± 0.16 and 0.69 ± 0.10, respectively. Our workflow for
the vagina showed performance comparable with that of the pathologists’
performance.
logist and machine for classification for the estrous cycle stage of the uterine horn.
r every pair of pathologist and machine classification for the estrous cycle stage of
ent (po) and the probability of chance (pe) and is calculated as po − pe / 1 − pe



Fig. 6. (a) Agreement and (b) Cohen’s kappa coefficient (Kcoef) for every pair of pathologist and machine classification for the estrous cycle stage of the vagina. (a and
b) Matrix (top) and distribution (bottom) of the (a) agreement and (b) Kcoef for every pair of pathologist and machine classification for the estrous cycle stage of the
vagina. The Kcoef is computed as shown in the legend of Fig. 5b. Patho, pathologist.
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Discussion

We introduced digital workflows to assess the estrous cycle stage of rat
uterine horns and vaginas fromWSIswith attention to the following 4 consid-
erations. First, subject WSIs are gigapixel-sized, which is overwhelming for
most available image recognition algorithms. Second, subject WSIs some-
times contain other reproductive tissues in different combinations. Third,
while multiple reproductive tissues from the same individual are normally
governed by the same estrous cycle, each tissue must be separately assessed
to detect the tissue-specific effects of drugs. Fourth, tissues sometimes gain ar-
tifacts during sample processing, exhibiting highly variable shapes on WSIs.
These phenomena hamper the generation of tissue-level prediction models
using entire information fromWSIs. Therefore, for the uterine horns, we em-
ployed an object detection approach because the features of the estrous cycle
appear at the whole-tissue level with low magnification. On the other hand,
for the vagina, we adopted an approach of patch-level inference followed
by aggregation of patch counts to consider the local morphologic features
of the mucosa observed with high magnification in gigapixel images. These
object detection and patch-level approaches were expectedly robust against
variations in tissue alignment onWSIs. Although not addressed in the current
study, the patch-level model would also be immune to certain artifacts such
as tissue tears, shrinkage, and lack of focus, as discussed previously.13 The
mean agreement and Kcoef for pathologist–machine pairs were 0.87 and
0.81 for the uterine horn model and 0.80 and 0.69 for the vagina model,
7

where were comparable to those for pathologist–pathologist pairs (uterine
horn: 0.84 and 0.77; vagina: 0.77 and 0.65). These results may be improved
by adopting alternative approaches. For example, as an aggregation method
for the vagina model, thresholding and majority voting might be effective.14

That said, the current pathologist-level results imply that our models have al-
ready nearly reached the upper limit of accuracy because pathologists’ anno-
tations showing inter-viewer variability were used as the ground truth.
Therefore, our models can aid pathologists. One remaining concern is their
adaptivity to unseen variations. Under controlled situations, the workflows
are expected to achieve stable performance. However, their ability to deal
with WSIs under other conditions (e.g., overstaining) is unknown and so
would require prospective validation before implementation.

Conclusions

In this study, we have introduced digital workflows for assessing the es-
trous cycle stage of the uterine horns and vaginas from WSIs. Logically,
these approaches can be extended to the assessment of other tissues, such
as the ovary and uterine cervix, and other laboratory animals. Together,
these workflowswould improve efficiency in preclinical toxicology studies.
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