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Retrieving zinc concentrations 
in topsoil with reflectance 
spectroscopy at Opencast Coal 
Mine sites
Bin Guo1,2*, Bo Zhang1,2, Yi Su1, Dingming Zhang1, Yan Wang1, Yi Bian1, Liang Suo1, 
Xianan Guo1 & Haorui Bai1

Heavy metals contaminations in mining areas aroused wide concerns globally. Efficient evaluation of 
its pollution status is a basis for further soil reclamation. Visible and near–infrared reflectance (Vis–
NIR) spectroscopy has been diffusely used for retrieving heavy metals concentrations. However, the 
reliability and feasibility of calibrated models were still doubtful. The present study estimated zinc (Zn) 
concentrations via the random forest (RF) and partial least squares regression (PLSR) using ground 
in-situ Zn concentrations as well as soil spectral reflectance at an Opencast Coal Mine of Ordos, China 
in February 2020. The coefficient of determination  (R2), root mean square error (RMSE), mean absolute 
error (MAE), and the ratio of performance to deviation (RPD) were selected to assess the robustness 
of the methods in estimating Zn contents. Moreover, the characteristic bands were chosen by Pearson 
correlation analysis and Boruta Algorithm. Finally, the comparison between RF and PLSR combined 
with eight spectral reflectance transformation methods was conducted for four concentration groups 
to determine the optimal model. The results indicated that: (1) Zn contents represented a skewed 
distribution (coefficient of variation (CV) = 33%); (2) the spectral reflectance tended to decrease 
with the increase of Zn contents during 580–1850 nm based on Savitzky–Golay smoothing (SG); (3) 
the continuous wavelet transform (CWT) demonstrated higher effectiveness than other spectral 
reflectance transformation methods in enhancing spectral responses, the  R2 between Zn contents and 
the soil spectral reflectance achieved the highest  (R2 = 0.71) by using CWT; (4) the RF combined with 
CWT exhibited the best performance than other methods in the current study  (R2 = 0.97, RPD = 3.39, 
RMSE = 1.05 mg  kg−1, MAE = 0.79 mg  kg−1). The current study supplied a scientific scheme and 
theoretical support for predicting heavy metals concentrations via the Vis–NIR spectral method in 
possible contaminated areas such as coal mines and metallic mineral deposit areas.

China is the world’s largest coal producer and consumer, and coal provides more than 70 percent of total energy 
in  China1. China has to confront the dilemma of balancing socio-economic development with environmental 
 issues2–7. Exploring mineral resources may lead to adverse effects on the ecological  environment8,9. Abundant 
heavy metals residues in tailings of open-pit mines have been generated due to inefficient processing procedures 
of ore. What’s more, severe soil heavy metals contaminations have been caused in nearby farmland and urban 
areas because of the abandoned mine tailings that are exposed to the surrounding soils and rarely  reclaimed10–12. 
Ordos Municipality, in the Inner Mongolia Autonomous Region of northern China, has been undergoing exten-
sive opencast coal exploitation during past decades. The area of coal mining increased from 7.12 to 355.95  km2, 
and the number of coal-mining increased from 82 to 651 during 1990–2015 in the  Ordos13,14. It’s reported that 
the Zn pollution in the topsoil of mining areas of Inner Mongolia and other places is relatively  common15,16. 
Land productivity, ecological integrity, and habitat security were seriously threatened by heavy metals pollu-
tions in mining  areas16–20. Heavy metals are hazardous contaminants owing to their toxicity, persistency, easy 
uptake by plants, and long biological half-life21,22. Moreover, the heavy metals may cause stress on crops and 
hinder their growth, yield, and quality because the normal function of soil was destroyed by heavy  metals23,24. 
Furthermore, human health is susceptible to heavy metals that may enter the body through biological  chains25,26. 
If some heavy metals with both carcinogenic and teratogenic enter the bloodstream, they can dissolve red blood 
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cells, destroy normal  cells27. For example, Zn generates gastrointestinal distress including nausea, vomiting, and 
abdominal pain as well as irritation of the respiratory  system28. Besides, cholesterol balance and fertility may be 
affected by Zn with long-term high dose  exposure29. Lead (Pb) can lead to dysfunction in the immune system, 
the reproductive system, and hematopoiesis. Moreover, the brain, kidney, liver, and nerves may be damaged 
by the accumulation of  Pb30,31. Cadmium (Cd) is one of the most toxicant hazardous materials, which can be 
absorbed by vegetables owing to its lipid. It can generate serious negative effects on public health with a level 
of > 0.2 mg·kg−1 in leafy vegetables. Additionally, Cd also blocks plant growth and photosynthesis of  pigments21. 
Intaking of Nickel (Ni) may negatively impact public health owing to its accumulation. Previous studies have 
demonstrated an increased incidence of cancers to be related to chronic exposure to  Ni32. Consequently, it is 
urgent to explore the distribution and evaluate the pollution level of heavy metals especially toxic materials such 
as Zn, Cd, and Pb in surface coal-mining  areas33,34.

In-situ sampling and laboratory analysis are common methods with high accuracy for obtaining soil 
heavy metals  contents35. The instruments including atomic absorption  spectroscopy36, atomic fluorescence 
 spectrometry37,  spectrophotometry38, and other analytical methods based on optical instruments are always 
used to measure heavy metals concentrations. However, the above methods are time-consuming and  costly39,40. 
Besides, it is inefficient to use the above methods to detect the spatiotemporal dynamic distribution of soil heavy 
metals on a large  scale41,42. Alternatively, Vis–NIR spectroscopy with multiple bands (350–2500 nm), strong 
spectral continuity, and wide coverage, provides a new perspective for monitoring environmental issues over 
large  scales43. Thus far, Vis–NIR spectroscopy has been widely utilized in different fields including predicting 
soil organic  carbon44 and detecting heavy metals in agricultural soils, suburban soils, and river  sediments41,45,46. 
Additionally, the mining areas accompany with complex topography increased the difficulty of exploring heavy 
metals distribution using traditional methods, which urged an alternative method for detecting hazardous mate-
rials in mining areas. The Vis–NIR spectroscopy supplied a new perspective to investigate heavy metals pol-
lution. Currently, the accuracy of the calibration model for soil heavy metals concentration based on Vis–NIR 
spectroscopy is affected by many factors. Also, previous studies reported that spectral response information was 
hard to be extracted and stripped from weak soil spectral signals. The preprocessing of spectral reflectance can 
effectively promote the accuracy and robustness of the calibration model for heavy metals  contents47–49. However, 
unsuitable preprocessing methods may lose the specific spectral information of toxic materials. CWT has been 
used to extract spectral detail information and proved it can effectively improve the prediction capacity of heavy 
metals concentrations using the Vis–NIR spectral inversion  model50.

Moreover, the suitable calibration model using the Vis–NIR spectral method for heavy metals contents is very 
helpful. Published studies on Vis–NIR spectral inversion models for heavy metals concentrations can be divided 
into two classes including statistical analysis models and machine learning  models51,52. Statistical analysis models 
including multiple linear regression (MLR), multiple linear stepwise regression (MLSR), principal component 
regression (PCR), and PLSR are widely used for determining heavy metals  contents53–55. However, some issues 
such as the autocorrelation and multicollinearity of samples have been neglected when using linear regression 
to construct the models. Machine learning algorithms such as RF overcome the above problems, which linear 
or non-linear relationships between dependent and independent variables can be detected through the random 
 forest56–58. Whereas, the related researches concerning the application of combining CWT with RF for estimating 
heavy metals concentrations in topsoil from coal-mining areas were still rarely reported. Thus, it is indispensa-
ble to compare the effects of different pretreatments on the calibration model and evaluate the efficiency of the 
spectral reflectance preprocessing techniques for determining the optimal preprocessing method in heavy metals 
concentration modeling. Meanwhile, the determination models of soil heavy metals concentrations were often 
performed using spectral variables from Vis–NIR spectral data collected from soil samples in the laboratory. 
However, spectra obtained in the laboratory and the field were completely diverse due to some uncertainties and 
disturbances including the preprocessing of samples, such as air-drying, grinding, and controlling the spectral 
measurement conditions in the laboratory. Soil spectra surveyed in the field were influenced by many factors such 
as soil particle size, soil surface conditions, soil water content, solar radiation, soil organic matter, temperature, 
and ambient  light21. Therefore, it is still a big challenge to take advantage of the lab-derived models based on 
Vis–NIR spectroscopy to infer concentrations of heavy metals in soil. In general, the necessity of the current 
study was to evaluate the feasibility and reliability of using the Vis–NIR spectroscopy in estimating heavy met-
als contents at an open-pit coal mine, to compare the effect of various spectral transformation methods on the 
accuracy of the estimation models, and to determine if the concentrations of soil samples generate effects on the 
accuracy in retrieving heavy metals contents or not.

The objectives of this study are to (1) measure Zn concentrations, and survey in-situ reflectance spectra, 
lab-based processed reflectance spectra, and lab-based unprocessed reflectance spectra of soil samples from 
an Opencast Coal Mine of Ordos, China; (2) select optimal characteristic bands based on Pearson correlation 
coefficient as well as the Boruta algorithm; (3) calibrate Zn concentrations using statistical analysis and random 
forest based on Zn contents and spectral reflectance data; (4) evaluate the performance of related models includ-
ing PLSR and RF combined with different spectral reflectance transformation methods, then determining the 
optimal prediction method for Zn contents.

Materials and methods
Study area. The Ordos city, with an area of approximate 86,000  km2 and within 37°35′ ~ 40°51′ N and 
106°42′ ~ 111°270′ E, is located in the Inner Mongolia Autonomous Region of north China. The topography 
with an elevation between 850 and 2149 m is high in the west and low in the  east59. The Ordos city with a tem-
perate continental climate has an annual sunshine duration between 2716.4 and 3193.9 h, an average annual 
temperature between 5.3 and 8.7 ℃, and mean annual precipitation ranging from 170 to 450  mm14. The Ordos 
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has abundant coal resources. The coal-bearing area covers about 70% of the total area and the proven coal 
reserves account for 201.75 trillion tons. Specifically, the Ordos can be divided into four coalfields including the 
Zhungeer in the east, the Zhuozishan in the west, the Dongsheng in the south, and the Wulangeer in the north, 
respectively. Also, the Ordos has various types of coal, such as brown coal, cannel coal, and no-caking coal. Most 
of those coal resources are buried in a shallow layer that is suitable for opencast mining. Coal production in the 
Ordos increased from 6.11 million tons to 678.93 million tons from 1990 to 2019. The coal industries played an 
important role in the socio-economic development of Ordos. However, recently, the environment is deteriorat-
ing because of mining activities especially the seriously polluted soil (bare soil) near the mining areas. So, the 
present study chose the Dongsheng coalfield with an area of approximately 63.2  km2 as the sampling  area60. The 
location of the study area and the distribution of the in-situ sampling sites are shown in Fig. 1.

Workflow. The workflow of the current study was described as follows (Fig. 2): (1) Collecting three sorts 
of soil spectral reflectance including in-situ, lab-based processed, lab-based unprocessed, respectively, and the 
Zn concentrations were measured by an XRF instrument. A logarithmic transformation method was imple-
mented to modify the skewed distribution of Zn concentration. Furthermore, soil samples were classified 
into three types based on the BV of the Inner Mongolia Autonomous Region using the contamination factor 
method, including clean (Zn ≤ 48.6  mg   kg−1), low pollution (48.6 ≤ Zn ≤ 97.2  mg   kg−1), and moderate pollu-
tion (97.2 ≤ Zn ≤ 145.8 mg  kg−1), respectively. (2) Eight preprocessing methods in terms of continuum removal 
(CR), the first derivative of reflectance (FD), the second derivative of reflectance (SD), Savitzky–Golay smooth-
ing (SG), absorbance transformation (ABS), Multiplicative Scatter Correction (MSC), Standard Normal Variate 
(SNV), and CWT were introduced to deduct spectral outliers and promote spectral response features of Zn after 
removing noisy regions (The detailed description of noisy regions can be found in “The spectral characteristics 
of soil samples under three conditions including in-situ, the lab-based processed, and the lab-based unpro-
cessed”). (3) The integration of the Boruta algorithm and the Pearson correlation coefficients was adopted to 
choose the significantly important spectral variables for estimating Zn concentration. (4) The entire samples 
were separated into calibration sets and validation sets according to the 2:1 ratio. (5) PLSR and RF have been fit-
ted to calibrate Zn concentration using the in-situ Zn concentrations dataset and the spectral reflectance of Zn, 
and the performance was compared based on specific indicators concerning  R2, RMSE, MAE, and RPD.

Sampling and measuring. The sampling route was designed according to FOREGS Geochemical Map-
ping Field  Manual63 concerning agricultural production, industrial distribution, waste discharge, road and river 

Figure 1.  The geographical location of the study area and spatial distribution of the in-situ sampling sites are 
classified by pollution level. (a), (b), and (c) represent the actual conditions of the study area. (Note: soil samples 
were classified into three types based on the background value (BV)15 of the Inner Mongolia Autonomous 
Region using the contamination factor  method61,62, including clean (Zn ≤ 48.6 mg  kg−1), low pollution 
(48.6 ≤ Zn ≤ 97.2 mg  kg−1), and moderate pollution (97.2 ≤ Zn ≤ 145.8 mg  kg−1), respectively. The Fig. 1 was 
generated by ArCGIS 10.0 that was obtained from https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- deskt 
op/, and the satelite image used in Fig. 1 (sub Fig. 5) was downloaded from Google Earth (https:// earth. google. 
com/)).

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/
https://www.esri.com/en-us/arcgis/products/arcgis-desktop/
https://earth.google.com/
https://earth.google.com/
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Figure 2.  The workflow of this study. (Note: OR represents the original spectral reflectance of Zn).
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networks, and soil type. A total of 111 in-situ soil samples (0–20 cm) were collected using a stainless-steel trowel 
in the study area on February 20, 2020. A portable Global Navigation Satellite System (GNSS) device was used 
to determine the World Geodetic System 1984 (WGS-84) coordinate of each sample site (Fig. 1)64. Each sample 
consisting of five subsamples with a wintersweet shape that were randomly collected from the surroundings, 
pooled, homogenized, and then reduced to a weight of 400 g to form a representative  sample23. Additionally, 
samples were packaged back to the lab with plastic bags. In the lab, first, the samples were wind-dried. Then, 
soil samples were squashed with a glass stick and avoided impurities, crushed stone, and other alien elements. 
Next, an electric thermostatic air drying oven (DGG-9053AD, Shanghai, China) was utilized to exsiccate soil 
samples until constant weight. Next, all samples were sieved using a 0.7 mm polyethylene sieve and transferred 
into new plastic bags. Then each soil sample with 4 g weight was put into a 32 mm mold and squeezed a tablet 
with a boric acid edge under 30-ton pressure for X-ray fluorescence (SPECTRO xSORT, SPECTRO Analytical 
Instruments GmbH, Boschstr. 10, 47533 Kleve, Germany)  analysis65,66. The mean content of every sample was 
determined by repeating three-time measurements for decreasing errors. Finally, specific software for X-ray 
fluorescence (SPECTRO xSORT) named Sample Result Manager was used to pretreat heavy metals concentra-
tions data. The eight heavy metals concentrations including Zn, Cd, As, Co, Cu, Ni, Pb, and Mn were obtained. 
The GSD-series and GSS-series reference samples (Institute of Geophysical and Geochemical Prospecting, Lang 
fang, China) have been introduced to calibrate the SPECTRO xSORT, and the results demonstrated that the 
SPECTRO xSORT was reliable with a relative standard deviation ranged from 3 to 5%.

Spectral measurements and preprocessing. The reflectance spectra of the soil samples were surveyed 
by a FieldSpec4 portable object spectrometer manufactured by ASD (Analytica Spectra Devices., Inc, USA) that 
covers 350–2500 nm spectral range with 1 nm spectral resolution. The reflectance spectral of three different 
types of samples including in-situ, lab-based processed, and lab-based unprocessed, respectively.

Under field conditions, the impurity such as stones, roots, leaves were excluded before sampling for assur-
ing the purity of the soil samples. The soil spectra were measured using an ASD spectrometer at each position 
of five subsamples, and the mean spectrum of the five subsamples was chosen as the spectrum of the specific 
soil sample. To avoid the shadow when scanning the soil samples, firstly, making sure the probe was vertical to 
the ground. Secondly, adjusting the position to avoid the shadow to cover the soil samples, and to ensure the 
soil samples were completely exposed to the sun. Besides, a whiteboard with 99% reflectance was utilized to 
calibrate the spectrometer before measuring at each in-situ sampling site. Meanwhile, a warm-up with 30 min 
duration was carried out for the spectroradiometer to minimize errors. Additionally, 3-time spectral surveys were 
implemented, and calculated the mean value for each sampling site as the representative spectrum to decrease 
errors. All spectra were measured from 10 am to 2 pm under clear weather conditions because the sun was the 
only source of illumination at that condition. The fiber optic probe was put at approximately 15 cm above the 
soil samples vertically and in the opposite direction with solar radiation.

Accordingly, two kinds of samples concerning lab-based processed, and lab-based unprocessed reflectance 
spectra were surveyed under lab conditions using the same spectrometer. All spectral measurements were con-
ducted in a dark room and all surveyors were required to dress in black clothes without any reflection to avoid 
unnecessary spectral noise. A 1000 W halogen lamp was used as the simulation light source. The field observation 
angle between the vertical direction and the light was set as 15°. The size of the soil samples container for spectra 
scanning is 10 cm × 10 cm. The field of view (FOV) is 25°, and the diameter of the field of view is 7 cm. Clearly, 
the surface area of the soil sample container completely covered the area of soil spectra. So, the size of the soil 
container can assure the purity of the soil samples spectra. The distance between the halogen lamp and the soil 
samples was 30 cm. Moreover, the distance and angle between the probe and the soil samples were 15 cm and 
90°, respectively. The same whiteboard was also utilized to calibrate the spectroradiometer before measuring. 
Similar to the field spectral measurement, before starting the measurement, a warm-up of 30 min duration for the 
spectroradiometer was also implemented. Every sample was put into a black petri dish of a specific size. The size 
of the black petri dish for spectra scanning is 10 cm × 10 cm. The field of view (FOV) is 25°, and the diameter of 
the field of view is 7 cm. Clearly, the area of the soil sample container completely covered the area of soil spectra. 
The survey was conducted 3-time for reducing errors.

The process of collecting spectral reflectance was influenced by many potential factors such as survey device, 
soil sample, and lab conditions. The spectra may be worsened due to the above factors. So, the methods of 
transform spectral reflectance were always introduced to reduce the spectral noise. The Continuum Wavelet 
Transform (CWT) was selected to solve the above issue. Meanwhile, seven spectral transform methods includ-
ing continuum removal (CR), the first derivative of reflectance (FD), the second derivative of reflectance (SD), 
Savitzky–Golay smoothing (SG), absorbance transformation (ABS), Multiplicative Scatter Correction (MSC), 
and Standard Normal Variate (SNV) were also implemented for comparison with the CWT. Twenty-one points 
and a quadratic polynomial were adopted to reduce spectral noise through the SG smoothing process.

Wavelet transform consists of two sorts concerning CWT and Discrete Wavelet Transform (DWT). The CWT 
was selected as a spectral transform method in this study. Spectral reflectance was decomposed into wavelet 
coefficients using different scales in terms of 2,  22,  23,  24,  25,  26,  27,  28,  29,  210  (L1–L10) based on Gaussian4 func-
tion served as the mother  wavelet50. The Gaussian4 was adopted as the mother wavelet function for soil spectral 
absorption features was close to the Gaussian  function67. The basic function of the Wavelet Transform was as 
follows.

If ψ(t) ∈ L
2(R) is a square-integrable function of its Fourier transform, it then satisfies the following 

expression:
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where ψ(t) denotes the wavelet basis function.
The wavelet basis function can be scaled and assessed to obtain the wavelet basis function,ψα,τ (t) , as follows:

where a denotes the scale factor, τ denotes the translation factor, and t  denotes the spectral bands. One-dimen-
sional spectra were transformed into a two-dimensional m × n matrix by CWT. Each row of the matrix denotes 
a wavelet coefficient at a different decomposed scale.

Spectral feature selection and correction of skewed data. Spectral feature selection. The Boruta 
 algorithm68,69 designed as a wrapper around a Random Forest classification was introduced to conduct the spec-
tral feature selection because it can provide an intrinsic measure of the importance of each variable, called the 
Z-score. The Z-score of the original variables and the expected Z-score from the randomly selected features 
generated by random permutation were compared to determine the terminal variables with a larger Z-score than 
that of all the randomly selected features. In this study, the integration of the Boruta algorithm and the Pearson 
correlation coefficients with a significance level of 0.01 was used to select the significantly important spectral 
variables for estimation of the Zn  concentration70.

Correction of skewed data. Logarithmic transformations are widely used to adjust a highly skewed variable into 
a more approximately normal variable due to their effectiveness and  convenience64. Besides, logarithmic trans-
formations are always used in conditions where the independent and dependent variables exhibit a nonlinear 
relationship and still preserve the linear regression model. Specifically, soil samples generally represent lognor-
mal  distributions71. So, the natural logarithm transformation was selected to correct the skewed distributions of 
the heavy metals concentration in the current study.

Calibration and validation. Partial least squares regression (PLSR). PLSR proposed by Herman O. A. 
Wold is a spectral analysis method that includes multiple linear regression, canonical correlation analysis, and 
principal factor  analysis72. PLSR is suitable for Vis–NIR spectral bands with collinearity and spectral  noise73. 
PLSR projects a group of spectral and dependent response variables into a low-dimensional space, thereby de-
creasing dimensionality and excluding noise. Recently, PLSR has been widely used in soil heavy metals concen-
trations retrieving based on Vis–NIR spectral  technology74. Leave-one-out cross-validation was introduced to 
obtain the number of latent variables (LVs) of PLSR. The maximum number of LVs was chosen to control the 
number of LVs to eliminate over-fitting. The number of LVs with the lowest root mean square error of cross-
validation (RMSECV) was adopted in the  calibration37.

Random forest (RF). The RF  algorithm75 is a bagging method based on regression tree (CART) analysis and 
 classification76. The advantages of RF are the significance of each feature can be assessed with unbiased estima-
tion during the classification process, and the issues with numerous missing data can be solved. Additionally, the 
efficiency of the RF model in processing big data without any dimensionality reduction outperforms traditional 
 models77. The classification trees are used to decide on choosing the optimal tree in predicting. The number of 
classification trees in RF is large, and all variables have to be inputted into each tree with an independent feature 
for classing. Moreover, 99.9% of unrelated trees conduct predictions that cover all conditions. The basic theory 
of RF bagging is to choose the results of several weak classifiers and form a strong classifier. The processes for 
generating classification trees and mathematical equations of the RF model can be found in related literature, the 
current study did not state corresponding contents again due to limited  space78,79. Three parameters including 
the number of trees of the classification tree (ntree), the variable selection number (mtry) when branching, and 
the size of leaf (node size) were important for constructing an RF model. The default parameters for the node 
size were adopted to construct each  model67. Several parameters were tested for determining the optimal value 
of mtry and ntree of the RF model. So, the optimization of mtry ranged from 1 to 100 at the interval of 1, and the 
best ntree varied from 1 to P−1 at the interval of 1. P represents independent variables.

Validation. Before the calibrating, the samples needed to be grouped. The entire samples were separated into 
calibration sets and validation sets according to the 2:1 ratio. The concentrations of heavy metals were ranked 
from the lowest to the highest for selecting three adjacent samples as a group. For each group, two samples were 
chosen randomly as the calibration set, and the remained one was selected as the validation  set80. The calibration 
set was used to fit the model, and the validation set was utilized to assess the performance of the model.

Four indicators including coefficient of determination  (R2), root mean squared error of prediction (RMSE), 
mean absolute error (MAE), and the ratio of performance to deviation (RPD) was chosen for evaluating the 
accuracy and robustness of the models. The detailed information concerning the four accuracy indicators was 
not described due to the limited space, and the related statements can be found in previous  studies81–84.

Software. Spectral pretreatments and the Boruta algorithm were executed via R version 3.6.3. Moreover, the 
PLSR and RF models were run in MATLAB version 2016b. Finally, Sample Result Manager (a specific software 
for SPECTRO xSORT), and ArcGIS10.0 were used for analyzing and mapping in this paper.

(1)Cψ =
∫
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Results
Descriptive statistic. Table 1 and Fig. 3a revealed the statistical features of the Zn element. The concentra-
tion of Zn ranged from 30.05 to 157.00 mg  kg−1. Although the mean concentration of Zn (67.98 mg  kg−1) did not 
surpass the background values of the Chinese Environment Quality Standard for Soils released by the Ministry 
of Environmental Protection of China in 2018 (200 mg  kg−1) (GB15618-2018), it exceeded the background value 
of the Inner Mongolia Autonomous Region (48.6 mg  kg−1)15. Moreover, more than 87% of the soil samples were 
polluted by the Zn element, 73% and 14% account for minor pollution as well as moderate pollution (Fig. 1). The 
outcome demonstrated that plenty of Zn deposited in the topsoil of the study area. Also, the SD (22.48 mg  kg−1) 
of Zn concentration was relatively high because some samples exhibited extremely higher concentrations (157, 
135, and 128 mg  kg−1) than the neighbors. Additionally, the variation of the measured Zn concentration demon-
strated significant spatial heterogeneity based on the range (30.05 to 157.00 mg  kg−1), SD (22.48 mg  kg−1), and 
CV (33%) for Zn. We can infer that the concentration of Zn in the topsoil of the study area was largely affected 
by long-term anthropic activities especially mining activities. The Table1 showed that Zn represented a skew-
ness distribution (Skewness = 1.29) with heavy tails (Kurtosis = 1.68). The skewed and irregular distribution may 
generate negative effects on retrieving soil metals contents with Vis–NIR  spectroscopy64,85. Therefore, a natural 
logarithm transformation was selected to correct the negatively skewed distribution (Fig. 3b).

The spectral characteristics of soil samples under three conditions including in-situ, the 
lab-based processed, and the lab-based unprocessed. The in-situ soil spectra from the mining area 
were shown in Fig. S1e. The lab-based processed spectra and the lab-based unprocessed spectra from the min-
ing area were illustrated in Fig. S1a,c), respectively. Clearly, though the spectral reflectance of each soil sample 
changed according to the wavelength, the varied trend of spectral reflectance for all soil samples was similar. The 
spectral curves with smoothed features represented an upward trend, and the spectral reflectance values were 
ranged from 0 to 0.6 (Fig. S1a). Specifically, the curves were separated into three wavelength bands. Although 
spectral reflectance was low, the values increased rapidly during the visible light band (400–780 nm). The spec-
tral reflectance was relatively stable and high at the short-wave near-infrared waveband (780–2100 nm). The 
spectral reflectance decreased slowly during the long-wave near-infrared waveband (2100–2500 nm). Clearly, 
atmospheric water vapor exhibited strong absorptive effects on spectra especially around 1400 and 1900 nm and 
above 2400 nm during field spectral  measurement86. So, the spectral noise aroused by atmospheric water vapor 
has been removed from the raw spectra (Fig. S1e,f), and the spectra mainly distributed during 350 –399 and 
2400–2500 nm defined as noisy regions where reflectance spectra exhibited unstable features and were always 
excluded in published studies has been removed (Fig. S1b,d)87. Another obvious fluctuation of the curves around 
1000 nm was detected probably due to the interference of iron  oxide88. A strong absorptive belt of the spectral 
curves was found at the near-infrared region. Specifically, water led to the obvious absorption at 1400 nm and 
1900 nm, and the crystal lattice water at 1450 nm and 2200 nm also presented significantly absorptive capabili-
ties (Fig. S1b,d)37. The spectral reflectance increased sharply from 400 nm due to the presence of organic mat-
ter and iron  ions89. Meanwhile, one small valley occurred at approximately 2200 nm owing to metals hydroxyl 
 stretching45,90. Obviously, the spectral reflectance obtained from the field was relatively lower than collected from 
the laboratory because the soil water exhibits an absorption effect on spectral reflectance (Fig. S1a,e).

The mean CR, FD, SD, SG, ABS, MSC, SNV, and CWT spectral reflectance curves under lab-based processed 
are illustrated in Fig. S2. The same methods were implemented for the other two situations including lab-based 
unprocessed and in-situ, and the results were presented in Figs. S3 and S4. Clearly, the reflectance spectra of soil 
were decreased with the concentration increased during the wavelengths 580–850 nm (Fig. S2SG, MSC). The 
reflectance spectra showed similar spectral shapes but with variable spectral intensities because the color of the 
soil sample gradually darkened may be affected by the increase in the heavy metals content, and the reflectance 
absorbed additional light energy, such that the spectral curve slowly  decreased91. CWT could hardly extract 
obvious spectral response at the  L1–L3 scales (Fig. S2L1–L3). On the contrary, the relatively significant spec-
tral response with sharp absorption peaks could be retrieved in the condition of increasing of decomposition 
scales (Fig. S2L4–L6). Meanwhile, the spectral strength gradually was enhanced with the CWT scales increasing 
(Fig. S2L1–L10). FD, SD, ABS, SG, MSC, and CR revealed a relatively weak capacity in increasing the responses 
for reflectance spectra compared with CWT in a particular wavelength. The original spectral reflectance curve 
generated by absorption was relatively less pronounced with broad and smooth features. The absorption peaks 
appeared at approximately 1400, 1900, and 2200 nm. So, the spectral reflectance transformation methods were 
conducted to enhance the original spectral reflectance response. The characteristics of the original spectral 
reflectance have been increased. Absorption peaks were observed at approximately 500, 950, 1350, 1900, and 
2200 nm using CR, 550, 1000, 1325, 1350, 1375, 1800, 1875, 2200, and 2250 nm via FD, and 1000, 1375, 1800 nm 
through SD. The baseline drifts and mixed overlapping peaks were efficiently deducted by FD and SD because 
the spectral reflectance became gradually approximately 0.

Table 1.  Statistics of the collected soil samples for Zn concentration (mg  kg−1). a SD: standard deviation, bCV: 
coefficient of variation in %. c BV: the soil Zn concentration background value of Inner Mongolia Autonomous 
 Region15. d PR: the percentage of contaminated samples (Threshold = 48.6 mg  kg−1).

Element Maximum Minimum Mean Range Median SDa CVb Skewness Kurtosis BVc PRd %

Zn 157.00 30.05 67.98 126.95 61.30 22.48 33 1.29 1.68 48.6 87.39
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Selecting the characteristic bands based on Pearson correlation coefficients and the Boruta 
algorithm. First, the Pearson correlation coefficients were implemented to analyze the relations of Zn con-
centration for the three groups corrected by the natural logarithmic transformation method with soil spectral 
reflectance transformed by eight methods including CR, FD, SD, SG, ABS, MSC, SNV, and CWT. The rough 
characteristic bands were determined by the correlation coefficients square (R > 0.6)50,92. Second, The Boruta 
algorithm was carried out to choose the optimum characteristic bands based on the Z-score using the rough 
characteristic bands.

Figure 4 revealed that all of the  R2 for the original spectrum was less than 0.1 and below the red dashed line 
 (R2 = 0.36). The  R2 of the spectrum after transforming was notably larger than the original spectrum that rep-
resented the spectral reflectance transformation methods could increase the sensitivity of reflectance response 
sheltered in the soil spectral reflectance data compared to the original spectral variables. The peak positions for  R2 
varied according to the spectral transformation methods and spectral wavelength. For the two conditions without 
any sample processing in terms of lab-based unprocessed and in-situ, no matter what spectral reflectance trans-
formation methods we chose no obvious rough characteristic bands were existing. On the contrary, the rough 
characteristic bands were mainly concentrated during about 1347–1354 nm, 1699–1867 nm, 2041– 2096 nm, 
2132–2174 nm, 2196–2210 nm, 2218–2251 nm, 2330–2347 nm for lab-based processed. Meanwhile, three trans-
formation methods including CR, FD, and SNV exhibited higher sensitivity than other methods for detecting 
rough characteristic bands. The maximum  R2 = 0.56 was found at 2142 nm with CR, followed by 1349 nm with 
an  R2 = 0.52 of FD, and 1843 nm with an  R2 = 0.48 of SNV (Fig. 4a). For the three group concentration concerning 
clean, low pollution, and moderate pollution corrected by the natural logarithmic transformation method, the 
number of rough characteristic bands of the low pollution group was the largest (Fig. 4e), followed by the clean 
group (Fig. 4d), and moderate pollution group (Fig. 4f). The rough characteristic bands were listed in Table S1. 
Besides, three transformation methods including CR, FD, and SNV revealed higher sensitivity than other meth-
ods for detecting rough characteristic bands for the low pollution group. CR, FD, and SD demonstrated higher 
sensitivity than other methods for detecting rough characteristic bands for the clean and moderate pollution 
group. For the clean group, the largest  R2 was found at 1298  (R2 = 0.48), 1915  (R2 = 0.61), and 1737  (R2 = 0.68) 
nm using CR, FD, and SD, respectively (Fig. 4d). For the low pollution group, the maximum  R2 was found at 
2142 nm with an  R2 of 0.53 (CR), 1349 nm with an  R2 of 0.48 (FD), and 1842 nm with an  R2 of 0.40 (SNV), 
respectively (Fig. 4e). For the moderate pollution group with the SD transformation method, the largest value 
was detected at 545 nm with  R2 of 0.64. Six spectral positions including 2098 nm, 1616 nm, 846 nm, 849 nm, 
1084 nm, and 848 nm appeared peak values ranging from 0.50 to 0.58 (Fig. 4f). For moderate pollution group 
with other transformation methods (Fig. 4f).

The CWT was implemented on the raw spectral reflectance for spectral transformation, and the Gaussian4 
function was selected as the wavelet basis function and the decomposition scales were divided into 10 scales 
including 2,  22,  23,  24,  25,  26,  27,  28,  29,  210  (L1–L10). Overall, the  R2 values and the number of the rough charac-
teristic bands varied accordingly among the different wavelet decomposition scales. Specifically, the number of 
the rough characteristic bands was increased with the increasing wavelet decomposition scales excluding  L7 and 
 L8, especially for the lab-based processed situation. For lab-based processed situations and low pollution group, 
the optimal decomposition scales were  L4,  L5,  L6,  L7, and  L9 according to the  R2 values. The rough characteristic 
bands were listed in Table S2 and were highlighted in red in Fig. 5a and Fig. 5e. On the contrary, for the other four 
situations including lab-based unprocessed, in-situ, the clean group, and moderate pollution group, the rough 
characteristic bands were more scattered and less obvious. (Fig. 5b,c,d,f). Moreover, the rough characteristic 
bands were completely not detected under the conditions of lab-based unprocessed as well as in-situ (Fig. 5b,c).

Figure 3.  Histogram and box plot of Zn concentration of the topsoil in the study area (No. of samples = 111). 
(Note: Rad dashed curve is the soil Zn concentration background value of Inner Mongolia Autonomous Region, 
dashed circle denotes the outliers of soil Zn concentration).
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For the clean group, the rough characteristic bands were located at positions  L1,  L2, and  L3 (Fig. 5d). Specifi-
cally, on decomposition scale  L1, the rough characteristic bands occurred at 1736, 1242, 744, 1921, 742, 1259, 
2158, 1501, 480, and 2319 nm. On decomposition scale  L2, the rough characteristic bands appeared at 1456, 778, 
1541, 2032, 774, and 1546 nm. On decomposition scale  L3, the rough characteristic bands appeared at 1343 nm. 
For the moderate pollution group, the rough characteristic bands were situated at the four decomposition scales 
of  L1,  L2,  L3, and  L5 (Fig. 5f). On decomposition scale  L1, the rough characteristic bands appeared at 901, 544, 
903, 1616, and 1807 nm. On decomposition scale  L2, the rough characteristic bands appeared at 1985, 2094, and 
2095 nm. On decomposition scale  L3, the rough characteristic bands appeared at 1895, 1896, and 2102 nm. On 
decomposition scale  L5, the rough characteristic bands appeared at 2080–2090 nm.

The Boruta algorithm was carried out to determine the optimum characteristic bands for the prediction of 
Zn concentrations based on the rough characteristics bands  (R2 > 0.36) obtained by Pearson correlation analysis. 
The important Z-score calculated by the Boruta algorithm of rough characteristics bands were used to choose 

Figure 4.  Correlation of determination  (R2, P < 0.01) between Zn concentrations corrected by natural 
logarithmic transformation and spectral reflectance transformed by CR, FD, SG, SD, MSC, ABS, and SNV 
under six conditions of soil samples, including (a): lab-based processed, (b): lab-based unprocessed, (c): in-situ, 
(d): clean group (Zn ≤ 48.6 mg  kg−1), (e): low pollution group (48.6 ≤ Zn ≤ 97.2 mg  kg−1), and (f): moderate 
pollution group (97.2 ≤ Zn ≤ 145.8 mg  kg−1). (Note: The spectral reflectance was measured after processing at the 
laboratory for the clean group, low pollution group, and moderate pollution group.)
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the optimum characteristic bands after lab-based processed for the entire group (Fig. S5), clean group (Fig. S6), 
the low pollution group (Fig. S7), and the moderate pollution group (Fig. S8).

Clearly, the position and the number of optimal characteristics bands highlighted in green dots changed with 
transformation methods (Fig. S5). Forty-nine optimal characteristics bands were selected through CR spectral 
transformation (Fig. S5CR). It was found that 22 spectral variables were important for Zn estimation after the 
FD spectral transformation, and 1 spectral variable was excluded. Also, 25 characteristic bands were important 
for predicting Zn content by SNV spectral transformation, and the other 139 bands could be ignored due to the 
lower Z-score. Meanwhile, there were 6, 18, 26, 28, 46, 47, 45 characteristics bands for  L2,  L3,  L4,  L5,  L6,  L7, and  L9 
respectively through CWT spectral transformation. Then, the optimal characteristics bands were inputted into 
calibration models as independent variables for estimating Zn concentration.

Calibrating and comparing Zn concentration based on the PLSR and RF models using optimal 
characteristic bands of each spectral reflectance transformation method for four sorts of Zn 
concentration groups including clean, low pollution, moderate pollution, and the entire sam-
ples, respectively. The in-situ and lab-based unprocessed situations were excluded for no characteristic 
bands were detected according to Sect. 3.3 (Figs. 4, 5). So, the optimal characteristic bands determined by the 
Boruta algorithm for lab-based processed soil samples were used to calibrate the Zn concentration corrected 
by natural logarithmic transformation using RF and PLSR for four groups concerning the entire samples, clean 
group, low pollution group, and the moderate pollution group. The calibration results for spectral reflectance 
transformation methods combined with RF and PLSR were compared and evaluated by  R2, MAE, RMSE, RPD 
respectively.

Some reflectance spectra transformation methods were not illustrated in Fig. 6 because the characteristic 
bands can hardly be retrieved through the above methods. For the entire group, the result of RF based on  L5 
with relatively higher  R2  (R2 = 0.83), RPD (RPD = 2.05), and lower MAE (MAE = 6.79 mg  kg−1), as well as RMSE 
(RMSE = 9.00 mg  kg−1), outperformed PLSR using  L6 with lower  R2  (R2 = 0.72), RPD (RPD = 1.79), and higher 
MAE (MAE = 9.30 mg  kg−1), RMSE (RMSE = 11.71 mg  kg−1). RMSECV reached the minimum value when LVs 
were 4 (Fig. 7a). Besides, the best performance was found as the RF (ntree = 4, mtry = 3) combined with  L5 was 
trained for estimating Zn concentration corrected by natural logarithmic transformation (Fig. 6a,b). For the clean 
group, the result of RF-based on SD with relatively higher  R2  (R2 = 0.97), RPD (RPD = 3.39), and lower MAE 
(MAE = 0.79 mg  kg−1), as well as RMSE (RMSE = 1.26 mg  kg−1), was better than PLSR using  L3 with lower  R2 
 (R2 = 0.73), RPD (RPD = 1.52) and higher MAE (MAE = 5.37 mg  kg−1), RMSE (RMSE = 6.90 mg  kg−1). RMSECV 
reached its minimum value when LVs was 2 (Fig. 7b). Additionally, the optimum robustness has appeared when 
the RF (ntree = 96, mtry = 3) combined with SD was fitted (Fig. 6c,d). For the low pollution group, the outcome of 
RF-based on  L6 with relatively higher  R2  (R2 = 0.83), RPD (RPD = 2.24), and lower MAE (MAE = 4.15 mg  kg−1), 
as well as RMSE (RMSE = 4.84 mg  kg−1), surpassed PLSR using  L5 with lower  R2  (R2 = 0.68), RPD (RPD = 1.73), 
and higher MAE (MAE = 5.99 mg  kg−1), RMSE (RMSE = 7.21 mg  kg−1). Two LVs existed in the PLSR calibration 
(Fig. 7c). Also, the optimal method for estimating Zn concentration corrected by natural logarithmic transforma-
tion was RF (ntree = 3, mtry = 13) combined with  L6 (Fig. 6e,f). For the moderate pollution group, the result of 
RF-based on  L1 with relatively higher  R2  (R2 = 0.96), RPD (RPD = 3.85), and lower MAE (MAE = 2.54 mg  kg−1), as 
well as RMSE (RMSE = 4.79 mg  kg−1), outperformed PLSR using  L1 with lower  R2  (R2 = 0.84), RPD (RPD = 2.10), 
and higher MAE (MAE = 7.69 mg  kg−1), RMSE (RMSE = 8.37 mg  kg−1). Four LVs were determined for PLSR 
calibration (Fig. 7d). Also, the best method for examing Zn concentration corrected by natural logarithmic 
transformation was RF (ntree = 31, mtry = 9) combined with  L1 (Fig. 6g,h).

Overall, RF was better than PLSR no matter which group was trained in estimating Zn concentration cor-
rected by natural logarithmic transformation. Moreover, the CWT method outperformed the others in the 
majority of situations (Fig. 6). So, the  L6 combine with PLSR (PLSR-L6), the  L5 combine with RF (RF-L5), the 
 L3 combine with PLSR (PLSR-L3), the SD combine with RF (RF-SD), the  L5 combine with RF (PLSR-L5), the  L6 
combine with RF (RF-L6), the  L1 combine with PLSR (PLSR-L1), and the  L1 combine with RF (RF-L1) were chosen 
to map the scatter plot for validating the robustness of each method in examing Zn concentration corrected by 
natural logarithmic transformation (Fig. 8)93. Obviously, the best performance was detected in the clean group 
with the highest validation  R2  (R2 = 0.97), RPD (RPD = 3.39), and relatively lower MAE (MAE = 0.79 mg  kg−1), 
RMSE (RMSE = 1.05 mg  kg−1) (Fig. 8d). Other results concerning calibration and validation with relatively lower 
 R2, RPD, as well as higher MAE and RMSE were presented in Fig. 8a,b,c,e–g.

Discussion
The possible reasons for Zn represented a skewness distribution. The mean Zn concentration 
(67.98 mg   kg−1) of the study area was larger than the background value of the Inner Mongolia Autonomous 
Region (48.6 mg  kg−1), which may be led by the coal resources development (Table 1). Moreover, the CV (0.33) 
indicated that the Zn distribution may be influenced by human activities (Table1). On the one hand, the Zn 
distribution revealed obvious spatial heterogeneity that the concentration of soil samples close to the mining 
areas was relatively higher than the distant samples (Fig. 1). The mean content for the soil samples near and off 
the mining areas was 72.27 mg  kg−1, and 56.63 mg  kg−1, respectively. On the other hand, the Zn content may 
be affected by the distribution of roads in the mining areas because the coal was transported via trucks to the 
outside and the previous studies proved that one of the major sources for Zn is the worn  tires66. So, the skewed 
distributions of Zn were observed in the current study area (Fig. 3).

The spectral reflectance of the soil samples in the present study area may be affected by the 
Zn content. Figure  S2SG was chosen for describing the character of the soil sample spectral reflectance 
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Figure 5.  Correlation of determination  (R2, P < 0.01) between Zn concentrations corrected by natural 
logarithmic transformation and spectral reflectance transformed by CWT under six conditions of soil samples, 
including (a):lab-based processed, (b): lab-based processed, (c): in-situ, (d): clean group (Zn ≤ 48.6 mg  kg−1), (e): 
low pollution group (48.6 ≤ Zn ≤ 97.2 mg  kg−1), and (f): moderate pollution group (97.2 ≤ Zn ≤ 145.8 mg  kg−1). 
(Note: The spectral reflectance was measured after processing at the laboratory for the clean group, low pollution 
group, and moderate pollution group.  L1–L10 denotes the reconstructed spectral reflectance curves based on 
CWT at decomposition scales of 1–10.)
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because the original spectrum of the soil sample was only smoothed but did not change the basic spectral fea-
tures by the SG spectral transformation method. Furthermore, Fig. S2SG showed that the spectral reflectance 
varied with the spectral wavelength and was separated by the content of the Zn, especially during 580–1850 nm. 
The spectral reflectance was decreased with the Zn content increasing, that is, the higher content of Zn exhibited, 
the lower the spectral reflectance represented. The correspondence results were reported by some published 
studies. For example, the soil samples from varying metals groups revealed similar spectral features but with 
variable spectral intensities for the electromagnetic energy was absorbed during some specific wavelength, so 
the spectral curve changed with the metals content. Overall, the spectral reflectance tended to decrease with the 
increase in the metals  content45. Chakraborty et al.91 and Douglas et al.94 concluded similar characteristics and 
revealed that polluted soil samples represented a stronger spectral absorbance than the unpolluted soil samples, 
particularly in the spectral range of 700–2500 nm which was in line with our results.

Figure 6.  Comparing the performance of calibrating Zn concentration corrected by natural logarithmic 
transformation based on different spectral reflectance transformation methods using RF and PLSR at four 
conditions concerning the entire group, clean group, low pollution group, and moderate pollution group. (a, b): 
entire samples group, (c, d): clean group, (e, f): low pollution group, and (g, h): moderate pollution group.

Figure 7.  The scatter plots for determining the lowest RMSECV and the corresponding number of LVs. The 
number of LVs with the lowest RMSECV was used to fit the optimal PLSR in estimating Zn concentrations 
at four conditions concerning the (a) entire group based on  L6, (b) clean group based on  L3, (c) low pollution 
group based on  L5, and (d) moderate pollution group based on  L1.
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The number of characteristic bands varies with the condition of measuring spectral reflec-
tance, spectral reflectance transformation methods. There were no characteristic bands derived 
from in-situ and lab-based unprocessed situations in the current study. Contrarily, plenty of characteristic bands 
were obtained under the lab-based processed condition that implied some possible factors may absorb spectral 
energy. Soil reflectance spectrum is a cumulative reflection of the physical and chemical properties of soil. Previ-
ous studies confirmed that soil properties concerning soil moisture, parent material, organic matter, iron oxides, 
particle size, mineralogy, and soil structure exhibited significant influence on soil  reflectance21,95. For the lab-
based unprocessed and in-situ situation, soil properties such as particle size and moisture content may generate 
an influence on soil spectral  measurement70. Besides, the soil surface condition can also affect soil  reflectance23. 
Therefore, probable factors that limit the number of characteristic bands under lab-based unprocessed and in-
situ situations are potential environmental factors. Whereas, for the lab-based processed situation, the soil sam-
ples were processed via air-dried, sieved, and grounded into fine particles before spectral surveying to exclude 
the effect of soil structure, soil moisture, and particle size on spectral characteristics of soil samples.

Clearly, for the lab-based processed situation, the number of characteristic bands based on CWT is obviously 
larger than other spectral reflectance transformation methods no matter which concentration group and the 
entire samples were selected for training (Fig. S9). The probable reason why CWT can effectively extract char-
acteristic bands is that CWT offers variable time–frequency resolution that can efficiently and precisely capture 
time-series information. CWT, with variable size windows, is a windowing technique. Smaller and larger time 
intervals can be used for analyzing the high and low frequencies through CWT. Both the time domain and the 
frequency domain were widely used to capture the local patterns of the signal. So, the spectral features could be 
extracted more effectively via CWT 50.

The accuracy for estimating Zn concentration depends on the pretreatment for the soil sam-
ples, spectral reflectance transformation methods, and the calibration models. The accuracy 
of the calibration for Zn concentration was discussed in the present study. First, the results demonstrated that 
the spectral transformation method may influence accuracy. The CWT was the best one than others including 
CR, FD, SD, SG, ABS, MSC, and SNV in estimating Zn content. Some similar outcomes have also been published 
in previous  studies95,96. The possible reason for CWT can improve the accuracy of model estimation was similar 
to characteristic bands selection discussed in Sect. 4.3. Although the baseline drift caused by the differences in 
grinding and optical setups can be minimized via MSC and  SNV49, the benefit is less for the baseline does not 
change very much. The derivatives can be used in the condition that the low noise level is  ensured97. In this study, 
the accuracy of FD and SD was relatively weak because severe noise existing in the original spectrum influenced 
the valuable information to be  extracted45. Second, the outcomes revealed that the calibration methods may 
also affect accuracy. The RF method exhibited significantly higher accuracy than the PLSR in estimating Zn 
concentration using Vis–NIR spectral data because the relationship between Zn content and spectral reflectance 
is not linear but non-linear. Though the PLSR can efficiently deal with the collinearity issue, the capability for 
solving non-linear relationships is relatively  weak53,98. The RF model with insensitivity to outliers and excellent 
generalization ability outperformed PLSR in calibrating Zn concentration. Additionally, the model performance 
may be influenced by a wide range of target  properties99. The optimal model for estimating Zn concentration 
was the RF model due to the relatively wide range of Zn variations in this study (CV = 0.33). On the contrary, the 
PLSR method had relatively poor applicability when the sample range is very large. Third, the accuracy was also 
affected by the pretreatment conditions of soil  samples45. For the in-situ and lab-based unprocessed situations, 
there were no obvious characteristic bands because soil properties revealed significant influence on soil spectral 
reflectance resulting in poor capability for calibrating Zn concentrations.

The soil samples were divided into three groups according to the Zn content including clean, low pollution, 
and moderate pollution groups to test the calibration results that were influenced by the concentration of Zn or 
not. The accuracy was promoted with the Zn concentration increasing when the CWT with  L3 scale was selected 
to fit the RF model (Fig. 6d,f,h). Whereas, the accuracy represented decreasing trend with the Zn concentration 
increasing no matter which calibration methods we used when the FD was chosen to run the model (Fig. 6c-h). 
So, the accuracy of calibration may not be affected by the content of Zn.

The relationship between the accuracy of the calibration model and the number of characteristic bands was 
not significant. However, the accuracy may be improved through retrieving characteristic bands with highly  R2 
that played an important role in calibrating Zn content (Figs. 4, 5, 6). The characteristic bands with the highest 
 R2 appeared in the results of the moderate pollution group  (R2 = 0.71), followed by the clean group  (R2 = 0.69), 
the entire samples group  (R2 = 0.61), and the low pollution group  (R2 = 0.59). The  R2 for the model validation 
were 0.96, 0.83, 0.97, and 0.83 for the moderate pollution group, the clean group, the entire samples group, and 
the low pollution group, respectively.

Overall, we speculated that the accuracy of calibration may be influenced by spectral reflectance transfor-
mation methods, calibration methods, the condition for measuring soil spectrum, and the characteristic bands 
with highly  R2 that were used to describe the relationship between the Zn content and the reflectance spectra 
after transforming. However, the content of Zn, the number of the samples, and the number of the characteristic 
bands excluding the results obtained from RF represented a relatively weak effect in the accuracy of estimating 
Zn content.

The possible reasons for the important bands in estimating Zn concentrations based on PLSR 
and RF models using Vis–NIR spectra. Several important bands for the optimal PLSR including 1534, 
1540, 1541, 1807, 1985, 1989, 2148–2155, 2224–2243, 2328, 2331–2338, 2341, 2399, and 2400 nm were proved 
their importance for Zn estimation (Fig. 9a-d). For the optimum RF model, 460, 901, 1336, 1340, 1341, 1457, 
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1737, 1807, 1834, 1989, 2148, 2233, 2398, and 2400 nm were identified as the relative important bands (Fig. 10a-
d). To our knowledge, clay minerals demonstrated the strong adsorption of Zn around 1400, 1900, and 2200 
 nm87. Specifically, the spectral reflectance features of clay minerals demonstrated kaolinite spectrum had an 
obvious feature owing to a hydroxyl absorption wavelength with aluminum coordination at around 2200 nm. 
Two significant absorption regions about 1400 nm and 1900 nm were detected for vermiculite had interlayer 
moisture. Furthermore, a previous study proved that spectral bands associated with organic matter and clay 
minerals can be used for inferring Zn concentration with relatively high estimation  accuracy87. Meanwhile, an 
experiment designed for exploring the relationship between heavy metals and soil constituents confirmed Zn 
was easily absorbed on soil mineral constituents, especially montmorillonite and vermiculite under the com-
petitive  environment100. Moreover, published researches confirmed that soil organic matter and goethite also 
represented obvious adsorption of Zn at 400–800 nm and 420 and 950 nm,respectively45,101.

Research limitations and future research plans. There are some problems that need to be further 
addressed. First, the current study was a local research, not a global finding, the methods used in the present 
study may exist drawbacks due to the universal application. Second, though the calibration models for inferring 
heavy metals concentrations were obtained, the models of this study only can be used to estimate the heavy met-
als concentrations at sampling sites. Obtaining continuous heavy metals concentrations distribution is strongly 
desired. So, exploring calibration models using space-borne and airborne sensing combined with the ground 
level models based on in-situ sampling sites is still a big challenge. Third, some related soil properties concerning 
the soil texture, pH, salt, organic matter, clay minerals, and the presence of other heavy metals, combined with 
natural environmental factors, such as soil parent material and soil formation conditions were ignored in the 
current study. So, the accuracy of this study needs to be improved. Fourth, the present study only constructed 
the calibration model for the Zn element. Other toxic metals need to be studied in the future. Fifth, the spectral 
response of heavy metals was very weak for heavy metals in soils are truly a minute component comparing 
with water, organic matter, and clay minerals. It is impossible to detect the spectral signal of some metals unless 
their content exceeds 4.0 mg  g−1. So, we plan to deep dive into this orientation as follows. First, the space-borne 
and airborne sensing products will be implemented to retrieve the metals distribution at large scales. In the 
future, we plan to (1) utilize a direct standardization algorithm for establishing a transfer model of soil spectra 
between laboratory obtained and GaoFen-5 image obtained to inverse the soil heavy metals concentrations, 
and (2) to obtain the continuous distribution map of the soil heavy metals concentrations based on the optimal 
estimation model determined by the RF, extreme learning machine (ELM), support vector machine (SVM), and 
back-propagation neural network (BPNN) algorithms for the study area. Second, the related soil properties will 
be considered in the next research for improving accuracy. Third, we plan to continually develop methods in 
improving the accuracy of the calibration model using novel deep learning methods. In general, the mechanism 
of metals concentrations is very complicated, and the metals concentrations may be affected by both anthropic 
and natural factors. Moreover, the relations of metals concentrations with soil properties are still not very clear. 
Although pure metals were hard to sorb vis–NIR and mid-IR radiation, the correlated relationship between 
heavy metals concentrations and organic matter as well as clay minerals can be used for inversing heavy metals 
indrectly. Fourth, Ni, Cu, and Pb will be considered in the future due to the serious toxicity. Meanwhile, the Cr 
element will be also chosen as the objective because the Cr element was considered as common heavy metals 
pollutants in an open pit coal mine. Overall, it is still a huge challenge to conduct a multidisciplinary study in 
estimating metals concentrations.

Conclusion
The present study revealed that Vis–NIR spectroscopy can be used to calibrate Zn concentration in topsoils 
of open cast coal mining areas. Overall, the spectral reflectance tended to decrease with the increase of the Zn 
content during  580−1850 nm based on SG smoothing. CWT could retrieve more detailed spectral characteristics 
than other methods mainly because CWT can offer variable time–frequency resolution that can efficiently and 
precisely capture time-series information. The RF combined with CWT demonstrated the optimal accuracy than 
other methods in the current study (calibration:  R2 = 0.99, RPD = 3.47, RMSE = 1.26 mg  kg−1, MAE = 0.86 mg  kg−1; 
validation:  R2 = 0.97, RPD = 3.39, RMSE = 1.05 mg  kg−1, MAE = 0.79 mg  kg−1). The accuracy of estimating Zn con-
tent may be hardly affected by the content of Zn, the number of the samples, and the number of the characteristic 
bands excluding the results obtained from RF. This study will help to develop an effective technique to speedily 
detect metals concentration in possible contaminated areas such as coal mines and metallic mineral deposit areas.
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