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Immune tolerance research is essential for kidney transplantation. Other than antibody and T cell-mediated immune
rejection, macrophage-mediated innate immunity plays an important role in the onset phase of transplantation rejection.
However, due to the complexity of the kidney environment as well as its diversity and low abundance, studies pertaining to
monocyte/macrophages in kidney transplantation require further elucidation. In this study, kidney samples taken from healthy
human adults and biopsy specimens from patients undergoing rejection following kidney transplantation were analysed and
studied. By conducting a single-cell RNA analysis, the type and status of monocyte/macrophages in kidney transplantation were
described, in which monocyte/macrophages were observed to form two different subpopulations: resident and infiltrating
monocyte/macrophages. Furthermore, previously defined genes were mapped to all monocyte/macrophage types in the kidney
and enriched the differential genes of the two main subpopulations using gene expression databases. Considering that various
cases of rejection may be of the monocyte/macrophage type, the present data may serve as a reference for studies regarding
immune tolerance following kidney transplantation.

1. Introduction

A kidney transplant’s success largely depends on the degree of
immune rejection [1]. Adaptive immunity in kidney trans-
plantation is mainly comprised of T cells and B cells, which,
respectively, cause T cell-mediated rejection (TCMR) and
antibody-mediated rejection following kidney transplantation
(antibody-mediated rejection, ABMR) [2]. Innate immunity,

however, primarily involves monocyte/macrophages, which
also play an important role in initiating adaptive immunity,
and is a prerequisite stage of rejection after kidney transplan-
tation [3].

Myeloid progenitor cells in the bone marrow differentiate
into monocytes; then, in the environments of inflammatory
reactions and trauma, monocytes migrate and infiltrate the
interstitial tissue in order to differentiate into macrophages.
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However, macrophages can reside in the tissue and renew on
their own, crucial for the homeostasis of tissue immunity.
These resident macrophages, however, may also be replen-
ished from the circulation in certain conditions [4]. Therefore,
macrophage heterogeneity should always be considered in
tissue inflammation. In the kidney, earlier studies have
shown that the amount of monocyte/macrophage infiltration
is closely related to kidney injury, though recent studies have
demonstrated that, during the development of acute and
chronic kidney disease, mononuclear/macrophage cells have
both pathogenic and protective effects according to the
type and state of activation. Classically activated macro-
phages mainly play proinflammatory and profibrotic roles,
while alternatively activated macrophages are mainly anti-
inflammatory and promote the repair and reconstruction
of damaged tissue [5]. In fact, a certain number of resident
macrophages exist in normal kidney tissue, which are less
understood due to the small number of cells and lack of
appropriate means or markers from which to study. The
recent development of single-cell sequencing created a break-
through in studying low abundance cells [6, 7]. Scientists
have mapped kidney immune cells throughout the develop-
mental period, from early life to adulthood, and have tried
to understand how the kidney’s immune system develops
and matures [8]. Accordingly, they found that the earliest
cells in the developing kidney were monocyte/macrophages,
which engulf harmful pathogens and remain in the postnatal
stage. However, the roles and characteristics of resident mac-
rophages in the adult kidney, as well as their role during kid-
ney transplantation, require further study.

In this study, the single-cell sequencing data of the
kidney was analysed, and the transcriptome of renal resi-
dent macrophages was profiled in both healthy and trans-
plant rejection tissue. Here, a certain number of resident
monocyte/macrophages were found in normal kidney tissue,
which was dramatically reduced in the kidney transplant tis-
sue of immune rejection and replaced by infiltrating mono-
cyte/macrophages. Correlatively, a large number of plasma
cells were found in the kidney transplant rejection tissue,
where nonactivated B cells disappeared. By analysing the
expression profile, infiltrating monocyte/macrophages were
observed to be similar to matureM1macrophages in the com-
mon inflammatory response, whereas resident macrophages
presented a series of specialized molecules. These molecules
were found to be downregulated or were lost monocyte/ma-
crophages from the transplanted rejected kidney. Research
on such resident macrophage molecules may provide thera-
peutic insight into maintaining immune homeostasis, thus
assisting in the management of renal transplantation.

2. Methods

2.1. Single-Cell mRNA Sequencing Analysis. Raw data of
healthy kidney and biopsy samples of transplantation rejects
were obtained from the Gene Expression Omnibus (GEO)
GSE131685 and GSE109564, respectively [9, 10]. R package
Seurat [11, 12] was used for data analyses, and count matrices
were normalized using the SCTransform pipeline (https://
satijalab.org/seurat/v3.1/sctransform_vignette.html). Samples

from both healthy and rejection tissue were integrated using
reciprocal PCA (https://satijalab.org/seurat/v3.1/integration
.htmlA). The integrated dataset was further subjected to
PCA, and the initial 15 principal components (which
described almost an entire variance in the data, as indicated
by elbow plot) were considered for cluster analyses. Unified
manifold approximation and projection (UMAP) was used
to show clustering with a resolution of 0.25, and violin plots
were used to project the expression patterns of individual
genes in the cluster.

2.2. Functional Enrichment Analysis. Marker genes in differ-
ent clusters were then annotated for the signaling pathway
using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and were classified for biological processes via Gene
Ontology (GO) analysis. A P value < 0.05 was considered to
be statistically significant. A comparison of DEGs was per-
formed by adopting the EnhancedVolcano method, which
was illustrated using a volcano graph. DEGs were then com-
pared using a predefined set of genes via Gene Set Enrich-
ment Analysis (GSEA). Molecular Signatures Database
(MSigDB) was used as the reference of the DEGs. Further-
more, the R package-ClusterProfiler was used to compare
biological processes among the clusters [13]. The top 10
enriched signaling pathways were displayed using dot plots.

3. Results

The data for healthy kidney tissue were acquired from cells
isolated in three patients that underwent radical nephrec-
tomy, while the transplant rejection data were taken from
one patient with three biopsy samples. Initially, the healthy
and rejection data were integrated and corrected in order to
eliminate the batch effect. At a resolution of 0.25, 12 cell clus-
ters were generated, in which two leukocyte clusters were ver-
ified with PTPRC (CD45 gene) (Figure 1(a)). Subclustering of
the leukocytes gave rise to five clusters (Figure 1(b)). Using the
known gene markers, the clusters were annotated with (0) T
cells (1) ,NKT cells (2, 3) ,monocyte/macrophages, and (4) B
cells (Figures 1(c)–1(e)). The healthy data were first assessed
(Figures 1(c)–1(e)), and despite the expression of the Igalpha/-
beta chain (CD79a, b), the B cell population was mainly com-
prised of IgM (IGHM) but not IgG1 (IGHG1), indicating the
lack of plasma cells in healthy tissue (Figures 1(c) and 1(d)).
CD3+ conventional T cells and NKT cells may be distin-
guished by their surface markers and secreted molecules
(Figures 1(c) and 1(e)). In monocyte/macrophage popula-
tions, cells lack prototypical macrophage gene markers like
ADGRE1 (F4/80 gene). Nevertheless, the cells can be sorted
into two clusters with CD14 and MS4A7, both myeloid
markers (Figure 1(e)), indicating that heterogeneity of kidney
monocyte/macrophages already exists in the steady state.

When comparing the healthy and rejection data, the B
cell population was removed so as to obtain a better resolu-
tion for the remaining cells. At 0.5 resolution, eight clusters
were separated from the rest of the cells (Figure 2(a)). Using
known gene markers, the clusters were annotated with (0)
NKT cells (3) ,T cells, and five different myeloid cells
(Figure 2(b)). Compared to the healthy data, the rejection
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Figure 1: Continued.
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group demonstrated an evident rise in cluster 1 with a reduc-
tion in cluster 6 among all three samples (Figure 2(c)). In
order to acquire an overview of clusters 1 and 6, their marker
genes were classified via KEGG signaling pathway analysis,
where cluster 1 was indeed found to be involved in allograft
rejection as well as autoimmune diseases such as lupus and
diabetes (Figure 2(c)). In addition, the gene in cluster 1 was

found to be relevant to IgA production and antigen presenta-
tion, indicating a close relationship to both ABMR and
TCMR. However, cluster 6 genes were detected in the phago-
cytosis pathway (Figure 2(c)).

Furthermore, clusters 1 and 6 were compared according
to the fold change and P value, where cluster 1 was found
to possess the gene responsible for antigen presentation and
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Figure 1: scRNA analysis of leukocytes in the kidney. (a) UMAP plot explored 12 clusters in the kidney tissue at a resolution of 0.25. (b) Gene
expression of PTPRC indicated CD45+ leukocytes. (c) CD45+ leukocytes were subclustered into five clusters. (d) Pie plot shows the frequency
of each cell type. (e) The subclusters were annotated with knownmarkers for T cells (CD3), monocyte/macrophages (CD14 andMS4A7), and
B cells (CD79A/B). Violin plots showed the projection of indicated genes. IGG1 refers to memory B cells or plasma cells. (e) NKT cells were
shown with marker genes such as GNLY, NKG7, and GZMB. The IL7R gene refers to conventional T cells.
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cell activation, as shown in the volcano plot (Figure 3(a)).
Moreover, cluster 1 was observed to express most of the
markers of the M1 macrophage, whereas cluster 6 expressed
the marker of M2 or resident macrophages (Figure 3(b)). To
depict the interaction of these genes, a GO enrichment anal-
ysis was carried out to illustrate the network of differentially
expressed genes. Accordingly, most genes were found to be
connected to the immune response; almost all cluster 1 DEGs
were involved in the innate immune response (Figure 3(c)). In
order to determine which signal is upregulated or downregu-
lated in the DEGs of clusters 1 and 6, a Gene Set Enrichment
Analysis (GSEA) was performed, in which the DEGs were
compared to the Molecular Signatures Database (MSigDB).
The GSEA again oriented the genes to the pathways similar

to the KEGG analysis. More importantly, the GSEA confirmed
that the genes in cluster 1, not cluster 6, promoted autoim-
mune disease and allograft rejection (Figure 3(d)).

Additionally, healthy and rejection samples were compared.
As cluster 1 was not detectable in the healthy group, this study
focused on the comparison of cluster 6 between the rejection
and healthy samples. Here, cluster 6 of the rejection samples
was found to upregulate proinflammatory cytokine genes like
ILIB while downregulating the expression of CD68, which has
been considered a feature of kidney resident macrophages
(Figure 4(a)) [14]. To depict the interaction of these genes, a
GO enrichment analysis was performed to show the network
of differentially expressed genes. The DEGs were mainly found
to be involved in leukocyte transendothelial migration and
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Figure 2: Characterizing the resident and the infiltrating monocyte/macrophage. (a) UMAP plot explored 8 clusters after the removal of B
cells. (b) Clusters were annotated with knownmarkers for T cells (3) ,NKT cells (0), and monocyte/macrophage cells (1, 4, and 6) .(c) The cell
clusters from the healthy and rejected kidney tissues were compared for individual samples. (d) Bar plot shows the frequency of each cluster of
the healthy and rejection samples. The marker genes of clusters 1 (e) and 6 (f) were classified for their involvement of KEGG signaling
pathways in clusters 1 and 6.
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Figure 3: Gene enrichment analysis of the DEGs in the myeloid subsets. (a) Volcano plot demonstrated the statistical significance (P value)
versus the magnitude of change (fold change) of the DEGs (1 vs. 6). (b) Violin plots showed the percentage and intensity of gene expression by
clusters 1 and 6. (c) CNET plots indicated the network of DEGs in clusters 1 and 6. (d) GSEA identified the upregulated or downregulated
DEGs in the indicated signaling pathway.
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Figure 4: Continued.
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Fcgamma receptor-mediated phagocytosis (Figure 4(b)). The
GSEA confirmed that genes in cluster 6 of the healthy group
promoted transendothelial migration and phagocytosis, which
were lost in the rejection samples (Figure 4(c)).

4. Discussion

The major issue of transplantation is remedying rejection fol-
lowing kidney transplantation and prolonging the survival

time of the recipient. In this regard, immune tolerance
research may contribute to the solution. However, kidney
immunity is a complex network, and the phenotype of
immune cell is time and space dependent. Therefore, a com-
prehensive study of cell heterogeneity is required to under-
stand renal immune homeostasis. The present study
characterized the genetic expression of renal macrophages
at a single-cell resolution and described the changes in resi-
dent macrophages as well as their DEGs during transplant
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Figure 4: Gene enrichment analysis of the DEGs in both the healthy and rejection kidney. (a) Volcano plot showed the statistical significance
(P value) versus the magnitude of change (fold change) of the DEGs in cluster 6 (rejection vs. healthy). (b) Dot plot showed the enriched
KEGG signaling pathways of the cluster 6 marker genes between the rejection and healthy samples. (c) GSEA analysis identified the
upregulated or downregulated DEGs in the indicated signaling pathway (rejection vs. healthy).

12 Journal of Immunology Research



rejection. Using enrichment tools, the main markers of both
resident and infiltrating monocyte/macrophages involved in
kidney rejection were identified and classified.

Due to their high heterogeneity, monocyte/macrophages
are known to have different activation states and play differ-
ent roles. Classically activated M1-type macrophages pro-
mote acute kidney injury, glomerulosclerosis, and renal
interstitial fibrosis by exerting proinflammatory effects, while
alternatively activated M2 macrophages have an anti-
inflammatory effect, promoting wound healing, reducing
renal inflammatory response and fibrosis, and reducing kid-
ney damage [15]. However, little is known about the role of
resident macrophages in healthy kidneys. The present analy-
sis demonstrated that resident macrophages share a certain
similarity with M2 macrophages and decreased during the
rejection response following kidney transplantation. Other
than the known M2 markers, a group of characteristic mole-
cules was also listed, which may serve as a potential target or
help in finding new strategies to reduce damage and promote
repair in the treatment of kidney disease.

By detecting DEGs featuring the resident macrophage,
the relevant signaling pathways of these cells were investi-
gated. In contrast to the M1 macrophage, resident macro-
phages have little effect in autoimmune disease and
allograft rejection. While M1 cells exhibit a strong capacity
in the antigen presentation, resident macrophages upregu-
lated relevant genes during phagocytosis, similar to the phe-
notype of M2 macrophages [16]. Understanding the different
biological functions of various monocyte/macrophages may
help ascertain their role in renal inflammatory response,
injury, and repair. For example, certain immune checkpoint
inhibitor therapies often cause kidney damage without the
detection of any infiltrating inflammatory cells [17]. One
may conceive that such treatments may target and reduce
the number of resident macrophages, which is crucial in
maintaining the homeostasis of the kidney.

A limitation in the present analysis is that the renal rejec-
tion sample was a biopsy from a single patient. Therefore, this
analysis does not represent overall chronic renal rejection and
may only serve as a useful example. In this regard, additional
research is needed in order to describe the immune character-
istics of chronic renal rejection. However, the development
and application of new technologies, such as single-cell
sequencing, transcriptomics, and metabolomics, can propel
kidney transplantation immune research to a new level.
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