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Even in cases of spinal cord injury (SCI) where sensory percep-
tions do not arise from stimuli applied to below-level regions,
sensory input to the spinal cord, carried by spinal sensory
afferents, still occurs and influences the central and autonomic
nervous systems (CNS, ANS). This is true also of the vagal
system which provides non-spinal innervation of viscera below
many spinal cord injuries. It is therefore important to con-
sider (1) how the neurochemical, anatomical, and electrophys-
iological properties of these sensory neurons, and the pro-
cessing of the inputs by the CNS and ANS, is altered by
SCI, (2) whether and how they may play a role in patholo-
gies, and (3) how they may interact with treatment strategies.
This Research Topic addresses plasticity of sensory systems after
SCI, with a non-exclusive focus on systems below the level of
the injury.

POST-SCI AUTONOMIC DYSFUNCTIONS
The ANS controls systems below the level of consciousness and
this is often taken for granted until something goes awry. Those
living with SCI are acutely aware of the functions regulated, or
more often dysregulated, by the ANS. One of the most pressing
of these issues is autonomic dysreflexia (AD), a chronic and com-
mon hypertensive syndrome essentially unique to the high-level
SCI community. It rarely arises acutely after injury (Krassioukov
et al., 2003; Krassioukov, 2004), suggesting mechanisms beyond
just loss of spinal sympathetic outflow regulation by the brain,
and experimental evidence suggests that various forms of plas-
ticity in numerous cell-types may contribute (e.g., Taylor and
Schramm, 1987; Chau et al., 2000; Teasell et al., 2000; Rabchevsky,
2006; Schramm, 2006; Brown and Weaver, 2012). AD is generally
considered an episodic pathology with bouts initiated and main-
tained by a physiological trigger, and is treated symptomatically
and by finding and removing the stimulus. Continuing refine-
ments in our understanding and measurements suggest that the
severe clinical bouts that garner the most attention may be the
tip of the iceberg of a much more insipid and persistent condi-
tion (e.g., Claydon et al., 2006; Krassioukov and Claydon, 2006).
The most frequent triggers of AD appear to be noxious stimuli
below the injury level [anything from a full bladder, an impacted
bowel or a pressure ulcer to an ingrown toenail or simply having
new shoes tied too tightly (e.g., Krassioukov et al., 2009)], plac-
ing focus onto plasticity in nociceptive sensory neurons (Ramer
et al., 2012) for identifying potential mechanisms and treatments
(Rabchevsky et al., 2012), though fundamental questions remain
regarding the actual trigger in humans and experimental model
systems (Macefield et al., 2012).

Additional autonomic functions are served and mediated by
the vagal system, which is not directly impacted by experi-
mental SCI and most clinical SCI. This vital and widespread
system is nonetheless affected by SCI in terms of changes to
electrical and chemical properties of neurons and changes in
their connectivity (Kaddumi and Hubscher, 2007a,b; Holmes,
2012).

PAIN MECHANISMS AND TREATMENT
Chronic pain is not a consequence of SCI that is obvious to
the casual observer, yet it is one of the most common post-
SCI conditions and most impactful on the quality of life of
SCI individuals (e.g., Finnerup and Baastrup, 2012). There are
numerous mechanisms by which SCI-related pain can arise,
some of which we are only now identifying, yet these are still
poorly understood and there are few reliable treatments (e.g.,
Felix et al., 2007; Cruz-Almeida et al., 2009). The effect of SCI
on primary sensory neurons is an emerging topic of investiga-
tion (Huang et al., 2006; Shortland et al., 2006; Ramer et al.,
2012; Walters, 2012) as a possible mechanism of SCI-related
pain and other pathologies such as AD (e.g., Widerstrom-Noga
et al., 2004). New approaches to applying knowledge of noci-
ceptive mechanisms are also being tested as potential treat-
ments for SCI-related sensory pathologies (Gupta and Hubscher,
2012; Lee et al., 2012; Rabchevsky et al., 2012; Ramer et al.,
2012).

EFFECTS OF POST-SCI TRAINING
In addition to a variety of forms of maladaptive plasticity, the
spinal cord caudal to an injury which largely or completely sep-
arates it from the brain is capable of considerable and lasting
adaptive plasticity, particularly activity-dependent plasticity (e.g.,
Edgerton et al., 1992; Hodgson et al., 1994; De Leon et al., 1999;
Edgerton et al., 2001; Frigon and Rossignol, 2006), with some of
this plasticity involving the sensory neurons (e.g., De Leon et al.,
2001; Petruska et al., 2007). The spinal cord is capable of inter-
preting afferent input to learn a task and to counter perturbing
forces or avoid obstacles placed in the path of hindlimbs stepping
on a treadmill, and even retaining this information for a short
time without reinforcement (Zhong et al., 2012). This collective
work suggests that the spinal cord is capable of learning (see also
Ferguson et al., 2012a,b; Grau et al., 2012), and may be capable of
processes akin to formation of short- and long-term memory.

Generally the effects of training appear to be task-specific.
For example, when an SCI animal is trained to step on a
treadmill, this behavior improves, but the performance of other
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tasks, such as standing, does not improve (Edgerton et al., 1997;
De Leon et al., 1998, 1999). However, training does appear to have
effects on some processes outside of the trained task. In animal
models there are demonstrations of reduced spasticity (Bose et al.,
2012), and reduced nociception (Wolpaw and Tennissen, 2001;
Hutchinson et al., 2004; Martin Ginis and Latimer, 2007; Herrity
et al., 2012).

More recently, principles identified from animal experi-
ments have been applied to human experiments and clinical
treatment with some success (Behrman et al., 2005; Barbeau
et al., 2006; Dobkin et al., 2006; Harkema, 2008; Edgerton
and Roy, 2009; Harkema et al., 2011). However, the field still
has much to discover in terms of the characteristics of spinal
plasticity, the necessary and sufficient influencing factors, as
well as certain measures of systems, molecular, and cellular
mechanisms that enable, facilitate, and inhibit such adaptive
plasticity.

MECHANISMS REGULATING SPINAL LEARNING
Research on post-SCI training focuses on optimizing functional
recovery and identifying relevant principles from the sensori-
motor integration perspective. Another approach has examined
the principles of learning that may be at play in the spinal cord
(Ferguson et al., 2012a,b; Grau et al., 2012), with important
concepts emerging about extrinsic factors interfering with suc-
cessful spinal learning (i.e., training). Given the relative success of
activity-based therapies in both animal and human experiments
and the significant effort and resources dedicated to optimizing
these approaches for clinical gain, we must also identify factors
that inhibit recovery (e.g., Caudle et al., 2011; Ferguson et al.,
2012a,b).

In this context it is intriguing that many clinical trials
have exclusion criteria related to conditions that would be
painful for spinal-intact individuals (bladder infection, pres-
sure ulcer, tissue damage, etc.). Common among front-line
therapists are anecdotes of discovering skin abrasions, tread-
mill harnesses pinching skin, bladder infections, and other
covert noxious conditions in patients whose training sessions
were unexpectedly going poorly. These anecdotes suggest
that the powerful influence of the spinal nociceptive sys-
tem on the spinal motor system known from animal work
is also at play in SCI patients/subjects. Unfortunately, these
accounts are not regularly included in data collection, limit-
ing assessments of the role of nociception in activity-dependent
therapies.

These concepts may be involved in other spinal processes.
For example, systems that are accustomed to a certain level

and pattern of activity can “fall out of tune” (e.g., Lundbye-
Jensen and Nielsen, 2008). Also, growth of nociceptive afferent
terminals within the cord contributes to AD (e.g., Cameron
et al., 2006; Brown and Weaver, 2012). However, repeti-
tive natural stimulation, determined to be accompanied by
intraspinal sprouting of afferents, reduces nociceptive reflexes
(Conde and Komisaruk, 2012). Collectively this suggests that
the functional outcome of intraspinal afferent growth may be
dependent on the pattern of information carried by those
afferents and the context of the intraspinal growth. Perhaps
intraspinal growth that is uncoupled from specific patterned
input becomes maladaptive, while growth associated with pat-
terned input is associated with adaptive outcomes [Conde
and Komisaruk, 2012; Ferguson et al., 2012a,b; Grau et al.,
2012; and discussed in Petruska et al. (2007) and Maier et al.
(2009)].

EFFECTS OF SCI ON NEURAL TISSUE REMOTE FROM
THE INJURY
Considering points of similarity and difference among exper-
imental observations makes it clear that many characteristics
of the injury model can have significant impact on the out-
comes being measured (e.g., Cote et al., 2012; Hougland et al.,
2012). Injury to one part of the spinal cord can have signif-
icant impact on systems that were not directly affected (Cote
et al., 2012). The nervous system is particularly susceptible to
such bystander effects because of the close physical proximity of
neurons involved in diverse functions and the array of circuit
interconnections, some of which may not be obvious until there
is an injury. It is therefore beneficial to consider multiple ele-
ments of a system (such as examining sensory neurons and the
spinal cord together when considering sensorimotor responses to
SCI), as they can act differently in response to the same injury
(Hougland et al., 2012).

The SCI condition involves pathologies beyond the spinal
cord itself and the spinal cord disconnected from the brain
can still generate output which relies heavily on the input
it receives from the periphery. Understanding the status of
the afferents providing input to the spinal cord and brain-
stem is of paramount importance. If the “below-level” spinal
cord and the post-SCI vagal system are to be maintained in
a healthy condition, then we must understand the vital roles
that gateway primary afferent neurons play in both acute and
chronic post-SCI pathologies in order to prevent sensory-based
pathologies and direct these neurons to enhance recovery of
function.
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