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Antioxidant proteins play important roles in countering oxidative damage in organisms.

Because it is time-consuming and has a high cost, the accurate identification of

antioxidant proteins using biological experiments is a challenging task. For these reasons,

we proposed a model using machine-learning algorithms that we named AOPs-SVM,

which was developed based on sequence features and a support vector machine. Using

a testing dataset, we conducted a jackknife cross-validation test with the proposed

AOPs-SVM classifier and obtained 0.68 in sensitivity, 0.985 in specificity, 0.942 in average

accuracy, 0.741 in MCC, and 0.832 in AUC. This outperformed existing classifiers.

The experiment results demonstrate that the AOPs-SVM is an effective classifier and

contributes to the research related to antioxidant proteins. A web server was built at

http://server.malab.cn/AOPs-SVM/index.jsp to provide open access.

Keywords: antioxidant proteins, machine-learning, sequence features, support vector machine, classifier

INTRODUCTION

The antioxidant system in organisms has the ability to prevent damage caused by reactive oxygen
species (ROS) (Siswoyo et al., 2011). The ROS, which include hydrogen peroxide, singlet oxygen,
superoxide anion radical, hydroxyl radical, and nitric oxide, are the product of the metabolism and
influence fatty acids, proteins, and DNA (Sögüt et al., 2003). An excess of ROS or the depression of
the antioxidant system can lead to oxidative stress (Zima et al., 2001; Krishnaiah et al., 2007). This
oxidative stress may then go on to lead to a series of pathological conditions such as heart disease,
malaria, neurodegenerative diseases, AIDS, cancer, and the aging process (Ames, 1983; GEY, 1990;
Ames et al., 1993; Smith et al., 1996; Diaz et al., 1997; Yang et al., 2019a).

Natural antioxidants are regarded as the second antioxidant defense line in organisms (Yigit
et al., 2014), and have recently attracted increasing attention from researchers. Such antioxidants
are mainly extracted from dietary sources such as fruits, vegetables, and foods with carotenoids and
vitamin A (Geetha et al., 2002; Podsedek, 2007; Tang et al., 2019a,b). When these antioxidants are
consumed, they scavenge from the ROS andminimize the oxidative stress, thus reducing the risk to
organisms (Yang et al., 2017). Many extracted or purified proteins are used as natural antioxidants,
including soy proteins, lactoferrin, casein, β-lactoglobulin, canola proteins, yam dioscorin, egg
albumen proteins, maize zein, egg yolk phosvitin, and potato patatin. In addition, proteins extracted
from fertilized eggs, jellyfish, white beans, chickpeas, melinjo (gnetum gnemon) seeds, and ginkgo
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biloba seeds were also reported to have antioxidant properties
(Rajalakshmi and Narasimhan, 1996; Chiue et al., 1997;
Maheswari et al., 1997; Kouoh et al., 1999; Satué-Gracia et al.,
2000; Hou et al., 2001; Liu et al., 2003; Cumby et al., 2008;
Huang et al., 2010; Li et al., 2017). In vitro assay systems are
commonly employed to identify the antioxidant activity of a
new protein, including any scavenging effect on DPPH and
ABTS, the inhibition of linoleic acid autoxidation, any chelating
or strength-reducing capabilities, and protections against DNA
damage caused by hydroxyl radical-mediation (Liu et al., 2003;
Dastmalchi et al., 2008; Sachindra and Bhaskar, 2008; Huang
et al., 2010; Fu et al., 2018). However, the in vitro experiment
is time-consuming and inefficient. Therefore, to increase the
success rate, it is desirable to develop a classifier to confirm
antioxidant proteins prior to the in vitro experiment.

Recently, several researchers have used a computational
approach to the identification of antioxidant proteins. Enrique
Fernandez-Blanco et al. used star graph topological indices and
random forests to develop a model for identifying antioxidant
proteins (Fernández-Blanco et al., 2013). However, when
analyzing the dataset, we found that the sequences used for the
training model do not include the removal of redundant data.
As a result, data similarity increases, which makes the results of
the model untrustworthy. In 2013, Feng et al. developed a Naive
Bayes model based on a sequence feature (Feng et al., 2013b),
and in 2016, they constructed a model named AodPred based
on the support vector machine using a 3-gap dipeptides feature
(Feng et al., 2016). Xu et al. also used the support vector machine
to construct a model to identify antioxidant proteins (Xu et al.,
2018). The latter two models were built on the same training
dataset and included a sequence to remove redundant data. The
analysis of the results indicates that there is room to improve the
identification accuracy. The training set for ourmodel is the same
as the two models mentioned above. In the bioinformatics field,
applying computational methods to identify a particular protein
mainly requires machine-learning techniques. The process can be
divided into two main steps: (1) extracting features from protein
sequences, and (2) constructing classifiers.

The first step is to extract discriminative features from
a protein sequence. Sequence-order information or its
combination with biochemical characteristics of proteins is
a common approach. The most popular is the pseudo amino
acid (PseAAC) method proposed by Shen and Chou (2006).
Subsequently, many methods based on PseAAC have emerged
(Liu et al., 2015, 2017; Zhu et al., 2015, 2018; Chen et al., 2016;
Tang et al., 2016; Yang et al., 2016). In addition, there are also
features to indicate the evolutionary and secondary structure
information, primarily the PSI-BLAST (Altschul et al., 1997) and
PSI-PRED (Jones, 1999) profiles. Then, a dimension-reduction
algorithm is often applied to reduce the redundant information
of extracting features (Liu, 2017; Tang et al., 2018; Xue et al.,
2018; Tan et al., 2019; Zhu et al., 2019); these include ANOVA
(Anderson, 2001; Ding and Li, 2015; Li et al., 2019b), mRMR
(Peng et al., 2005), and MRMD (Zou et al., 2016b). These
algorithms rank the features using certain criteria and then
select the optimal feature. In the second step, classification
algorithms have been applied to train on the optimal feature

set and construct model. The support vector machine has been
widely used and has obtained good results (Ding and Dubchak,
2001; Shamim et al., 2007; Yang and Chen, 2011; Feng et al.,
2013a; Zou et al., 2016a; Ding et al., 2017; Chen et al., 2019).
Furthermore, other classification methods, such as the hidden
Markov mode (Bouchaffra and Tan, 2006), random forests
(Dehzangi et al., 2010), and neural networks (Chen et al., 2007)
have been used in this step. There are also ensemble classifiers.
For example, Zou et al. proposed libD3C (Lin et al., 2014), which
integrates multiple weak classifiers and voting for the final result.

MATERIALS AND METHODS

Benchmark Dataset
We used the same dataset as Feng and Xu et al. The positive
dataset was generated as follows. (1) The sequences marked
as “antioxidant” in the Universal Protein Resource (Uniport)
(2014_02 release) were selected. (2) Sequences that contained
residues such as “B,” “X,” and “Z,” were eliminated because of
their uncertain meaning. (3) The protein sequences labeled with
“reviewed” were the only ones considered to ensure that the
selected sequences had been verified through experiments. The
negative dataset was constructed with a list of PISCES-culled PDB
(Wang and Dunbrack, 2003) proteins with identification values
<20%, in the same manner as Fernández-Blanco et al. (2013).
These steps resulted in 710 positive samples and 1,567 negative
samples. To avoid a low quality dataset that may incorrectly
predict the result, the CD-HIT program (Fu et al., 2012) was
applied with a 60% threshold to obtain a benchmark dataset.
This final dataset included 253 antioxidant proteins and 1,552
non-antioxidant proteins, which can be expressed as follows:

Set = Set+ ∪ Set− (1)

Where Set+ represents the positive dataset (the 253 antioxidant
proteins); Set− represents the negative dataset constructed from
1,552 non-antioxidant proteins; and the “∪” symbol indicates
that the benchmark dataset consisted of positive and negative
datasets. The proportion of positive and negative samples is∼1:6,
which represents an unbalanced dataset.

Feature Extraction
In this study, we used the feature extraction algorithm
(abbreviated as 473D) proposed by Wei et al. (2015). This
algorithm generates 473 discrete features based on the PSI-
BLAST (Altschul et al., 1997) and PSI-PRED (Jones, 1999)
profiles. The former contains the evolutionary information and
the latter contains the secondary structure information of the
protein sequence. First, a protein with a number of amino acid
residues is defined as:

S = A1A2A3 . . .An−1AL (2)

where Ai means the ith amino acid residue of a protein sequence.
Then, the 473D feature is extracted from the protein sequence in
the following steps.

(1) Extract 20 features from a position-specific score matrix
(PSSM) (Xiong et al., 2018). The PSSM is a matrix generated by
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running the PSI-BLAST program on a protein sequence of length,
which is represented as (Wei et al., 2015)

MPSSM =
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s.t. 1 ≤ i ≤ L (3)

where each PSSM matrix entry is equal to the muting score of
the ith amino acid residue in protein sequence S and the nth
amino acid residue in the amino acid alphabet. The value of
entries in MPSSM are grouped by the same column and averaged
to form 20 values. Then, they are combined to generate a vector
Fpssm with a length of 20, which can be formulated as follows
(Wei et al., 2015):

Fpssm =
{

(f1, f2, . . . , fn, . . . , f20)
∣

∣ fn

=
1

L

∑L

i=1
pi,n and 1 ≤ n ≤ 20} (4)

where fn equal to the average score of each residue in
the sequence S, mutating to nth amino acid residue in the
evolutionary process.

(2) Extract 20 one-gram and 400 two-gram features from the
frequency matrix. Each entry in the PSSM matrix multiplied
by the corresponding background frequency is taken as the
exponent and two (2) is the base. Then, the frequency matrix is
obtained by a power operation as follows (Wei et al., 2015):

Mfrequency =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2p1,1×bf 1 2p1,2×bf 2 . . . 2p1,20×bf 20

2p2,1×bf 1 2p2,2×bf 2 . . . 2p2,20×bf 20

...
2pi,1×bf 1

...
2pL,1×bf 1

...
2pi,2×bf 2

...
2pL,2×bf 2

...
. . .

...
. . .

...
2pi,20×bf 20

...
2pL,20×bf 20

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L×20

s.t. 1 ≤ i ≤ L

(5)

where Mfrequency is the frequency matrix, pi,n is the PSSM ith
row and nth column entry, and bfj is the background frequency
of amino acid in the amino acid alphabet (The value of bfj
is provided on the website http://server.malab.cn/AOPs-SVM/
data.jsp). The consensus sequence is generated from the first row
to Lth row of Mfrequency per the following criteria. To ith row

of the Mfrequency, determine the largest entry 2pi,j×bfj according
to its column order, and choose the jth amino acid in the
amino acid alphabet. Repeat this step L times to generate a new
consensus sequence Sc. From the analysis of the above process, it
is concluded that Sc is the evolutionary result of S, because each
amino acid residue in S is replaced by the most frequent amino
acid to generate Sc. Then, a one-gram and two-gram algorithm
are used to extract the frequency of occurrence features from the
sequence Sc. The one-gram algorithm calculates the frequency
of 20 amino acids residue in the sequence, and the two-gram

algorithm calculates the frequency of 20×20 possible amino acid
residue adjacent pairs in the sequence, which are represented by
(Wei et al., 2015):

F1−gram =
{

(f1, f2, . . . , fn, . . . , f 20)
∣

∣ fn

=
1

L
O (Ai) and 1 ≤ i ≤ 20 } (6)

F2−gram =
{

(f1, f2, . . . , fn, . . . , f 20×20)
∣

∣ fn

=
1

L− 1
O

(

AiAj

)

and 1 ≤ i, j ≤ 20} (7)

where O (x) means the occurrence time of x, Aj is the amino acid
alphabet, which can be a single amino acid residue Ai or amino
acid residue adjacent pair AiAj, and L is the sequence length.
Then, by proportionally weighting F1−gram and F2−gram, the 420
features are obtained, which are represented as (Wei et al., 2015)

{

F′1−gram, F
′
2−gram

}

=
{

F1−gram ×
20

420
, F2−gram ×

400

420

}

(8)

(3) Extract six features from the PSI-PRED secondary structure
sequence. Program PSI-PRED can generate a secondary structure
sequence Sstructure from protein sequence S, which is represented
as (Wei et al., 2015):

Sstructure = T1T2T3 . . .Ti . . .TL−1TL s.t. Ti ∈ {H,E,C} and
1 ≤ i ≤ L (9)

where H, E, and C represent the secondary structure states
of helix, strand, and coil, respectively. This means that the
secondary structure sequence Sstructure is generated by each amino
acid residue in protein sequence replaced by one of letter inH, E,
and C. Then, from the sequence Sstructure, extract five features as
follows (Wei et al., 2015):

FH =
∑Counth

i=1 Posih

L(L− 1)
(10)

FE =
∑Counte

i=1 Posie

L(L− 1)
(11)

FC =
∑Countc

i=1 Posic

L(L− 1)
(12)

FMax_E =
Max_Lengthe

L
(13)

FMax_H =
Max_Lengthh

L
(14)

Where Counth, Counte, and Countc are the total number of
the H, E, and C in Sstructure; Posih, Posie, and Posic represent
the position index of H, E, and C respectively; Max_Lengthe
and Max_Lengthh are the largest numbers of continuous E and
H. Then, transfer Sstructure to the segment sequence Ssegment

by deleting coil states and continuous H and E are treated as
segment H and segment E, and expressed in terms of α and β,
respectively (Zhang et al., 2011). For instance, structure sequence
EECCCHHHEEECHHHEECCEE can be transfer to segment
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sequence βαβαββ. Then, frequency of segment βαβ in Ssegment is
defined as a feature and formulated as (Wei et al., 2015)

Ffrequency_βαβ =
Countβαβ

L− 2
(15)

where Countβαβ is the total number of segment βαβ.
(4) Extract 3 global and 24 local structural features from

the structure probability matrix. Structure probability matrix
Mprobability also is the profile of PSI-PRED on sequence, which
can be represented by (Wei et al., 2015)

Mprobability =
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s.t. 1 ≤ i ≤ L (16)

where proi,1, proi,2, and proi,3 are the probability values of amino
acid residue in sequence to predict as secondary structure states
of “C,” “H,” and “E,” respectively. Thus, this matrix has L rows.
Three global structural features are calculated by averaging each
column value as follows (Wei et al., 2015)

Fpro_global =

{

∑L
i=1 Proi,1

L
,

∑L
i=1 Proi,2

L
,

∑L
i=1 Proi,3

L

}

(17)

Then Mprobability is divided into λ sub-matrices and three global
structural features as Exp. (17) are calculated separately. Finally,
obtain λ×3 features. We chose the λ = 8 in this study, which are
represented as (Wei et al., 2015)

Fpro_local = {fprolocal1 , fprolocal2 , . . . , fpro_local_i, . . . , fpro_local_8}
s.t. 1 ≤ i ≤ 8 (18)

where fpro_local_i express three values consisting of the average of
each column value in the submatrix. Therefore, there are 8 × 3
elements in vector Fpro_ local.

Finally, the above features are combined in the following order
to form the 473D feature, which is represented as (Wei et al.,
2015):

{F′1−gram, F
′
2−gram, Fpssm, FH , FC, FE, FMax_H , FMax_E,

Ffrequency_βαβ, Fpro_local, Fpro_global} (19)

Feature Selection
Feature selection aims to select a subset of features to
improve the generalization capacity of the learning models.
The Max-Relevance-Max-Distance algorithms (MRMD)
(Zou et al., 2016b) was utilized for feature selection. It
has two steps—ranking features and selecting optimal
feature sets.

First, calculate the MRMD score of each feature vector. The
MRMD score of a feature vector consists of a relevant value
and a distance value. The former indicates the relevant value

of a feature and target class vector, and it equals the Pearson
correlation coefficient (Xu and Deng, 2018) between the feature
and target class vector, which is calculated using the following
formula (Zou et al., 2016b):

RV i = PCC(fi, c) =
∑N

k=1 (fi (k) − fi)(c (k) − c)
√

∑N
k=1 (fi (k) − f i)

2
√

∑N
k=1 (c (k) − c)

2

(20)

where f i = 1/N(
∑N

k=1 fi
(

k
)

and similarly c = 1/N(
∑N

k=1 c
(

k
)

.
fi is the ith feature vector and c is the target class vector, which
consists of 0 and 1 in this study. RVi is relevant value of ith feature
vector and equals to Pearson correlation coefficient between fi
and c. N is the number of elements in a feature vector, and equals
the total number of samples in the dataset. fi

(

k
)

denotes the kth
element of feature fi.

The distance value is a measurement of feature redundancy
and is calculated by the Euclidean distance function as follows
(Zou et al., 2016b; Dong et al., 2019):

DVi =
1

N

∑N

j=1
ED(fi, fj) (21)

where DVi is the distance value of the ith feature vector. ED(fi, fj)
denotes the Euclidean distance of ith and jth feature vector and
is formulated by (Zou et al., 2016b):

ED(fi, fj) =
√

∑N

k=1
(fi (k) − fj(k))

2

(22)

Based on Equations (20) and (21), the MRMD score of feature fi
is defined as (Zou et al., 2016b)

MRMD_scorei = RV i + DV i (23)

Inverse sorting of feature set (19) using MRMD score to obtain
new feature set F′, which is represented as

F′ = [f1
′, f2

′, · · · , fn−1
′, fn

′] (24)

Candidate subsets were constructed by adding from
features in F′ one-by-one each time in ranking order,
and can be expressed as: [f1′], [f1′, f2′], [f1′, f2′, f3′] . . .
f1
′, f2′ . . . , fn−1

′, fn′. Then, the above subsets were fed into
random forest and construct models separately. Among them,
a subset of the best performance is selected as the optimal
feature set.

Support Vector Machine
Support Vector Machine (SVM) has been widely used in
the bioinformatics fields and has performed excellently (Cao
et al., 2014; Stephenson et al., 2019). SVM is a method based
on the theory of Vapnik–Chervonenkis Dimension (Vapnik
et al., 1994) (VC Dimension) and structural risk minimization.
SVM maps low-dimensional data to high-dimensional space
and uses hyperplane to segment different labeled data. In
this study, we chose the toolbox LIBSVM 3.21 (Chang and
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Lin, 2011) to execute the SVM. It can be downloaded from
https://www.csie.ntu.edu.tw/~cjlin/libsvm/. The default kernel
function—the radial basis function (RBF) was adopted, and
python program grid.py in the toolbox LIBSVM 3.21 was
used to search the optimized value of the penalty constant C
and the kernel width parameter γ . To correctively evaluate
a model with an unbalanced data set, the official website
provides a tool that enables LIBSVM to conduct cross-
validation with respect to other criteria, including F-score, AUC
(Area Under Curve), precision, recall, and more (this tool is
available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/eval/
index.html).

Proposed Classifier Flowchart
We proposed a sequence-based classifier using a support
vector machine named AOPs-SVM; a flowchart is presented in
Figure 1. The AOPs-SVM procedure consists of three phases:
(1) feature extraction, (2) feature selection, and (3) model
generation. In phase (1), the input protein sequences are
processed by the PSI-BLAST and the PSI-PRED programs.
The resulting profiles generate 473-dimension (473D) discrete

vectors, including evolutionary information and secondary
structure information. Then, in phase (2), these 473D vectors
were fed into the MRMD method to rank and select the
optimal feature set by random forest. In the model generation
phase, the SVM was applied to generate a model on the
optimal feature set. Lastly, this model was optimized by
selecting the optimal value for the penalty constant C and
the kernel width parameter γ by grid search in terms of
F1 score.

Measurement
There are three kinds of evaluation methods commonly used
in bioinformatics fields: an independent test, a k-fold cross
validation and a jackknife test (Wei et al., 2017a,b, 2018;
Chen et al., 2018; Liu et al., 2018a,b; Ding et al., 2019;
Lv et al., 2019; Yang et al., 2019b). In a jackknife test,
each sample is tested by the model, which is trained by
all other samples. In this study, we applied the jackknife
test, as it is the most rigorous and least arbitrary method.
Considering the unbalanced dataset used, sensitivity (Sn),
specificity (Sp), accuracy (Acc), and Mathew’s correlation
coefficient (MCC) were employed as the evaluation metrics.

FIGURE 1 | AOPs-SVM flowchart. The original dataset (positive and negative dataset) is processed in three phases. (A) In the feature extraction phase, two types of

profiles are constructed using the PSI-BLAST and PSI-PRED programs. Then, 473D discrete vectors are generated by combining evolutionary information and

secondary processing feature information, including 20D PSSM features, 20D 1-g, 400D 2-g features, 6D secondary structure sequence features and 27D global and

local structural features. (B) In feature selection phase, ranking the 473D features by MRMD score and selecting optimal feature set by Random Forest. (C) At last, in

model generation phase the optimal feature set is fed into SVM to generate the AOPs-SVM model and optimize it via a grid search.
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The F1 score was used as the criterion for optimizing
the model.

Sn =
TP

TP + FN
(25)

Sp =
TN

TN + FP
(26)

Acc =
TN + TP

TN + FP + FN + TP
(27)

F1 = 2×
TP

TP+FP × TP
TP+FN

TP
TP+FP + TP

TP+FN

(28)

MCC =
TN × TP − FP × FN

√
(TP + FP)× (FN + TN)× (TP + FN)× (TN + FP)

(29)

where TP, FP, FN, and TN indicate true positive, false
positive, false negative, and true negative, respectively. In
addition, Area Under Curve (AUC) is an important metric
and accurately measures the overall performance of the
model. It is the value of the area enclosed by the receiver
operating characteristic curve (ROC curve) and the two
coordinate axes. The ROC curve is a continuous line plotted
by (1 − Sp) as X-coordinate and Sn as the Y-coordinate.
The larger the AUC value, the better the performance of
the model.

RESULTS AND DISCUSSION

Determination of Parameters
There are two groups of parameters that have to be determined
in the proposed classifier: the parameters associated with the
random forest in the feature selection phase, and the parameters
associated with the optimizing SVM in the model generation
phase. The random forest parameters were initialized as follows:
the number of trees was set to 100; the number of features
to use in random selection was set to 0; the seed for the
random number generator was set to 1; and the maximum
depth of the tree was 0 for unlimited. The grid.py parameter
selection tool was applied to evaluate the SVM in the model
generation phase with F1 criteria under jackknife test. It involved
searching the optimized value to penalty constant parameter C
and the kernel width parameter γ . logarithmic function was
adopted and set the searching range of logc2 as {−5,15} with
step of 0.5, similarly, searching range of logγ

2 is {3,−15} with a
step of−0.5.

Performance of the Proposed Classifier
The 473D features were extracted in the feature extraction phase
and ranked by MRMD score. The random forest method was
applied and a 176D optimal feature set was selected. Then, this
optimal feature set was fed into the SVM model and optimized

FIGURE 2 | Performance comparison of the AOPs-SVM and other classifiers. (A) Compares other SVM models generated on the original feature set (473D).

SVM-473D and SVM-473D-weight are the classifiers that the SVM trained on the original feature set in straight and weighted manner (negative: positive = 1: 6).

(B) Comparing with three other traditional classifiers on optimal feature set (176D). RandomForest-176D, BayesNet-176D, and AdaBoostM1-176D are

RandomForest, BayesNet and AdoBoostM1 on optimal feature set, respectively. (C) Comparing with other SVM models based on optimal feature set generated by

ANOVA and mRMR respectively. ANOVA, mRMR generated 302D and 180D optimal feature set, respectively. (D) Comparing with state-of-the art methods. “<”

denotes that Sn and SP of SeqSVM are <0.65 and 0.935, respectively.
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FIGURE 3 | The MRMD score and composition of the optimal feature set. The X-coordinate corresponds to 473 features; the Y-coordinate is the value of the MRMD

score and participation rate. The orange vertical line represents the MRMD score of the 176 optimal feature set. Just as with the original feature set, the optimal

feature set also consists of 6 feature types. The six horizontal lines represent the participation rates of each feature: 20D 1-gram feature (yellow); 400D 2-g feature

(blue); 20D feature from PSSM (black); 6D secondary structure feature (red); and 27D global and local feature (green). We defined the participation rate as equal to the

number of each feature type in the 176 feature set divided by the total number of corresponding features. For example, the 6D secondary structure feature (red) are all

selected for inclusion in the optimal feature set, so the participation rate is 1.

TABLE 1 | MRMD score of Fpssm.

Order F421/A F422/R F423/N F424/D F425/C F426/Q F427/E F428/G F429/H F430/i

MRMD score 0.271886 0.443691 0.427483 0.486034 0.870973 0.355192 0.360546 0.628175 0.499345 0.500683

Order F431/L F432/K F433/M F434/F F435/P F436/S F437/T F438/W F439/Y F440/V

MRMD score 0.508348 0.355434 0.414661 0.649391 0.672217 0.286041 0.289247 1 0.560823 0.408259

to generate the proposed AOPs-SVM classifier. To evaluate the
performance of the proposed classifier, we conducted a series of
comparisons, the results of which are presented in Figure 2.

The proposed AOPs-SVM classifier achieved 94.2% in ACC,
0.68 in sensitivity, 0.985 in specificity, 0.741 in MCC, and 0.832
in AUC. As seen in Figure 2A, the AOPs-SVM achieves the same
performance with the SVM-473D, which is much better than the
SVM-473D-weight. This demonstrates that the feature selection
phase effectively solves for data redundancy when the feature set
shrinks from 473D to 176D. In Figure 2B, although the random
forest, Bayes Net, and AdoBoostM1 all achieve high specificity
scores, they are inefficient in sensitivity, while two are even lower
than random classification. This shows that the SVM produces a
more balanced result on an optimal feature set compared to three
other candidate classifiers. Figure 2C shows that AOPs-SVM is
superior to SVM-mRMR-180D and SVM-ANOVA-302D. This
result demonstrates that theMRMD algorithm not only results in
a lower dimension (176D), but also retains the important features

in the optimal feature set. In Figure 2D, the performance of the
proposed classifier is compared to the AodPred (Feng et al., 2016)
and SeqSVM (Xu et al., 2018) in term of sensitivity, specificity,
and accuracy. The AOPs-SVM is slightly lower than AodPred for
sensitivity. However, it outperforms the other two classifiers in
specificity and accuracy.

Feature Contribution and Importance
Analysis
Section Performance of the Proposed Classifier noted that the
proposed AOPs-SVM classifier was trained on the optimal
feature set (176D), and achieved the same performance as
the SVM trained on the original feature set (473D). This
demonstrates that the optimal feature set retained the important
features. The MRMD score and feature composition of the
optimal feature set (176D) are shown in Figure 3.

When comparing the six horizontal lines, the 20D feature
from the PSSM, the 6D secondary structure features,
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and the 27D global and local features corresponding

to Fpssm,
{

FH , FC, FE, FMaxH , FMaxE , Ffrequencyβαβ

}

and
{

Fprolocal , Fproglobal

}

of Equation (19), respectively, achieve

the highest participation rate with reaching 100%. The latter two
features come from PSI-PRED profile. It indicates that secondary
structure information extracted from PSI-PRED profiles
highly contributes to the antioxidant protein identification
task. Analysis from the view of combining MRMD score
and participation rate, the 20D feature from matrix PSSM,
that is Fpssm in Equation (4), obtains the highest 20 MRMD
scores and all of them appear in the 176D optimal feature
set. It indicates that 20 evolutionary features in Fpssm have the
most relevance to the target classification, but have the least
redundant information. Therefore, we can conclude from a
bioinformatics perspective that Fpssm can be selected as an
important marker for identifying antioxidant proteins. These 20
Fpssm features’ MRMD scores are shown in Table 1, where the
odd-numbered rows are the order number of features slashed by
the corresponding mutating residue. The even-numbered rows
are the MRMD scores.

CONCLUSIONS

In this paper, we proposed a novel approach for identifying
antioxidant proteins, and constructed a classifier called AOPs-
SVM. The 473D discrete features, including evolutionary
information and secondary structure information, were extracted
from the training set. To eliminate redundant data, the MRMD
algorithm was applied and the 176D optimal feature set was
obtained. Then, the AOPs-SVM was generated by an SVM

model based on the optimal feature set. Experimental results
show that the proposed classifier is superior to other classifiers,
including state-of-the art methods. In addition, we analyzed the
contribution and composition of the optimal feature set using
bioinformatics techniques. In the future, we will attempt to
improve the performance achieved in this study by (1) searching
and combining potential and significant features, as well as by
using a more effective feature selection approach (Yu et al., 2018);
and (2) adopting other classifying algorithms, such as extreme
learning (Li et al., 2019a) and deep learning (Cao et al., 2017;
Long et al., 2017; Conover et al., 2019; Hou et al., 2019; Zhang
et al., 2019; Zou et al., 2019), etc.
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