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Stimulation‑related modifications 
of evolving functional brain 
networks in unresponsive 
wakefulness
Christoph Helmstaedter1,2*, Thorsten Rings2,3, Lara Buscher1, Benedikt Janssen1, 
Sara Alaeddin1, Vanessa Krause1, Stefan Knecht1 & Klaus Lehnertz2,3,4

Recent advances in neurophysiological brain network analysis have demonstrated novel potential 
for diagnosis and prognosis of disorders of consciousness. While most progress has been achieved on 
the population-sample level, time-economic and easy-to-apply personalized solutions are missing. 
This prospective controlled study combined EEG recordings, basal stimulation, and daily behavioral 
assessment as applied routinely during complex early rehabilitation treatment. We investigated global 
characteristics of EEG-derived evolving functional brain networks during the repeated (3–6 weeks 
apart) evaluation of brain dynamics at rest as well as during and after multisensory stimulation in ten 
patients who were diagnosed with an unresponsive wakefulness syndrome (UWS). The age-corrected 
average clustering coefficient C* allowed to discriminate between individual patients at first (three 
patients) and second assessment (all patients). Clinically, only two patients changed from UWS to 
minimally conscious state. Of note, most patients presented with significant changes of C* due to 
stimulations, along with treatment, and with an increasing temporal distance to injury. These changes 
tended towards the levels of nine healthy controls. Our approach allowed to monitor both, short-term 
effects of individual therapy sessions and possibly long-term recovery. Future studies will need to 
assess its full potential for disease monitoring and control of individualized treatment decisions.

Acute brain damage can lead to severe disorders of consciousness (DOC). The changing age structure of the 
population and improved medical care for acute neurological diseases of the central nervous system (CNS) 
cause an increasing number of survivors with an unresponsive wakefulness syndrome (UWS, synonyms: vegeta-
tive state, apallic syndrome) or with a minimally conscious state syndrome (MCS) in an intensive care setting. 
A systematic review from 2014 on studies of the prevalence of UWS shows a wide range from 0.2/100,000 to 
6.1/100,000 inhabitants1. In Germany, between 1500 and 5000 patients are in such a condition2. The reported 
prevalence values, however, vary considerable, which has been attributed to factors like the quality and avail-
ability of emergency and intensive care services as well as different cultural, political, professional, and judicial 
attitudes towards end-of-life decisions in different clinical settings3, 4.

Patients with chronically impaired consciousness are among the most vulnerable patient groups. They are 
exposed to the help and interests of others. Intensive care can recover functions of phylogenetically and ontoge-
netically older life-sustaining brain structures, but higher cortical, cognition- and consciousness-supporting 
structures are damaged with an often uncertain outcome. The capability of observing consciousness would allow 
therapies to be better adapted to the individual needs of each patient. Moreover, it would enable to decide how 
long life support should be maintained5, 6. Other relevant issues connected to this are pain (“does the patient 
suffer?”), brain death, and organ donation7, 8.

Electroencephalography (EEG) provides a simple and reliable way to access the brain’s activity in a state of 
unresponsiveness9, 10. In this regard, great hopes are currently being placed on new developments that indicate 
the presence and the degree of brain functionality and the prognosis of the recovery of consciousness using func-
tional-imaging-based (e.g. functional magnetic resonance imaging, fMRI) or EEG-based network analyses11–21. 
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A meta-study on the persistent vegetative state and minimal state of consciousness from 2015 examined 20 
studies with a total of 906 patients and compared different methods of assessment2. The overall conclusion is that 
positron emission tomography (PET) and quantitative EEG examinations in particular provide complimentary 
information in different states of consciousness. Resting-state EEG and fMRI are the state-of-the-art techniques 
with a huge potential for predicting the recovery of coma patients. Apart from relying on resting-state condi-
tions, electrophysiological and imaging studies have made use of different stimulation conditions including 
transcranial magnetic stimulation or electric stimulation to assess and to predict recovery of consciousness22, 

23. However, as pointed out in a recent systematic review on the role of electrophysiology in DOC, complex 
recording protocols, a confusing variety of EEG measures, and complicated analysis algorithms yet prevent a 
broader systematic application24.

From a methodological and particularly from a pragmatic point of view, the following questions should be 
asked of any method for the monitoring of brain activity changes associated with consciousness and for the 
prognosis of DOC:

•	 Which paradigms and analysis methods are valid and reliable (repeatable) in the individual patient?
•	 Is the method suitable for different types of traumatic brain injuries and for the conditions of acute, subacute 

and chronic damage?
•	 How objective and easy is the data evaluation?
•	 What are the costs, the technical and logistical efforts, and the availability on site?

With a view to answering these questions in the future, we investigated patients who—from a clinical point 
of view—were indistinguishable with the diagnosis of an unresponsive wakefulness syndrome (UWS). Specifi-
cally, we tracked—in a time-resolved manner—important global characteristics (average clustering coefficient 
and average shortest path length) of the patients’ EEG-derived evolving functional brain networks during a 
repeated evaluation of brain activity at rest as well as during and after therapeutic basal stimulation. The average 
clustering coefficient C characterises a network’s functional segregation; the higher C, the more segregated is 
the network. The average shortest path length L characterises a network’s functional integration; the shorter L, 
the more integrated is the network.

Our proof-of-principle study aims at a first validation of these global network characteristics for a repeated 
assessment and automated evaluation on the level of the individual patient. We investigated repeated resting-state 
recordings and recordings during multisensory stimulation in a block design. At this initial stage of the investiga-
tion, we did not yet differentiate between individual types of sensory stimulation (auditory, visual, tactile) within 
the stimulation block. Thus, the study design differs from previous studies that focused solely on resting-state 
and/or individual stimulation types22, 24, as well as from studies, which evaluated functional brain networks on 
a population-sample level11, 21, 25. However, our study design raises the idea that a repeated assessment might 
reveal additional information26. In particular, we addressed the following three research questions: (I) do global 
network characteristics differ in patients with clinically indiscriminate states of unresponsive wakefulness/UWS 
(improved patient classification)? (II) Do global network characteristics indicate functional recovery and success 
of continuous early rehabilitation complex treatment (long-term treatment effects)? And (III), do global network 
characteristics indicate the brain’s response to single basal multisensory therapeutic interventions (short-term 
treatment effects)?

Results
We monitored a group of ten patients (“Methods”, Table 3) diagnosed with an unresponsive wakefulness syn-
drome who had been submitted for early rehabilitation to the St. Mauritius neuro-rehabilitation center in Meer-
busch, Germany during the period 2019 to 2020. The patients’ Coma Recovery Scale (CRS-R; “Methods”) scores 
ranged between 2 and 8 of 23 possible points. In addition, we investigated nine healthy controls (five females; 
age 26–60 years).

In addition to the daily rehabilitation complex treatment (“Methods”), all patients were evaluated twice with 
EEG recordings (“Methods”) within a time frame of 3–6 weeks. Along with each assessment, the CRS-R was 
documented. The two assessments (A1 and A2) lasted about 30 min each and so did the EEG recording. Each 
assessment followed the same schedule (Fig. 1): a 6-min pre-stimulation baseline (B1), followed by three 3-min 
stimulation blocks (stimulation S), separated by two 3-min rest conditions, followed by a 6-min post-stimulation 
baseline (B2). Stimulation blocks comprised stimulations in three modalities: somatosensory, auditory, and visual. 
For each modality, different stimuli were used in an alternating sequence (cold, massage, brushing/rubbing; 
clapping hands, buzzing tone, speech; flashing light, still images, moving object). We took care that all patients 
had their eyes open during the assessments. All patients were moved into a supine position and exposed to each 
type of stimulation for one minute (30 s for each side of the body), always starting at the left side.

Healthy controls were evaluated in single sessions and were instructed to let their thoughts run freely during 
the whole assessment. Controls were awake and had their eyes open, as this condition would be the ultimate 
therapeutic aim to reach in patients with DOC.

Global network characteristics allow additional patient classification.  We first examined whether 
the global characteristics of evolving functional brain networks (“Methods”) allow for an additional patient clas-
sification. In Fig. 2, we present the patients’ distributions of average clustering coefficients C and average shortest 
path lengths L of evolving functional brain networks during period B1 at first and second assessment (A1 and 
A2) together with the distributions of the healthy controls. There was a large interindividual variability despite 
the fact that all patients were clinically classified as UWS. As it can be taken form Fig. 2, both global network 
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characteristics differentiated the patients from healthy controls. However, a more detailed investigation revealed 
that the characteristics demonstrated a highly significant inverse relationship (Spearman’s ρ = − 0.93; p < 0.01): 
the lower C the higher L. We therefore restricted all subsequent analyses to the average clustering coefficient.

Searching for the source of the large interindividual variability of the average clustering coefficient, we 
observed this network characteristic to be strongly influenced by age: the higher the age the lower the aver-
age clustering coefficient C (Fig. 3). This was the case for first assessment (A1: Spearman’s ρ = − 0.83, p < 0.01) 
and could be confirmed for the second assessment (A2: Spearman’s ρ = − 0.7, p < 0.05). The age-effect was also 
observed in the healthy control group (Spearman’s ρ = − 0.66, p < 0.01).

In order to avoid a possible confounding effect on subsequent analysis steps, we proceeded with age-corrected 
average clustering coefficients (C* = C – age [y] s [1/y]) to investigate whether this network characteristic allows 

Figure 1.   Top: examination schedule comprising two baseline conditions (6 min. each) prior to and after a 
multisensory stimulation block (18 min.) probing the somatosensory, auditory, and visual modalities. Bottom: 
exemplary temporal evolution of the clustering coefficient along the examination schedule. A 7-point sliding 
average is indicated by the black line.

Figure 2.   Sample distributions of average clustering coefficient C (left) and average shortest path length 
L (middle) of evolving functional brain networks from patients during period B1 at first (A1) and second 
assessment (A2) and from healthy controls. Bottom and top of a box are the first and third quartiles, and the 
red band and the black triangle are the median and the mean of the distribution, respectively. The ends of the 
whiskers represent the interquartile range of the data. Outliers are marked by an o sign. Right: Scatterplot of 
average clustering coefficients C and average shortest path lengths L during period B1 from patients (both 
assessments; black dots) and healthy controls (single assessment; blue diamonds). Linear regression (all subjects) 
is represented with a solid black line (patients: Spearman’s ρ = − 0.80, p < 0.01; healthy controls: ρ = − 0.88, 
p < 0.01).
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for an additional patient classification (patients: s = − 0.0025; healthy controls: s = − 0.0013). The clear cut dif-
ferences seen for the average clustering coefficients between patients and controls (Fig. 2) remained highly 
significant after age correction (Mann–Whitney U = 2, p < 0.0001).

As already mentioned above, at A1 all patients were clinically indistinguishable classified as UWS (“Methods”; 
CRS-R between 2 and 8). At A2 (3–6 weeks later), two patients were categorized as being improved from UWS to 
MCS (one patient with CRS-R score changing from 3 to 8, another with a CRS-R score changing from 6 to 14), 
while for the other eight patients the status UWS remained. Our findings obtained with age-corrected average 
clustering coefficients C* (Scheffé test) considerably contrast this clinical classification. At A1, three patients (3, 
6, and 12) differed from at least one other patient. In particular, patient 3 with the highest C* value (more distant 
from the values of the healthy controls) differed from patients 6 and 12 with significantly lower C* values (closer 
to healthy controls). At A2, all 10 patients differed from at least two other patients (Fig. 4) and could be assigned 
to two distinct groups: group 1 included patients 2, 3, 9, 10, 11, and 12 with higher C* values (more distant from 
the values of the healthy controls). Group 2 included patients 1, 4, 6, and 8 with lower C* values (closer to healthy 
controls). Both these groups, however, did not differ in regard to clinical or demographic features (“Methods”).

Global network characteristics index individual short‑term and long‑term treatment 
effects.  In a next step, we examined whether short-term and long-term treatment affects evolving functional 
brain networks. On the sample level (Fig. 5 top), we observed the age-corrected average clustering coefficient 
C* to exhibit—for each period of our experimental schedule (B1, S, B2) and at both assessments (A1, A2)—a 
large interindividual variability. The same applied for stimulation-induced changes of C* (ΔC*), and we could 
not observe any statistically significant modifications. Searching for the source of the large interindividual vari-
ability, we inspected individual stimulation-induced changes of C* from period B1 to period S (referred to as 
short-term treatment effect), thereby taking into account the individual time since injury (Fig. 5 bottom). Despite 
the large interindividual variability, there appeared to be an overall decreasing tendency between values of ΔC* 
assessed at A1 and at A2 (referred to as long-term treatment effect due to continued rehabilitation complex treat-
ment) which became more pronounced with an increasing temporal distance to injury. In order to corroborate 
this observation, we performed statistical tests for each patient separately and report our findings in Tables 1 and 
2. In about a third of patients (Table 1), we observed significant stimulation-induced changes of C* (both from 
baseline period B1 to the stimulation period S and back to the baseline period B2; short-term treatment effect) at 
A1 and A2. In addition, at A1 we observed for three patients a possible enduring effect of the stimulation, which 
appeared to be masked by a floor effect at A2. Of note, we observed significant changes of C* for period B1 in 
two patients between assessments A1 and A2, for period S in five patients and for period B2 in seven patients, 
possibly indicating a combined impact of the short-term stimulation (enduring effect) and the long-term treat-
ment on evolving functional brain networks (Table 2).

Taking into account the aforementioned tendency for C* to decrease with an increasing temporal distance 
to injury (Fig. 5 bottom), we investigated whether additional information about stimulation-induced network 
modifications can be obtained when considering the direction of the (not necessarily significant) change of C* 
upon stimulation (B1 → S). Indeed, at A1 we observed C* to decrease in three out of ten patients when their 
evolving functional brain networks transited from period B1 to period S. There was no change in one patient, 
and C* increased in six patients. Interestingly, at A2 we observed C* to decrease in eight out of ten patients, while 
C* continued to increase in two hypoxic patients who showed this reaction already at A1 (cf. Fig. 6).

Figure 3.   Scatterplot of average clustering coefficients C (all conditions: B1, S, B2) and age from patients at both 
assessments (A1: grey triangle; A2: black dot) and healthy controls (blue). Solid lines represent linear regressions 
(Spearman’s correlation coefficient ρ).
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Discussion
Disorders of consciousness (DOC) and diagnostic differentiations within and between conditions of unresponsive 
and minimally responsive wakefulness (UWS/MCS) represent an increasing diagnostic and therapeutic chal-
lenge in early rehabilitation. There is now ample evidence that electrophysiological and neuroimaging techniques 
can provide valuable additional information to clinical routine10, 15, 18, 21, 22, 24, 27 However, these techniques with 
highly diverse assessments and complicated computational requirements are not always available in neuro-
rehabilitation centers. Particularly fMRI is expensive and not the rule on-site. Current research activities are 
in an experimental state whilst standardized time- and personal-efficient solutions would be appreciated. EEG 
is still the most available tool. It is safe, comparably cheap, and it provides great opportunities for quantitative 
analyses which could be automated.

In the present study, we chose a practical and simple way for assessing and monitoring DOC in early reha-
bilitation by combining already used methods: repeated EEG recordings, basal multisensory stimulation, and 
clinical coma ratings. EEG data were recorded continuously following a block design (rest–stimulation–rest) 
during two routine examinations (3–6 weeks apart). In a time-resolved manner, evolving functional brain net-
work analyses were carried out by estimating interdependencies between EEG time series from pairs of brain 
regions, regardless of their anatomical connectivity. In the literature, this type of analysis is dealt with under the 

Figure 4.   Results of between-patient comparisons (Scheffé tests; top) and distributions of age-corrected 
average clustering coefficients C* (bottom) at assessments (A1,A2). White rectangles indicate significant 
differences (p < 0.05). Regarding the distributions of C*, bottom and top of a box are the first and third quartiles, 
and the black band is the median of the distribution, respectively. The ends of the whiskers represent the 
interquartile range of the data. Outliers are marked by an o-sign. Blue dotted lines and shaded areas indicate 
median and range of age-corrected average clustering coefficients C* of healthy controls. At assessment (A1), C* 
of patient 3 (orange) differs significantly from the values of patients 6 and 12 (green). At (A2), C* of patients 
1, 4, 6, and 8 (green) differ significantly from the values of patients 2, 3, 9, 10, 11, and 12 (orange). The EEG 
recording of patient 1 during B1 at A1 had to be excluded from the analyses because of too many artefacts.
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Figure 5.   Top: Sample distributions of age-corrected average clustering coefficients C* of evolving functional 
brain networks during periods B1, S, and B2 (left) as well as of stimulation-induced changes ΔC* between 
periods (right) at first (A1) and second assessment (A2). Properties of boxplots as in Fig. 2. Bottom: Individual 
stimulation-induced changes ΔC* between periods B1 and S at first (A1: grey triangle) and second assessment 
(A2: black dot) on a time line starting with injury.

Table 1.   Number of patients with significant changes in age-corrected average clustering coefficient of 
evolving functional brain networks (p < 0.05) between periods (B1, S, B2) of the experimental schedule (range 
of Wilcoxon signed rank test W values in brackets).

Assessment B1 → S S → B2 B1 → B2

A 1 3 patients (0; 100) 2 patients (54; 103) 3 patients (2; 18)

A 2 3 patients (0: 86) 3 patients (1; 82) 1 patient (89)

Table 2.   Number of patients with significant changes in age-corrected average clustering coefficient of 
evolving functional brain networks (p < 0.05) between assessments A1 and A2 for each period (B1, S, B2) 
(range of Wilcoxon signed rank test W values in brackets).

Assessment B1 S B2

A 1 → A 2 2 patients (17; 41) 5 patients (0; 19) 7 patients (3; 93)
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term “complex network analysis” as compared to spectral, or connectivity, or complexity analyses27. To keep the 
analysis as simple as possible as well, two commonly used global characteristics of segregation and integration of 
evolving functional brain networks were assessed: average clustering coefficient and average shortest path length. 
We recently used a similar approach to monitor modifications of large-scale evolving functional brain network 
from subjects with epilepsy due to external brain stimulation and biofeedback28, 29. Aiming at an analysis at the 
individual level, ten patients with heterogeneous brain lesions were evaluated who—according to the clinical 
consensus and the results of the CRS-R—were all diagnosed with unresponsive wakefulness syndrome (UWS). 
In addition, in order to have a reference point for the interpretation of the patient data, one-time assessments 
of nine healthy subjects were performed.

Before answering the three research questions of our study, two methodological issues need to be dealt with 
briefly. Firstly, there was a considerable interrelation between the network characteristics average clustering 
coefficient and average shortest path length, which however could be expected, at least to some extent, given our 
network construction. It therefore appeared sufficient to base downstream analyses on the average clustering 
coefficient. Secondly, there was a considerable and reliable negative correlation between the average clustering 
coefficient and age, which was apparent at both assessments (A1 and A2) in patients, and in the one-time assess-
ment of the healthy controls as well. An age-dependence of some characteristics of EEG-derived functional brain 
networks has been reported before30, 31. The strength of the age dependency made it necessary to correct the 
obtained data for age in order to avoid an overlap with other time dependencies (see below).

Do global network characteristics allow to differentiate patients in clinically indiscriminate 
states of unresponsive wakefulness (UWS)?  Our first research question can be answered positively. 
Using age-corrected clustering coefficients, the results show low heterogeneity of patients at the first assessment 
A1 but definitively a higher one at the second assessment A2. First two, and later all patients could be differenti-
ated from at least one other patient. As indicated by patient-to-patient comparisons, two significantly different 
groups could be discerned at A2, 6 patients with higher and four patients with lower scoring clustering coef-
ficients. Whether such resting state differences will improve patient classification in UWS in the future needs 
to be determined. The same applies for stimulation and time associated changes which will be discussed in the 
next paragraphs.

Do global network characteristics indicate functional recovery and success of continuous early 
rehabilitation complex treatment (long‑term treatment effects)?  The increasing differentiation 
between patients over time—between assessments A1 and A2—may already be taken as first evidence for longi-
tudinal modifications towards a less segregated network over time. At A2, two patients were clinically classified 

Figure 6.   Proposed model of short-term and long-term stimulation-induced modifications of evolving 
functional brain networks in patients with an unresponsive wakefulness syndrome. The black arrow indicates a 
long-term treatment effect due to continued rehabilitation complex treatment as monitored with age-corrected 
average clustering coefficient C* at different assessments (A1,A2). Short-term modifications can be monitored 
with changes of C* (ΔC*) while evolving functional brain networks transit from a baseline period at rest (B1) 
to a period of sensory stimulation (S) and back to a baseline period at rest (B2). A negative change (ΔC* < 0 for 
B1 → S) is considered as favorable. It can be observed in an increasing number of patients at (A2), while negative 
changes decrease. The general tendency towards a more segregated network (decreasing C*), as seen for healthy 
controls, indicates success of therapy and thereby recovery from injury.
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as MCS while the majority remained classified as UWS. Nevertheless, when taking into consideration intraindi-
vidual changes between A1 and A2, the age-corrected average clustering coefficients changed significantly in up 
to seven patients depending on the period of the experimental stimulation schedule. Despite the high interin-
dividual variability, the direction of intraindividual changes over time and with an increasing temporal distance 
to injury tended towards the levels obtained for healthy control subjects, i.e. towards less segregated functional 
networks. We interpret this as improvement although it cannot be decided within the present study design as to 
whether this is due to therapy or due to the passage of time (spontaneous recovery).

Do global network characteristics indicate the brain’s response to single basal multisensory 
therapeutic interventions (short‑term treatment effects)?  Without a control condition—there is 
no ethical justification for not treating patients in early rehabilitation—it cannot be differentiated as to whether 
the observed positive development reflects spontaneous recovery, a positive impact of therapy, or both. In this 
regard the results provide quite an interesting picture: At A1, the age-corrected average clustering coefficient in 
response to the stimulation changed into a direction, which we interpret as less pathological in three patients. In 
one patient, there was no change, and in six patients it unexpectedly changed towards a more pathological direc-
tion. The situation was completely different at A2, where the age-corrected average clustering coefficients of eight 
patients changed into a favourable and of two patients into an unfavourable direction. These results indicate an 
increasing positive response to stimulation in the majority of patients. We speculate that the negative response 
may reflect an overstraining of the patients´ network due to sensory overload. Possibly such responses to stimu-
lation can be used for controlling treatment selection and intensity of stimulations in the future. Interestingly, 
the two patients with unfavourable responses to stimulation at A2 (pts. 6 & 8) already had such responses at A1. 
These patients belonged to the post-hypoxic group, which was supposed to be more severely affected compared 
to the purely “lesional” group.

Summarizing our findings, we postulate the following model (Fig. 6): A decreasing age-corrected average 
clustering coefficient C*, assessed at different points in time, reflects the short-term stimulation-induced and 
the long-term continuous therapeutic intervention-induced modification of evolving functional brain networks 
towards a less segregated network. This is further corroborated by the observation that the time-dependent 
decrease of C* approached the averaged values seen for healthy controls, which we interpret as another indica-
tion for success of therapy and thereby recovery from injury. Overall, the results of our proof-of-principle study 
encourage the implementation of repeated analyses of resting- and stimulation-associated large-scale functional 
brain networks by merging what is already at hand and being done either way during early rehabilitation. The 
method, should it receive further confirmation in larger populations of patients not only with UWS but also 
with MCS, can easily be adapted by other centers. Surely, long-term follow-ups with reference to the final reha-
bilitation outcomes will be needed. Even automated quantitative EEG analyses appear possible. Artefact control, 
however, requires EEG expertise, and this represents a challenge regarding staff/personal resources and time. 
Future work may also focus on other, e.g. more local network characteristics and address questions of whether 
network characteristics provide information for the selection and control of individual therapies32, 33. At the 
present state, we refrained from more detailed analyses of the patients’ responses to different types of stimula-
tion. For the purpose of this study, it appeared sufficient to merge all conditions into one multimodal stimulation 
condition. With more data also from partially conscious patients, separation of stimulation conditions might 
reveal additional valuable information for the monitoring and therapy of DOC. With a broader range of states 
of consciousness under study, a comparison of network reorganizations seen here with the ones reported for 
healthy subjects during different sleep stages34, 35 might help to gain further insight into mechanisms of how 
brains regain consciousness and recover from DOC respectively.

Methods
Patients.  Table 3 summarizes the demographic and clinical data of the ten investigated patients. In three 
patients, the primary lesion was a stroke/hemorrhage (pts. 2, 4, and 9), three patients had a traumatic brain 
injury (TBI) (pt. 1), two of them with hemorrhage (pts. 2 and 6) and one patient with TBI experienced hypoxia 
after cardiopulmonary resuscitation (pt. 6) as did two other patients (pts. 11, and 12).

(Two patients (with IDs 5 and 7) were excluded because they had no follow-up assessment).
Potential CNS active drugs which may have affected EEG or cognition were antiseizure drugs (levetiracetam, 

carbamazepine, valproate, or pregabalin) in all but one patient (pt. 12) at both assessments. One patient (pt. 11) 
was additionally on pain medication at both assessments. No patient received barbiturates, benzodiazepines, 
or narcotics.

Behavioral assessment—CRS‑R.  For the behavioral assessment of consciousness, the revised Coma 
Recovery Scale (CRS-R) is being applied in addition to clinical consensus as part of the clinical routine by 
trained staff, which is familiar with the CRS-R scoring system36, 37. The CRS-R is an internationally accepted 
instrument for the monitoring of disorders of consciousness providing a rough estimate of the functional out-
come as well38. The CRS-R encompasses six subscales that are each built in a hierarchical order with increasing 
scores indicating an increase in complexity of behavior. The subscales are categorized by responses in oromotor, 
motor, visual, auditory, communication and arousal functions. The sum of subscales, the total CRS-R score, 
ranges between 0 and 23. Low scores reflect reflexive behavior, higher scores more cognitive behavior.

In order to limit statistical complexity in the small group of patients, only the total CRS-R score was chosen 
as a measure for every patient and rated as UWS and MCS. Published CRS-R cut off scores for a differentiation 
between UWS from MCS range between 8 and 1039, 40. Taking this into consideration, we set the cut off to 8 
points.
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Continued complex rehabilitation treatment.  All patients underwent standardized “early rehabilita-
tion complex treatment” (according to the guidelines of the German DRG, OPS 8–552). The procedure pro-
vides continuous involvement of neurological or neurosurgical expertise, and the following therapeutic areas 
are available: physiotherapy, occupational therapy, neuropsychology, speech therapy / facial-oral therapy. Thera-
peutic interventions were carried out on a daily base in different combinations of at least 300 min´ treatment 
duration (with simultaneous involvement of two or more employees).

Neurophysiological assessment—EEG.  A 19-channel EEG system (Nihon Kohden Europe GmbH) was 
used, and electrodes were placed at locations FP2, FP1, F8, F7, T8, T7, P8, P7, F4, F3, C4, C3, P4, P3, Fz, Cz, 
and Pz with an additional reference electrode on the forehead. EEG data were sampled at 200 Hz using a 16 bit 
analogue-to-digital converter. Data were band-pass filtered offline between 1–45  Hz (4th order Butterworth 
characteristic), and additionally, we used a notch filter (3rd order) to suppress contributions at the line frequency 
(50 Hz). We visually inspected all recordings for strong artefacts such as subject movements, amplifier satura-
tion, or stimulation artefacts. For the following analyses, such data were excluded due to too many artefacts.

Constructing and characterizing evolving functional brain networks.  To construct a time-depend-
ent sequence of weighted and fully connected functional brain networks from the 30 min EEG recordings, we 
associated network nodes with EEG electrodes and inferred network links by estimating—in a time-resolved 
manner—interdependencies between EEG time series from pairs of brain regions, regardless of their anatomi-
cal connectivity41–44. To this end, we calculated a synchronisation index rij between time series of instantaneous 
phases from all pairs of brain regions (i,j) sampled by the EEG electrodes with a sliding window approach45, 46. 
Non-overlapping windows had a duration of 10 s (2000 data points). The synchronisation index is confined to 
the unit interval: rij = 1 indicates fully phase-synchronised brain regions and rij = 0 indexes an absence of phase 
synchronisation.

An important property of this estimation approach is that the instantaneous frequency (particularly in case 
of two or more superimposed oscillatory components) relates to the predominant frequency in the Fourier 
spectrum47. This predominant frequency may be subject to fluctuations in the EEG time series, and consequently 
the instantaneous frequency can vary rhythmically around the predominant frequency resulting in spurious 
estimates of the instantaneous phase. Such effects can be reduced, e.g., by taking the temporal average45, 46. 
From an electrophysiological point of view, however, it might be more reasonable to look adaptively (e.g., via 
the Hilbert transform as done here) at interdependences between predominant rhythms in the EEG than to 
look at interdependences in some a priori fixed frequency bands for which there is no power in the time series46.

In order to characterise a network’s global topological properties, we estimated its average clustering coef-
ficient and its average shortest path length. The clustering coefficient is a measure of the degree to which nodes 
in a network tend to create cliques of strongly interconnected nodes. We calculated the average clustering coef-
ficient as the mean of clustering coefficients computed for all nodes, where we employed the definition of the 

Table 3.   Patient characteristics. CRS-R coma recovery scale revised, DOC disorder of consciousness, 
UWS unresponsive wakefulness syndrome, MCS minimally conscious syndrome, CA cardiac arrest, ICB 
intracerebral bleeding, SDH subdural hemorrhage, SAB subarachnoid bleeding, TBI traumatic brain injury, 
MCA medial cerebral artery, VA vertebral artery.

Patient ID/gender Age Lesion

1. assessment (A1) 2. assessment (A2)

Days since injury CRS-R points DOC Days interval CRS-R points DOC

1/m 78 Bifrontal TBI & 
ICB right ACM 98 6 UWS 26 14 MCS

2/ m 74
TBI right thalamic 
hemorrhage ven-
tricular extension

99 7 UWS 31 5 UWS

3/ f 80
ICB
Ventricular exten-
sion

38 3 UWS 22 8 MCS

4/ m 54
Cerebral infarct 
right and left MCA 
& left VA

84 4 UWS 41 4 UWS

6/ f 72 TBI, SDH & 
hypoxia after CA 49 4 UWS 28 5 UWS

8/ m 52 SAB & hypoxia 
after CA 84 5 UWS 23 5 UWS

9/ m 69
Hemorrhage basal 
ganglia right & 
ventricular exten-
sion

54 4 UWS 23 4 UWS

10 / m 40
Cardiac infarct,, 
hypoxia, global 
brain edema

57 8 UWS 26 4 UWS

11 / f 53 Hypoxia after CA 69 3 UWS 35 2 UWS

12 / m 48 Hypoxia after CA 63 2 UWS 28 5 UWS
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clustering coefficient for weighted networks48. The average clustering coefficient characterises the network’s 
functional segregation; the higher its value, the more segregated is the network.

The average shortest path length is defined as the average number of steps along the shortest paths for all 
possible pairs of network nodes. For our weighted networks, we defined the ‘length’ of a path between a pair of 
nodes as the inverse of the weight of the link along the path connecting the nodes49. We computed the average 
shortest path length using an algorithm proposed by Dijkstra in 195950 to characterise the network’s functional 
integration; the shorter the length, the more integrated is the network.

C and L represent the mean values of average clustering coefficients and average shortest path lengths of 
the snapshot networks in a given period (B1, S, B2) of our experimental schedule. On average, the number of 
snapshot networks in period B1 amounted to 31, in period S 51, and in period B2 33.

Statistical analyses.  In order to test for stimulation-induced changes of network characteristics (within 
the experimental schedule and between the two assessments, i.e., within-patient comparisons), we performed 
nonparametric Mann–Whitney U tests for independent variables and Wilcoxon signed rank tests for dependent 
variables. We considered differences significant at p < 0.05 (after Bonferroni correction, whenever appropriate). 
Differences between network characteristics from individual patients (i.e., between-patient comparisons) were 
assessed using post hoc Scheffé tests (p < 0.05).

Ethics statement.  The study protocol had been approved by the ethics committee of the University of 
Düsseldorf (ID 2017114499) before the study has started. All experiments were performed in accordance with 
relevant guidelines and regulations.

Informed consent statement.  Informed consent was obtained from the legal guardian(s) of all included 
patients.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request. The data are not publicly available as they contain information that could compromise the privacy of 
research participants.
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