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This study aimed to characterize metabolite differences and correlations

between hypertensive disorders of pregnancy (HP) and gestational diabetes

mellitus (GDM) using univariate, multivariate analyses, RF, and pathway

analyses in a cross-sectional study. Dietary surveys were collected and

targeted metabolomics was applied to measure levels of serum fatty acids,

amino acids, and organic acids in 90 pregnant women at 24–28 weeks

gestation at the First Affiliated Hospital of Harbin Medical University. Principal

components analysis (PCA) and partial least squares-discriminatory analysis

(PLS-DA) models were established to distinguish HP, GDM, and healthy,

pregnant control individuals. Univariate and multivariate statistical analyses

and Random Forest (RF) were used to identify and map co-metabolites to

corresponding pathways in the disease states. Finally, risk factors for the

disease were assessed by receiver operating characteristics (ROC) analysis.

Dietary survey results showed that HP and GDM patients consumed a high-

energy diet and the latter also consumed a high-carbohydrate and high-fat

diet. Univariate analysis of clinical indices revealed HP and GDM patients

had glycolipid disorders, with the former possessing more severe organ

dysfunction. Subsequently, co-areas with significant differences identified by

basic discriminant analyses and RF revealed lower levels of pyroglutamic acid

and higher levels of 2-hydroxybutyric acid and glutamic acid in the GDM

group. The number of metabolites increased in the HP group as compared

to the healthy pregnant control group, including pyroglutamic acid, γ-

aminobutyric acid (GABA), glutamic acid, oleic acid (C18:1), and palmitic acid

(C16:0). ROC curves indicated that area under curve (AUC) for pyroglutamic

acid in the GDM group was 0.962 (95% CI, 0.920–1.000), and the AUC of

joint indicators, including pyroglutamic acid and GABA, in the HP group was
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0.972 (95% CI, 0.938–1.000). Collectively, these results show that both GDM

and HP patients at mid-gestation possessed dysregulated glucose and lipid

metabolism, which may trigger oxidative stress via glutathione metabolism

and biosynthesis of unsaturated fatty acids.

KEYWORDS

hypertensive disorders of pregnancy, gestational diabetes mellitus, metabolomics,
fatty acid, amino acid, organic acid

Introduction

Gestational diabetes mellitus (GDM) refers to various
degrees of abnormal glucose metabolism that occur during
pregnancy, even though not developing type 2 diabetes mellitus
(T2DM). It is one of the most common pregnancy complications
in clinical practice. The incidence of GDM in the world is
reported to be 1–14% and 1–5% in China, and there has been
a significant upward trend in incidence in recent years (1).
Prior studies have shown that GDM usually disappears after
delivery, but women with a history of GDM have a sevenfold
higher risk of developing T2DM (2). The main physiological
mechanisms that contribute to GDM have increased insulin
resistance and decreased insulin secretion (3). Yet, controversies
exist regarding the etiology, risk factors, pathogenesis, and
diagnostic criteria of GDM.

Regarding hypertensive disorders of pregnancy
(preeclampsia or gestational hypertension), a group of diseases
that coexist with pregnancy also increase blood pressure and
are the primary factors contributing to maternal and perinatal
mortality. It has been estimated that preeclampsia complicates
2–8% of pregnancies globally (4). So far, preeclampsia is
mainly identified by measuring blood pressure during prenatal
care in the international community. Although medical
mercury sphygmomanometers are relatively accurate, it is
difficult for a single person to use. Moreover, up to 50% of
automatic oscillometric electronic sphygmomanometers must
be calibrated every 6 months, resulting in calibration drift
and inaccurate blood pressure readings over time between
calibration periods (5–7). Therefore, the American College
of Obstetrics and Gynecology (ACOG) emphasizes that risk
evaluation regarding hypertensive disorders complicating
pregnancy is crucial to the early prevention and treatment
of these disorders. They also recommend screening for
preeclampsia via maternal risk factors.

Women who develop GDM and HP are more likely to be
obese and develop insulin resistance, endothelial dysfunction,
oxidative stress, and metabolic disorders (8–11). GDM and HP
are also risk factors for the future development of cardiovascular
disease. Darcy et al. showed that women who develop
preeclampsia have a higher risk of future cardiovascular disease

and diabetes compared to women who have uncomplicated
pregnancies (12). Evidence also suggests that preeclampsia
is at least partially mediated by insulin resistance and that
individuals with preeclampsia may have clinically silent but
persistent alterations in insulin resistance (13). Moreover, a
previous retrospective pilot study showed that falling insulin
requirements is a possible sign of preeclampsia. Although
counterintuitive, it is not uncommon for women to have a
paradoxical drop in their insulin requirement in late pregnancy
(14). Because both GDM and HP are common complications of
pregnancy, they may follow similar metabolic trajectories.

A prospective nested case-control study in Chinese women
suggested lipids play important biological functions and the
associations between specific lipid species and GDM were
partially explained by glycemic and insulin-related indicators
(15). Several studies discovered that metabolic dysregulation,
amino acid (AA) and organic acid (OA) dysmetabolism, were
present years before diabetes onset among women with GDM
(16–18). Most studies in the field of GDM and HP have only
focused on one disease area or a single metabolic profile, as
mentioned above.

So, in addition to observing the metabolic differences
with OA, free fatty acid (FFA), and AA profiles examined,
we also explored whether GDM and HP shared similarities
in metabolite profiles and whether the metabolic pathways
affected in GDM and HP intersect. Identifying and assessing
the potential alterations of GDM and HP may further
enlighten possible etiologies and pathogenesis underlying these
peripartum morbidities.

Materials and methods

Design and study population

A cross-sectional study design including participants treated
during the same period at the First Affiliated Hospital
of Harbin Medical University was employed. Hypertensive
disorders of pregnancy included gestational hypertension (GH)
and pre-eclampsia (PE). GH was defined as systolic blood
pressure (SBP) ≥ 140 mmHg and/or diastolic blood pressure
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(DBP) ≥ 90 mmHg, as assessed by the same nurse at the
hospital at two or more separate visits between 24 and 28 weeks
gestation. PE was defined as GH combined with proteinuria
(19). GDM was defined as either a fasting plasma glucose
(FPG) > 5.1 mmol/L, 1 h-PG > 10.0 mmol/L, or 2 h-
PG > 8.5 mmol/L (20). Exclusion criteria included cases in
which there was pre-existing diabetes, a family history of type
2 diabetes and hypertension, multifetal gestation, spontaneous
abortion, malignant tumors, organ transplant, or the occurrence
of acute complications, such as diabetic ketoacidosis or severe
heart, liver, or kidney damage, etc. Women treated with
hormones or immunosuppressive therapy before or during the
first 3 months of pregnancy were also excluded, as well as
patients taking medications that may affect glucose metabolism.
Any patient diagnosed with GDM combined with HP was
excluded from the study. Finally, 90 pregnant women (aged
20–40 years) with complete basic obstetrics and gynecology
department data were admitted to the study as the final
analytic population and included 30 controls, 30 GDM cases,
and 30 HP cases. All selected candidates received oral and
written information about the study and signed an informed
consent to publish this paper. The research was conducted
with the permission of the Ethics Committee of Harbin
Medical University and is registered at www.chictr.org.cn as
ChiCTR1900027669.

Data and sample collection

Three treatment groups were included in the study: normal
control pregnancy (NC), GDM, and HP, with 30 women
in each group. Age, body mass index (BMI), gestational
week, reproductive history, such as parity and abortion,
biochemical laboratory indicators, and diagnostic information
(GDM and HP) were collected for each participant. A 2-h 75-
g oral glucose tolerance test (OGTT) was performed for all
participants at 24–28 weeks gestation, and, at the same time,
a food-frequency questionnaire (FFQ) was administered face-
to-face. All participants were followed until the pregnancy due
date. Fasting serum samples were collected only once at the
time of recruitment for blood biochemical tests and targeted
metabolomics. The serum samples collected were centrifuged
at 3,000 rpm for 10 min at room temperature and stored
at –80◦C until metabolomics analysis. All pregnant women
accepted clinical evaluation near the pregnancy due date.

Targeted metabolomics assays

See Supplementary material for serum pretreatment.
For organic acid and free-fatty acid detection with
gas chromatography-mass spectrometry (GC-MS),
chromatographic conditions were tested using the TRACE1310

gas chromatograph and the TSQ9000Evo mass spectrometer
(Thermo Finnigan, Austin, TX, United States). The column
used was the capillary TG-WAX (30 m × 0.25 mm, 0.25 µm film
thickness). For amino acid detection with ultra-performance
liquid chromatography-mass spectrometry (UPLC-TQ-MS),
the ACQUITYTM UPLC system (Waters Corporation,
Milford, CT, United States) was used with a HILIC column
(100 mm × 2.1 mm × 1.7 µm, Waters Corporation, Milford,
CT, United States). In the above three tests, the quality control
(QC) sample was a mixture of equal volumes of samples to
be tested. One QC sample was injected at every tenth sample
injection to control for batch effects.

Identification of remarkable
metabolites by partial least
squares-discriminatory analysis and
orthogonal partial least
squares-discriminatory analysis

Seventy-two metabolites, including 29 organic acids, 16
free fatty acids, and 27 amino acids, whose intra- and inter-
coefficients of variation were less than 30%, were quantified.
Metabolite results were normalized (by Z-score) and processed,
and PCA, PLS-DA, and OPLS-DA were performed for basic
discriminant analysis. First, PCA in unsupervised analysis mode
was used to observe any separation effect within all samples,
especially within QC samples. Then PLS-DA and OPLS-DA
were carried out with 72 metabolites as X variables and 90
serum samples as Y variables, and modeling parameters R2Y
and Q2 were used to evaluate the model. To avoid over-fitting
of the model, the variables of the classification Y matrix that
were defined when the model was established were randomly
arranged 200 times, and the random different corresponding Q2
values were considered as the standard to measure whether the
model was over-fitted. If Q2 was on the right side of the random
distribution and p < 0.01, the OPLS-DA model was considered
to have good stability and good predictability. OPLS-DA can
also distinguish the response variables that most significantly
contribute to the model. Thus, the variable importance in
projection (VIP) value was calculated, and a VIP > 1.0 was used
as subsequent screening criteria. Eventually, three statistical
criteria were applied to identify the unique metabolites related to
GDM and HP, namely, fold change (FC) of metabolites between
GDM or HP versus NC (FC > 1.20 or FC < 0.83), adjusted
p-value (p < 0.05) and the VIP value (VIP > 1.0).

Identification of remarkable
metabolites by random forest analysis

The random forest algorithm is a combination of bagging
and a decision tree. Training samples were randomly selected
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using the Bootstrapping method to obtain decision trees. "Mean
Decrease Accuracy" and "Mean Decrease Gini" were used
to measure the importance of a metabolite in discriminant
grouping in RF. If the value of a metabolite was changed into
a random number, the prediction accuracy of RF was defined as
the "Mean Decrease in Accuracy." "Mean Decrease Gini" is the
effect of a metabolite on the heterogeneity of observed values at
all nodes of the classification tree. The greater the two values, the
greater the importance of the metabolite in the random forest.

Correlation analysis and pathway
analysis

Correlation analysis was conducted by comparing these
specific and critical metabolite correlations and observing
whether metabolites generated change linking to clinical
biochemical indicators. To further clarify the most relevant
metabolic pathways in GDM and HP, pathway-enrichment
analysis and pathway-topology analysis were performed. The
most influential matched metabolic pathway had a pathway
impact > 0.02, based on the pathway topology analysis,
and -log10 (p) > 1.5, as determined by the pathway
enrichment analysis.

Risk assessment by receiver operating
characteristics analysis

Receiver operating characteristics curve analysis can easily
check the ability to identify diseases at any threshold value
of each metabolite. Hence, the shared and distinct metabolites
from two diseases were used to construct a binary logistic
regression model in the SPSS software, and then the ROC curve
was generated using the R software to evaluate the ability of
shared metabolites to act as indicators for risk assessment.

Statistical analyses

Qualitative variables are expressed in the form of categorical
variables. Serum biochemical indices and metabolites are shown
as mean ± SD or median and quartile. One-way ANOVA
and Kruskal–Wallis tests were used to compare normally
distributed data and non-parametric numerical data between
groups. The Chi-square test was used to compare categorical
variables between the three groups. False Discovery Rate
(FDR) was used for multiple comparisons correction. SPSS
statistical software (version 25.0) was used for univariate
analysis. Targeted metabolites concentrations were analyzed
by multivariate analysis using the SIMCA-P 14.1 software
(Umetrics, Umeå, Sweden). RF correlation analysis and ROC
analysis were performed by the R software (version 4.0.2). And

then, pathway analysis was performed by Metaboanalyst 5.0.1

Spearman’s correlation coefficient was calculated for correlation
analysis. Significance was set at p < 0.05.

Results

Study participant characteristics

Age, abortion frequency, and fertility frequency among
the three groups were similar (Table 1). Compared with the
NC group, BMI, blood glucose, LDL-C, HDL/LDL ratio, and
triglycerides (TG) in the GDM group, and GLU, SBP, and
DBP in the HP group were significantly increased (p < 0.05).
The HP group had earlier gestational weeks compared to
the NC and GDM group (p < 0.05). Beyond that, several
biochemical parameters indicating viscera function (ALT, GGT,
LDH, HBDH, etc.) in the HP group were also significantly
higher than in the NC and GDM groups (Table 1). According
to these findings, HP and GDM may involve a large-scale
multisystem disturbance with adverse maternal outcomes, with
HP having a greater deleterious effect. Additionally, fat intake,
carbohydrate intake, and protein intake in 90 participants are
presented in Supplementary Table 4. Dietary survey results
showed that HP and GDM patients consumed high energy diets
and that GDM consumed a high-carbohydrate and a high-fat
diet (Table 1).

Univariate analysis for metabolites

The overall sample clustering heatmap shows the abundance
of 72 metabolites between groups, with the largest differences
seen in the HP group (Figure 1A). As detailed, the OA
(Supplementary Table 1), FFA (Supplementary Table 2), and
AA (Supplementary Table 3) profiles are presented in three
tables with actual measured values. As expected, metabolite
distribution in HP was consistent with the results of the
measured biochemical indicators, indicating that, compared
with GDM, more serious metabolic dysfunction occurs in HP
patients. Univariate analysis shows altered serum free fatty acids,
amino acids, and organic acids in GDM and HP at mid-gestation
compared with NC. Compared with the NC group, saturated
fatty acids and monounsaturated fatty acids were significantly
increased in the GDM group, and total fatty acids, saturated
fatty acids, and monounsaturated fatty acids were significantly
increased in the HP group. However, polyunsaturated fatty
acids, n-3 fatty acids, and n-6 fatty acids were significantly
decreased in the GDM group compared with the control group
(p< 0.05). Compared with the GDM group, total fatty acids and

1 www.metaboanalyst.ca
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TABLE 1 Anthropometric and clinical characteristics of 90 subjects.

Parameter NC GDM HP

Case, n 30 30 30

Age, years 29.83 ± 3.68 29.23 ± 2.87 29.53 ± 2.30

BMI, kg/m2 27.19 ± 3.02 29.10 ± 3.69* 28.50 ± 2.20

Gestational weeks, w 38 (38–39) 39 (38–39) 37 (36–37)#

Abortion frequency, n%

0 21 (70.00) 25 (83.33) 22 (73.33)

1 5 (16.67) 4 (13.33) 5 (16.67)

2 3 (10.00) 1 (3.33) 2 (6.67)

3 1 (3.33) 0 (0.00) 1 (3.33)

Fertility frequency, n%

0 22 (73.33) 24 (80.00) 18 (60.00)

1 7 (23.33) 6 (20.00) 10 (33.33)

2 1 (3.33) 0 (0.00) 2 (6.67)

Total energy intake, kcal 2852.37 ± 764.37 3696.83 ± 771.59* 3272.07 ± 463.06#

Carbohydrate, kcal% 0.63 ± 0.12 0.56 ± 0.13* 0.62 ± 0.09

Protein, kcal% 0.11 (0.09–0.16) 0.12 (0.08–0.16) 0.12 (0.10–0.16)

Fat, kcal% 0.23 (0.15–0.32) 0.29 (0.25–0.41)* 0.24 (0.19–0.30)

FPG, mmol/L 4.06 (3.86–4.56) 5.65 (5.30–6.21)* 4.48 (4.28–4.83)

1h-PG, mmol/L 7.28 ± 1.17 10.08 ± 1.07* 7.50 ± 0.94

2h-PG, mmol/L 6.66 ± 1.00 9.17 ± 0.99* 6.67 ± 1.38

GLU, mmol/L 4.25 (4.03–4.43) 5.28 (4.95–5.55)* 4.59 (4.38–5.19)#

SBP, mmHg 109.50 (104.75–115.50) 115.00 (109.50–119.25) 159.00 (148.75–172.00)#

DBP, mmHg 74.50 (72.00–78.25) 77.50 (73.00–83.00) 110.00 (101.75–118.50)#

HDL-C, mmol/L 2.03 ± 0.28 1.78 ± 0.33* 1.91 ± 0.48

LDL-C, mmol/L 2.12 (1.73–2.54) 2.95 (2.55–4.04)* 3.04 (1.68–3.36)

HDL/LDL 0.95 (0.70–1.31) 0.56 (0.47–0.69)* 0.72 (0.54–1.07)

CHOL, mmol/L 6.23 (5.25–7.11) 6.80 (5.96–8.26) 6.65 (6.23–7.08)

TG, mmol/L 3.69 (2.98–4.17) 4.75 (3.66–6.01)* 4.29 (3.58–5.07)

VLDL, mmol/L 0.75 (0.60–0.86) 0.96 (0.69–1.11) 0.91 (0.57–1.27)

ALT, U/L 8.75 (5.95–11.20) 9.85 (8.48–12.68) 12.15 (9.00–15.53)#

GGT, U/L 9.85 (8.05–11.55) 10.75 (8.80–12.85) 26.20 (14.13–36.65)#

LDH, U/L 188.05 (149.50–214.75) 188.00 (158.50–228.00) 284.50 (240.50–334.50)#

HBDH, U/L 117.00 (103.79–130.91) 115.00 (102.50–127.25) 159.00 (133.50–192.00)#

BUN, mmol/L 2.85 (2.56–3.28) 3.00 (2.39–3.94) 4.43 (3.67–4.88)#

Cr, mmol/L 43.90 (40.95–46.58) 46.25 (39.73–50.65) 53.86 (45.39–65.63)#

UA, µmol/L 275.35 (247.00–315.55) 292.20 (239.58–365.20) 393.70 (329.77–480.35)#

Data are shown as mean ± SD or median and quartile. False discovery rate was automatically corrected for multiple comparisons during Kruskal–Wallis tests. *p < 0.05 NC vs. GDM;
#p < 0.05 NC vs. HP; p < 0.05 GDM vs. HP. BMI, body mass index; Gestational weeks, the average weeks of delivery for each group; FPG, fast plasma glucose; 1h-PG, 1h-plasma glucose
from OGTT; 2 h-PG, 2 h-plasma glucose from OGTT; GLU, glucose; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; CHOL, cholesterol; TG, triglyceride; VLDL, very low density lipoprotein; ALT, alanine aminotransferase; GGT, γ-glutamyl transferase; LDH, lactate
dehydrogenase; HBDH, hydroxybutyrate dehydrogenase; BUN, blood urea nitrogen; Cr, creatinine; UA, uric acid.

monounsaturated fatty acids in the HP group were significantly
increased (p < 0.05) (Figure 1B).

Typical metabolic profiles revealed by
partial least squares-discriminatory
analysis and OPLS-DA

To investigate whether GDM and HP could be identified
based on metabolic disturbances, serum changes in GDM and
HP were compared with NC. PCA analysis displayed that
QC samples clustered well with no "outlier sample point"
via DModx’s diagnosis (Figure 2A). The three groups were

evident based on clustering generated by PLS-DA and OPLS-
DA analyses, which showed that the metabolite composition
and structure of the three groups were different (Figures 2B,D–
F). Permutation tests suggested that the PLS-DA and OPLS-
DA models were reliable, and there was no over-fitting
phenomenon (Figures 2C,G–I). VIP values of the three OPLS-
DA models only displayed metabolites with values greater
than 1.0 (Figure 2J). Ultimately, C18:1, 2-hydroxybutyric acid,
pyroglutamic acid, and glutamic acid in GDM were initially
screened out, based on three statistical standards of FC between
groups (FC > 1.20 or FC < 0.83), adjusted p-value (p < 0.05),
and VIP value (VIP > 1.0). Simultaneously, C16:0, C18:0,
C18:1, pyroglutamic acid, glycine, GABA, and glutamic acid, as
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FIGURE 1

Differential distribution of serum metabolites in three groups. (A) Overall sample clustering heatmap showing the abundance of all targeted
metabolites in different groups. In total, 72 metabolomic signatures are shown in a categorical tree, grouped as organic acid (green), free fatty
acid (purple), and amino acid (orange) in the innermost circle. The outer circles show metabolites for which the mean abundances were
markedly elevated (red) or decreased (blue) between NC, GDM, and HP groups. Box plots depict the abundance of various metabolites that
were significantly (p < 0.05) different compared to NC (yellow bar). The y-axis for each box plot is abundance. Each plot shows boxes in the NC
(left-most bar) and other two groups (GDM and HP) in order from left to right. (B) Box plots illustrating the distribution of serum free fatty acids
in the NC, GDM, and HP groups. Total FFA, total fatty acid; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated
fatty acid; n-3 FA, n-3 fatty acid; n-6 FA, n-6 fatty acid. *, **, and *** for p < 0.05, p < 0.01, and p < 0.001, respectively.

distinct and critical metabolites, were mapped in the trajectory
of HP (Table 2).

Typical metabolic profiles revealed by
random forest

As presented in the RF results, 15 metabolites clearly
achieved significance in GDM. These included decreased

levels of pyroglutamic acid, 2-hydroxyisocaproic acid, C20:2,
C22:6, caproic acid, and caprylic acid, and elevated levels of
leucine, C16:0, C16:1, valine, isoleucine, glycine, glutamic
acid, phenylalanine, and 2-hydroxybutyric acid (Figure 3A).
These metabolites revealed a highly unique metabolic GDM
phenotype, characterized by altered glutathione metabolism
(pathway impact > 0.1, FDR < 0.05). Likewise, 15 of the
most significant metabolites were identified in HP, including
elevated levels of orotic acid, α-ketoglutaric acid, C18:1,
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FIGURE 2

Typical metabolic profiles revealed by PLS-DA and OPLS-DA. (A) PCA analysis of 90 samples with QC. (B) PLS-DA analysis among three groups,
with R2Y (cum) = 0.802 and Q2 (cum) = 0.725. (C) Permutation tests of PLS-DA discrimination models among three groups. (D) The score plots
of the OPLS-DA model between NC and GDM, with R2Y (cum) = 0.812 and Q2 (cum) = 0.701. (E) The score plots of the OPLS-DA model
between NC and HP, with R2Y (cum) = 0.948 and Q2 (cum) = 0.832. (F) The score plots of the OPLS-DA model between GDM and HP, with R2Y
(cum) = 0.923 and Q2 (cum) = 0.800. Permutation tests of OPLS-DA discrimination models between NC and GDM (G) between NC and HP (H)
between GDM and HP and (I) with the Q2 on the right side of the random distribution and p < 0.01, which indicated the above three OPLS-DA
models were reliable and there was no over-fitting phenomenon. (J) VIP values of three OPLS-DA models.
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TABLE 2 Potential biomarkers discovered by VIP, FC, and adjusted
p-values.

Different metabolites VIP FC P-value

NC vs. GDM

C18:1 2.45 1.24 0.003

2-Hydroxybutyric acid 1.91 1.62 0.001

Pyroglutamic acid 2.89 0.65 <0.001

Glutamic acid 1.27 1.21 0.042

NC vs. HP

C16:0 2.67 1.32 <0.001

C18:0 1.27 1.24 0.011

C18:1 2.18 1.47 <0.001

Pyroglutamic acid 1.82 1.44 0.001

Glycine 1.20 1.25 0.008

γ-Aminobutyric acid 5.57 1.36 <0.001

Glutamic acid 1.33 1.33 0.001

GDM vs. HP

C18:1 1.11 1.21 0.005

Pyroglutamic acid 2.84 2.21 <0.001

γ-Aminobutyric acid 5.84 1.38 <0.001

Creatinine 1.03 1.48 <0.001

P-values in bold indicate that there are significant differences between the NC, GDM, and
HP groups.

pyroglutamic acid, succinic acid, glutamic acid, C16:1, GABA,
C16:0, citric acid, and glutamine and decreased levels of
lactic acid, 2-hydroxyisocaproic acid, C22:4, and C22:6
(Figure 3B). These metabolites revealed a highly unique
metabolic HP phenotype, characterized by alterations in
alanine, aspartate, and glutamate metabolism, butanoate
metabolism, D-glutamine, and D-glutamate metabolism,
arginine biosynthesis, and the citrate cycle (TCA cycle)
(pathway impact > 0.1, FDR < 0.05).

Shared metabolites with basic
discriminant analysis and random
forest analysis

Common metabolites identified by both basic discriminant
analysis and RF analysis in GDM included 2-hydroxybutyric
acid, pyroglutamic acid, and glutamic acid (Figure 4A). In
HP, these included C16:0, C18:1, pyroglutamic acid, GABA,
and glutamic acid (Figure 4B). Six expression profiles were
violin-plotted to obtain representative differences in metabolites
by one-dimensional statistical analysis. Compared with the
NC group, 2-hydroxybutyric acid and glutamic acid were
significantly increased in the GDM group, and pyroglutamic
acid was decreased (Figures 4E,F,H). In addition, C16:0, C18:1,
pyroglutamic acid, GABA, and glutamic acid were significantly
increased in the HP group compared with the NC group
(Figures 4C,D,F–H). In terms of the non-normal distribution
and high variability of GABA and glutamic acid, we performed
another method, the Weighted Correlation Network Analysis
(WGCNA) to find hub metabolites (21, 22). WGCNA result
was in accordance with the results of multivariate analysis and
RF analysis, which indicated that GABA, pyroglutamic acid,
and glutamic acid were screened out as hub metabolites in HP
(Supplementary Figure 1).

Correlation analysis and metabolic
pathway reprogramming in gestational
diabetes mellitus and hypertensive
disorders of pregnancy

To explore whether there is a cascade effect between
the screened differential metabolites and disease phenotypes,
correlation analysis was conducted. When comparing GDM

FIGURE 3

Random Forest revealed the 15 most important metabolites for NC vs. GDM (A) and for NC vs. HP (B). Mean decrease accuracy is higher, and
the impact of metabolites on GDM/HP is larger. The figure on the right is a heat map of the identified 15 metabolites in both groups. Red is
high-expression; green is low-expression.
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FIGURE 4

Venn diagram for shared and distinct metabolites screened out via basic discriminant analysis and random forest analysis within NC-GDM (A)
and NC-HP (B). Univariate analysis for each comparison for: (C) C16:0; (D) C18:1; (E) 2-Hydroxybutyric acid; (F) Pyroglutamic acid; (G)
γ-aminobutyric acid; (H) Glutamic acid. *, **, and *** for p < 0.05, p < 0.01, and p < 0.001, respectively; ns, no significant difference.
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and NC groups, pyroglutamic acid levels negatively correlated
with BMI, CHOL, TG, VLDL, FPG, 1 h-PG, and 2 h-
PG, with the negative correlation being most significant
with FPG (p < 0.001). Conversely, 2-hydroxybutyric acid
and glutamic acid were positively correlated with the above
biochemical indicators. Additionally, glutamic acid positively
correlated with TG/1h-PG, and 2-hydroxybutyric acid positively
correlated with TG/FPG (p < 0.05) (Figure 5A). Interestingly,
comparing HP and NC groups, five differential metabolites
(C16:0, C18:1, pyroglutamic acid, GABA, and glutamic acid)
positively correlated with SBP, DBP, CHOL, TG, and VLDL,
especially strongly correlated with SBP (p < 0.05). Most
encouragingly, GABA was moderately correlated with glutamic
acid and pyroglutamic acid (p < 0.05) (Figure 5B). To
further clarify the most relevant metabolic pathways in GDM
and HP, pathway analysis showed the detailed impacts of
GDM/HP-related alterations in metabolic networks. As labeled,
two metabolic pathways were defined as disturbed in the
serum profiles of GDM. These included glutathione metabolism
and D-glutamine and D-glutamate metabolism (Figure 5C).
Meanwhile, five metabolic pathways were defined as disturbed
in the serum profiles of HP, including glutathione metabolism,
D-glutamine, and D-glutamate metabolism, biosynthesis of
unsaturated fatty acids, butanoate metabolism, and alanine,
aspartate, and glutamate metabolism (Figure 5D).

Risk assessment for gestational
diabetes mellitus and hypertensive
disorders of pregnancy

To reduce the false-positive risk in the metabolite selection
procedure, binary logistic regression between NC and GDM/HP
groups was conducted. Pyroglutamic acid (OR = 0.824, 95%
CI, 0.720–0.944) remained a risk factor for GDM when using
the NC-GDM model, and pyroglutamic acid (OR = 1.139,
95% CI, 1.014–1.279) and GABA (OR = 1.016, 95% CI,
1.000–1.033) performed similarly in HP using the NC-HP
model, after adjusting for BMI as a confounding factor
(Supplementary Table 5). Finally, pyroglutamic acid in GDM
and pyroglutamic acid and GABA in HP were selected to
construct logistic regression models, respectively. ROC analysis
revealed that the AUC of pyroglutamic acid in the GDM group
was 0.962 (95% CI, 0.920–1.000) (Figure 6A), and the AUC of
joint indicators, including pyroglutamic acid and GABA, in HP
group was 0.972 (95% CI, 0.938–1.000) (Figure 6B).

Discussion

The baseline information revealed that the BMI in the GDM
group was higher than in the NC. A meta-analysis published
in JAMA reported that gestational weight gain exceeded weight

gain recommended by the National Academy of Medicine in
47% of 130, 9136 pregnancies (23). Women with excessive
weight gain during pregnancy are more prone to adverse
maternal and post-partum outcomes (24). As such, a recent
study aimed to confirm the impact of maternal BMI and
glycemia on the fetal metabolome (25). Almost all obese GDM
patients have increased levels of fatty acids (26), which was
confirmed in this study. Additionally, LDL-C, CHOL, TG, and
VLDL concentrations in the GDM group were notably increased
compared with those of the NC group. A prior study showed
that increased levels of fatty acids affect liver VLDL secretion by
interfering with insulin action (27). On the one hand, fatty acids
are synthesized into TG for incorporation into VLDL with the
help of thioesterase superfamily member 2. On the other hand,
thioesterase superfamily member 2 suppresses insulin signaling,
inhibiting the degradation of apolipoprotein B in hepatocytes
and stimulating microsomal TG transfer protein to increase
VLDL secretion. In addition to these findings, the GDM and HP
disease groups had a greater degree of dyslipidemia as compared
with the NC group, with the HP group showing severely
abnormal liver, heart, and kidney functions. This phenomenon
has been seen in a prospective observational cardiovascular
phenotypic study during mid-gestation in women who develop
GDM and HP (28).

It is worth mentioning that the serum levels of 2-
hydroxybutyric acid, glutamic acid, branched chain (leucine
and isoleucine), and aromatic amino acids (tyrosine) in GDM
women were notably higher, while pyroglutamic acid, caproic
acid, 2-hydroxyisocaproic acid, glycolic acid, and citrulline were
significantly lower than that in the NC group in this study.
Specifically, increased concentrations of leucine and isoleucine
generated higher levels of α-ketobutyric acid from cysteine
metabolism related to oxidative stress, whose byproduct is 2-
hydroxybutyric acid. Pyroglutamic acid is a cyclized derivative
of glutamic acid, formed non-enzymatically from glutamate,
glutamine, and γ-glutamylated peptides. In our study, decreased
pyroglutamic acid levels were observed in GDM, demonstrating
that pyroglutamic acid imbalances may be responsible for GDM
occurrence. Furthermore, decreases in citrulline, a byproduct
of the enzymatic production of nitric oxide from arginine,
may be due to glutathione-induced inhibition of the eNOS
pathway that leads to a decrease in NO bioavailability and
metabolically induced cardiac dysfunction in GDM patients
(29). It is interesting to note that the aforementioned metabolites
were discovered to be the most significantly altered organic and
amino acids that have been reproducibly confirmed to be clinical
indicators of subclinical abnormalities in glucose metabolism.
These metabolites also serve as biomarkers of type 2 diabetes
(30–34). Thus, it appears that GDM and type 2 diabetes share
similar metabolic reprogramming.

Early and late-onset preeclampsia has various
pathophysiologic and etiologic pathways, including endothelial
dysfunction, alterations in oxidative stress, metabolic disorder,
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FIGURE 5

Correlation analysis and pathway enrichment analysis. (A) Correlation analysis between the screened differential metabolites and phenotypes
referring to GDM. (B) Correlation analysis between the screened differential metabolites and phenotypes referring to HP. Values in red denote a
positive trend, whereas those in green denote a negative trend. (C) Metabolic pathway reprogramming refers to GDM. (D) Metabolic pathway
reprogramming refers to HP. Colors varying from yellow to red denote metabolites with differing levels of significance. Node shapes varying
from small to large denote the number of metabolites included in a pathway.

and so on. In this study, elevated levels of pyroglutamic acid,
glutamic acid, GABA, glycine, orotic acid, α-ketoglutaric acid,
and succinic acid were observed in HP women. Although
there are few studies on how these metabolites act within the
pathological mechanisms of HP, they have been reported to
play a role in glutathione metabolism that is upregulated by
oxidative stress (35). A wealth of clinical studies have confirmed
that glutathione synthesis is a biomarker of liver oxidative stress
(36). Of these metabolites, α-ketoglutaric acid and succinic acid,
a byproduct of glutamic acid and GABA, enter the TCA cycle.
This may explain the increasing trend in blood glucose levels
in HP patients at baseline, indicating that HP patients already
possessed insulin resistance.

In addition, the proportion of saturated and unsaturated
fatty acids was imbalanced in GDM and HP, mainly evidenced
by increases in saturated fatty acid and monounsaturated
fatty acid and the decline in polyunsaturated fatty acid.
These alterations may be due to adipose tissue-specific insulin
resistance and impaired glucose uptake in GDM, in which
the body accelerates the oxidation and decomposition of

fat for energy. Excessive production of fatty acids, in turn,
may simultaneously act on other tissues to trigger insulin
resistance. For instance, excessive saturated fatty acids stimulate
endoplasmic reticulum stress, enhancing liver gluconeogenesis
and insulin resistance (37). For HP, a systematic review
revealed that free fatty acids spark endothelial dysfunction
through several mechanisms, such as impaired insulin signaling
transduction and nitric oxide production, oxidative stress,
inflammation, activation of the renin–angiotensin system, and
endothelial cell apoptosis (38). Moreover, elevated maternal
serum lipids and LDL levels may induce endothelial dysfunction
secondary to oxidative stress (39). Conversely, polyunsaturated
fatty acids decreased the risk of GDM and HP and improve
metabolic disorders. In fact, the latest research published
in Cell showed that n-3 fatty acids control adipogenesis
through ciliary signaling to enable the homeostasis of healthy
fat tissue and ameliorate insulin resistance and metabolic
dysfunction (40). Lou et al. found that n-3 fatty acid
enrichment in the cell membrane, which increases the ratio
of eicosapentaenoic acid to docosahexaenoic acid in the
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FIGURE 6

Receiver operating characteristics (ROC) curves in the GDM group for pyroglutamic acid (A) and in the HP group with joint indicators, including
pyroglutamic acid and γ-aminobutyric acid (B).

cell membrane, affected intracellular signal transduction and
inhibited the transcriptional activity of the inflammation-
related transcription factor NF-κB (41). The n-3 fatty acid
also generates derivatives with anti-inflammatory, analgesic,
and other physiological activities, such as resolvins and
protectins, that stimulate neutrophils and macrophages to
produce anti-inflammatory cytokines, including IL-4 and IL-
10, and reduce the inflammatory response to regulate levels of
inflammation (42).

Overall, comparative analysis, PLS-DA, RF, logistic
regression, and pathway analyses were used to elucidate
whether distinct metabolites changed during GDM and
HP. Metabolic pathway analysis was employed to elucidate
reprogramming pathways. Results showed almost a quarter
of metabolites could be used to differentiate GDM and HP
cases among healthy pregnant women. Of these, pyroglutamic
acid and GABA, as co-metabolites, were associated with risk
assessment for both diseases. Both GDM and HP showed
dysregulation of glucose and lipid metabolism, which may
trigger oxidative stress through alterations in glutathione
metabolism and biosynthesis of unsaturated fatty acids.
However, such expositions are unsatisfactory as the molecular
pathogenesis of GDM and HP cannot be completely explained
by these mechanisms, and we cannot determine the causality of
the observed changes in metabolites in the present study. Thus,
further animal and prospective population experiments are
needed to explore the cause-and-effect relationships between
metabolites alterations and disease onset and progression.
Moreover, much of the research to date has been descriptive
in nature, and the enrolled subjects do not represent a random
sample of Chinese pregnant women. Collectively, these novel

and intriguing metabolites characterized by metabolomics will
facilitate greater awareness of GDM and HP, so that efficient
strategies for disease prevention, antepartum maternal and fetal
evaluation, and patient monitoring can be implemented.
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