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Nicotinate degradation has hitherto been elucidated only in bacteria. In the

ascomycete Aspergillus nidulans, six loci, hxnS/AN9178 encoding the molyb-

denum cofactor-containing nicotinate hydroxylase, AN11197 encoding a

Cys2/His2 zinc finger regulator HxnR, together with AN11196/hxnZ,

AN11188/hxnY, AN11189/hxnP and AN9177/hxnT, are clustered and strin-

gently co-induced by a nicotinate derivative and subject to nitrogen

metabolite repression mediated by the GATA factor AreA. These genes are

strictly co-regulated by HxnR. Within the hxnR gene, constitutive mutations

map in two discrete regions. Aspergillus nidulans is capable of using nicotinate

and its oxidation products 6-hydroxynicotinic acid and 2,5-dihydroxypyridine

as sole nitrogen sources in an HxnR-dependent way. HxnS is highly similar to

HxA, the canonical xanthine dehydrogenase (XDH), and has originated by

gene duplication, preceding the origin of the Pezizomycotina. This cluster is

conserved with some variations throughout the Aspergillaceae. Our results

imply that a fungal pathway has arisen independently from bacterial ones.

Significantly, the neo-functionalization of XDH into nicotinate hydroxylase

has occurred independently from analogous events in bacteria. This work

describes for the first time a gene cluster involved in nicotinate catabolism

in a eukaryote and has relevance for the formation and evolution of

co-regulated primary metabolic gene clusters and the microbial degradation

of N-heterocyclic compounds.
1. Introduction
Filamentous ascomycetes comprise metabolically versatile saprophytes that can

use a large variety of metabolites as nitrogen and/or carbon sources. The

utilization of nicotinic acid has been studied in bacteria, but it has only been

addressed in a eukaryotic microorganism by our early work in Aspergillus
nidulans. An enzyme of the xanthine dehydrogenase (XDH) group [1–3] is

necessary for this process. Strains mutant in the cnx (cnxABC, cnxE, cnxF,

cnxG and cnxH) or hxB genes cannot use nicotinate. The cnx genes are required

for the synthesis of the molybdenum cofactor (MOCO) common to XDH and

nitrate reductase [4,5]. The HxB protein catalyses the sulfuration of the

Mo(VI), essential for the activity of the enzymes of the XDH group [5,6].

Two enzymes of the XDH family have been described in A. nidulans. Purine

hydroxylase I (PHI, HxA encoded by the hxA gene) is a typical XDH [7–9].

Purine hydroxylase II (PHII, HxnS; see below) has unprecedented substrate
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Figure 1. Metabolic cross-talk between the purine and nicotinate utilization pathways. PHI is a conventional XDH able to catalyse the conversion of hypoxanthine to
xanthine and xanthine to uric acid. XanA is an a-ketoglutarate-dependent xanthine dioxygenase, accepting xanthine but not hypoxanthine as a substrate. From
there uric acid is converted into ammonium (NHþ4 ) by the well-established purine utilization pathway ([21] for review). PHII is an unconventional MOCO carrying
enzyme hydroxylating hypoxanthine to xanthine and nicotinic acid to presumably 6-OH nicotinic acid. As this latter compound is a nitrogen source, it is presumably
converted into ammonium, which is indicated by a dashed blue connector. Note that unlike PHI, PHII cannot use xanthine as a substrate. In black: steps induced by
uric acid, under the control of the UaY transcription factor. In blue: steps actually (hxnS, PHII) or presumably induced by nicotinic acid, 6-OH nicotinic acid or a
further metabolite in the nicotinate utilization pathway and under the control of the HxnR/AplA transcription factor(s). Full references are given in the text.

Table 1. A summary of the properties of PHI and PHII compiled from the literature. Data from Lewis et al. [7] for the properties of the enzymes in crude
extracts and from Mehra and Coughland [8] (PHI) and [11] (PHII) for the purified enzymes. The reader is referred to the original articles for further
details. R. rate, relative rate to hypoxanthine, given an arbitrary value of 1. The concentration of each substrate was 2.5 times its Km.

substrate

PHI (HxA) PHII (HxnS)

crude extract pur. enzyme crude extract pur. enzyme

R. rate
Km
(mM)

R.
rate

Km
(mM)

R.
rate

Km
(mM) R. rate

Km
(mM)

hypoxanthine (6-hydroxypurine) 1.00 51.2 1.00 16.4 1.00 90.4 1.00 116

xanthine (2,6-dihydroxypurine) 0.63 161.9 0.61 34.2 — 350a ,0.02 —

2-hydroxypurine 0.59 28.3 0.49 16.8 0.38 36.2 0.42 37

allopurinol (4-hydroxypyrazolo-

[3,4-d]pyrimidine)

,0.005 — 0.007 — 0.006 0.5 0.007 1a

nicotinate — — — — 0.16 189 0.22 64
aKis of competitive inhibitors with hypoxanthine as a substrate.
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specificity. Hypoxanthine, but not xanthine, serves as a sub-

strate of PHII. It accepts nicotinate as a substrate and

catalyses the first step of nicotinate catabolism [1,7,10].

Table 1 presents some kinetic parameters for PHI (HxA)

and PHII (HxnS) summarized from the relevant literature.

PHII is absent in mycelia grown on nitrogen sources gen-

erally considered non-repressive. It is apparently induced by

nicotinate but it is also present in nitrogen-starved mycelia

[1]. The physiological inducer is either 6-OH nicotinate and/

or a metabolite further along the nicotinate utilization pathway

[12]. The expression of PHII is not under the control of UaY,

the transcription factor specific for the expression of the

genes in the purine utilization pathway including hxA [13–15].

Concentrations of nicotinate below those that can serve as

sole nitrogen sources allow hypoxanthine utilization by hxA2

strains [16,17]. Nicotinate induces PHII, which catalyses the

hydroxylation of hypoxanthine to xanthine. Xanthine is

further hydroxylated to uric acid by a xanthine dioxygenase

encoded by the xanA gene [18–20]. This is schematized in
figure 1. The induction pattern implies that PHII belongs

physiologically to the nicotinate utilization pathway and

not to the purine utilization pathway.

In the 1970s and 1980s, we attempted to characterize

genetically the nicotinate utilization pathway in A. nidulans.

The results have only been published schematically [1–3,22]

and thus will be summarized below. We isolated mutants

able to grow on hypoxanthine as a nitrogen source, but not

on a medium that contains hypoxanthine, allopurinol and

nicotinate (1 mM), which, at this concentration, does not

serve as a nitrogen source but fully induces PHII [1]. The

wild-type grows on this medium, as PHII (resistant to allo-

purinol inhibition [1,7]) hydroxylates hypoxanthine to

xanthine, which is further hydroxylated to uric acid by the

XanA protein (figure 1). Three groups of mutations, mapping

in three different genes, were obtained. One group, hxnS,
results in the inability to grow on the isolation medium and

on nicotinic acid as the sole nitrogen source (10 mM) but

maintains its ability to grow on 6-OH nicotinate. These
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mutations define the structural gene for PHII. Non-leaky

hxnS mutations resulted in the loss of PHII enzyme activity

but were heterogeneous regarding PHII cross-reacting

material (CRM) [2,22]. Furthermore, mutations in hxnR
result also in the complete inability to grow on 6-OH nicoti-

nate. hxnR mutants are non-inducible for PHII activity or

CRM [22]. The hxnR mutations are fully recessive and thus

represent loss-of-function mutations. They define an activat-

ing transcription factor, necessary for the expression of

hxnS and at least one other enzyme of the nicotinate utilization

pathway, involved in the downstream conversion of 6-OH

nicotinate. A number of mutants constitutive for PHII were

called aplAc [1]. These represent regulatory gain-of-function

mutations [1]. The aplA and hxnR mutations could represent

two tightly linked genes or a single gene where the relatively

frequent constitutive mutations define (a) negative-acting

domain(s). The hxnS, hxnR and aplA mutations are tightly

linked on chromosome VI (less than 1 centiMorgan for

crosses involving several alleles of the three classes). One

mutation isolated, described elsewhere, defines the xanA
gene [18,19].

We report here that hxnS and hxnR are part of an extended

gene cluster that includes four additional co-regulated genes.

The aplAc mutations map in specific domains of the hxnR
gene product. We discuss the evolutionary relationships

between the structurally similar but functionally distinct HxA

and HxnS paralogues, the domain structure of HxnR and the

conservation of the nicotinate gene cluster in the Aspergillaceae.
2. Results
2.1. Identification and characterization of the hxnS gene
We expected the hxnS gene to be a paralogue of hxA [7,16]. In

the A. nidulans genomic sequences of the Cereon Aspergillus

Sequencing Project (later incorporated into the Aspergillus

Genome Database, AspGD [23]), we found an incomplete

homologue of hxA [9]. We localized the sequence encoding

this XDH paralogue to chromosome VI cosmid W31:H08

(see ‘Material and methods’ section), in line with the map-

ping of hxnS. This cosmid complements both the hxnS41
and the hxnR2 loss-of-function mutations. We sequenced

the region comprising the putative hxnS gene to reveal a

protein with very high (51%) identity to PHI encoded by

the hxA gene and identical with the protein specified by the

AN9178 locus in the AspGD genome database (GenBank

accession number KY962010). The cognate full-length

cDNA sequence was also obtained (GenBank accession

number KX585438). The hxnS open reading frame is inter-

rupted by three introns in different positions to those extant

in hxA (figure 2). The hxnS gene encodes a protein of 1396

residues (HxA, 1363 residues). The molecular masses are

compatible with those experimentally determined for PHI

and PHII native dimers [7] and with the slower migration

of HxnS seen in the electronic supplementary material,

figure S1, in native polyacrylamide gels. We deleted the puta-

tive hxnS gene (see ‘Material and methods’ section). The

deletion strain is able to grow on hypoxanthine, unable to

use nicotinate as a nitrogen source and unable to grow on

media containing hypoxanthine (N-source), allopurinol

(inhibitor of PHI) and 100 mM nicotinate or 6-OH nicotinate

(as inducer), which requires HxnS activity (figure 3;
electronic supplementary material, figure S1, the latter show-

ing enzyme activities with both hypoxanthine and nicotinic

acid as substrates in native gels). hxnSD strains are able to

use 6-OH nicotinic acid as a nitrogen source, albeit at a

reduced level (figure 3; electronic supplementary material,

figure S1). The significance of the latter is not clear as the cog-

nate parent strain also uses 6-OH nicotinate badly, and an

hxB20 strain (see sections ‘Introduction’ and ‘A tightly co-

regulated gene cluster in chromosome VI’, for HxB function)

does not seem to be impaired in its utilization (figure 3). Pre-

viously isolated hxnS mutations result in the same phenotype

as hxnSD on the N-source hypoxanthine supplemented with

allopurinol or on nicotinate. However, they do not show any

impairment in 6-OH nicotinate utilization (electronic

supplementary material, figure S1). The three classical loss-

of-function mutations available were all isolated in an

hxnRc7 background, which results in overexpression of

other genes under HxnR control (see below) encoding other

proteins putatively involved in 6-OH nicotinate utilization

(figure 6a,b). The hxnS35 and hxnS41 alleles are nonsense

mutations (electronic supplementary material, figure S1

shows the corresponding mutational changes), while

hxnS29 results in a Phe1213Ser change in a conserved

region (figure 2). The hxnS35 and hxnS41 mutations result

in loss of PHII CRM, as assessed by immunoprecipitation,

while hxnS29, a leaky mutation on allopurinol supplemented

hypoxanthine medium (see electronic supplementary

material, figure S1), fully retains CRM [22]. The above consti-

tutes formal evidence that the locus AN9178 specifies the

hxnS gene. Strains carrying the hxnS29 mutation have a

clear phenotype in vivo, despite showing HxnS activity

in vitro (electronic supplementary material, figure S1). The

Phe1213Ser mutation may affect the stability rather than the

activity of the enzyme. We have checked if 6-OH nicotinate

(i.e. the product of nicotinate hydroxylase activity) could

also be a substrate for HxnS. A very faint staining can be

seen after 48 h incubation, a signal not stronger than the

one obtained in the absence of substrate, incubating the gel

in the presence of the tetrazolium salt (not shown).

2.2. A comparison of HxnS (PHII) with HxA (PHI)
Figure 2 compares PHI (HxA) and PHII (HxnS) to the

thoroughly chemically and structurally characterized Bos
taurus XDH enzyme [24,27]. HxnS and HxA and their

fungal orthologues (see below) differ less from each other

than other eukaryotic XDH paralogues, such as so-called

‘aldehyde oxidases’ from genuine XDHs. Eukaryotic ‘alde-

hyde oxidases’, so denominated for historical reasons, are

enzymes very similar to XDH, but with different substrate

specificities [30,31]. Features that differentiate HxnS from

HxA and those that are conserved in HxA and HxnS putative

fungal orthologues are discussed below.

The residues involved in the two amino-terminal 2Fe/2S

clusters, and the FAD- and NAD-binding residues identified

in the crystal structure of the B. taurus enzyme are strictly con-

served in HxA and HxnS (figure 2). HxnS comprises several

insertions when compared with HxA and other characterized

XDHs (figure 2). The first insertion occurs between the

second and the third Cys residues of the second 2Fe/2S cluster.

The sequence between the 2Fe/2S cluster domain and the

FAD/NAD-binding domain is longer in HxnS. Within the

FAD/NAD domain, the residue corresponding to Phe417 of



XDH Bos taurus
HxA (PHI)
HxnS (PHII)

Figure 2. A comparison of PHI (HxA) and PHII (HxnS). An alignment of the two A. nidulans open reading frames with the structurally characterized XDH from
B. taurus [24] is shown. Underlying the sequences: yellow, 2Fe/2S clusters; blue, FAD/NAD-binding domain; red, MOCO/substrate-binding subdomains I and II (as in
[25]). Red arrows underlying the sequences indicate intron positions in the hxA gene, while green arrows indicate intron positions in hxnS. Boxed residues: yellow,
conserved Cys in the 2Fe/2S clusters, also indicated the Glu45 and Gly46 (in B. taurus) residues belonging to the 2Fe/2S-binding loop, and separating this cluster
from the flavin-binding ring; orange, FAD-binding residues [24]; blue, NADþ/NADH-interacting residues [26]; green, residues interacting with MOCO [25]; red,
residues where HxnS and its putative orthologues differ from both HxA and typical XDHs represented by the B. taurus enzyme. Red asterisks mark residues involved
in substrate binding of B. taurus XDH [24,27,28]. Blue asterisks mark residues lining the substrate access channel of B. taurus XDH [28]. Green asterisks mark residues
hydrogen-bonding a molybdenum-bound oxygen [27]. Red downward arrows indicate mutational changes leading to complete loss of function in HxA; blue down-
ward arrows indicate mutations leading to changes of substrate and inhibitor specificity in HxA [29]; the downward green arrow indicates the only extant missense
mutation sequenced for HxnS. Alignment with MAFFT E-INS-i, visualized with BOXSHADE.
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the B. taurus XDH is almost universally an aromatic residue in

XDHs (Tyr454 in HxA) but it is Ile (Ile478) in HxnS and always

an aliphatic hydrophobic residue in HxnS orthologues

(figure 2). The carboxy-terminal MOCO/substrate-binding

domain (starting from residue 590 in the B. taurus XDH)

shows an almost complete conservation of both the residues

interacting with MOCO [25] and those interacting with sub-

strates, including most of the residues that line the substrate

access channel. His954 of the B. taurus enzyme, a residue not

involved in the enzyme active site, is conserved in HxA

(His985) and in most of its orthologues. However, it is Pro

(Pro1008) in HxnS (figure 2) and in all its putative orthologues.

This change does not affect the modelled secondary structure

(not shown, but see below). Other amino acid residues,

which differ systematically among HxA and HxnS orthologues

(see section below), correspond to some of the residues

involved in MOCO binding; the Val1081 and Ser1082 of the

B. taurus enzyme are Ala1112 and Ser1113 in HxA but

Ser1137 and Gly1138 in HxnS (figure 2). Conserved residues

include Arg880 of B. taurus XDH (Arg911 of HxA and

Arg934 of HxnS), a residue that is never conserved in XDH-like

aldehyde oxidases [9,29–31]. Mutations affecting this residue

in hxA result in altered substrate specificity including a
PHII-like resistance to allopurinol inhibition and the inability

to accept xanthine as a substrate [18,29]. Glu803 of the

B. taurus enzyme is conserved in HxA (Glu833) and HxnS

(Glu856). This key residue is never conserved in XDH-like alde-

hyde oxidases [30]. Within the HxA MOCO/substrate-binding

domain, several mutations result in either loss-of-function or

altered substrate specificity phenotypes [29]. All the corre-

sponding residues involved are conserved in HxnS (figure 2).

The pair of aromatic amino acids that sandwich the purine

ring and orient the substrate towards the MOCO are conserved

(Phe914 and 1009 in the B. taurus enzyme, 954 and 1040 in HxA,

968 and 1064 in HxnS).

A striking exception to the sequence conservation is the

insertion of an Ala (Ala1065 in HxnS) between the almost

universally conserved Phe1009 and Thr1010 (numeration as

in the B. taurus enzyme, Phe1040 and Thr1041 in HxA,

Phe1064 and Thr1066 in HxnS; conserved in all characterized

XDHs but not in the eukaryotic XDH-like aldehyde oxidases

[30], figure 2). The Phe/Thr pair is also conserved in bacterial

XDHs (residues 459 and 460 in subunit B of the Rhodobacter
capsulatus XDH [32]). An Ala insertion at this position is an

almost absolute feature of HxnS orthologues (FATAL in

HxnS orthologues, FSTAL in Choiromyces venosus putative



co
ntr

ol 
1

hx
nR

80

hx
nR

D
hx

B20

hx
nS

D
co

ntr
ol 

2

hx
nR

c 7

Hx

Hx, AIIp

Hx, AIIp,
100 mM NA

Hx, AIIp,
100 mM 6-NA

Hx, AIIp,
100 mM 2,5-DP*

10 mM NA*

10 mM 6-NA*

10 mM 2,5-DP*

no N-source

Figure 3. Utilization of different nitrogen sources by mutants described in
this article. Above each column we indicate the relevant mutation carried
by each tested strain. Hx indicates 1 mM hypoxanthine as the sole nitrogen
source. Hx, Allp, as above including 5.5 mM allopurinol, which fully inhibits
PHI (HxA) but not PHII (HxnS). NA, 6-NA and 2,5-DP indicate, respectively,
nicotinic acid and 6-OH nicotinic acid added as the sodium salts (see ‘Material
and methods’ section) and 2,5-dihydroxypyridine added as powder. Other rel-
evant concentrations are indicated in the figure. Plates were incubated for 3
days at 378C except those marked by asterisk (*), which were incubated for 4
days. Strains used: control 1 (HZS.120, parent of hxnSD), control 2 (TN02
A21) are wt for all hxn genes. Mutant strains: hxnSD (HZS.599), hxB20
(HZS.135), hxnRD (HZS.136), hxnR80 (HZS.220) and hxnRc7 (FGSC A872).
The complete genotypes are given in the electronic supplementary material,
table S5.

rsob.royalsocietypublishing.org
Open

Biol.7:170199

5

HxnS, compared with FTAL in all Pezizomycotina HxA

orthologues). Phe1013 is universally conserved in XDHs

(Phe1044 in HxA), but it is a His (His1069) in HxnS

(figure 2) and its putative orthologues. HxA and HxnS can

be modelled to and superimposed on the structure of the

B. taurus XDH (electronic supplementary material, figure S2).

While modelling the active site, no obvious differences can

be seen in the orientation of the relevant active-site residues

with the obvious exception of the orientation of Thr1066 of

HxnS compared with Thr1041 (HxA) and Thr1010 (B. taurus
XDH). This residue participates in the active site by interacting

with the carbonyl group of Phe1009 [33]. The hydroxyl group

of Thr1010 is involved in the binding of several inhibitors

[33–35], but more importantly, either the N1 or the N7 of

hypoxanthine [36]. The corresponding Thr460 (within an

FTLTH motif) of the B subunit of the Rhodobacter capsulatus
XDH has been shown to hydrogen-bind the N7 of hypo-

xanthine but the O6 of xanthine [34]. Further work should

show whether the change of orientation of the Thr residue is

the key feature that allows presentation of the nicotinate

molecule to the MOCO centre.

2.3. Phylogeny of fungal purine hydroxylases
The hxnS gene probably resulted from duplication and diver-

gence of an ancestral hxA gene [7]. We searched all available

fungal genomes for homologues of XDH (see electronic

supplementary material, figure S3 and table S1). Enzymes
of this group are absent from Rozella allomycis (Cryptomy-

cota), the Microsporidia, the Neocallimastigomycota and

the Mucoromycotina. Figure 4 and the electronic supplemen-

tary material, figure S3 show the distribution of XDH-like

enzymes among all fungal taxa. XDH-like enzymes are pre-

sent in all classes of the Pezizomycotina, basal species of

the Taphrinomycotina and Saccharomycotina, and some

members of the Basidiomycota (see below). The peptidic

sequence of the outgroups strongly suggests that the basal

enzyme was a typical XDH.

No hxnS-like gene is present outside the Pezizomycotina.

Both hxA and hxnS orthologous genes are present in the

basal class Pezizomycetes, while hxnS orthologues are absent

from the sequenced species of Orbiliomycetes and Lecanoro-

mycetes. With the exceptions of Oidiodendron maius and

Rhytidhysteron rufulum (see electronic supplementary material,

figure S3 legend), all species of the Pezizomycotina, where a

putative orthologue of HxnS is present, also carry an ortholo-

gue of HxA. Loss of hxnS orthologues has occurred within

the Eurotiomycetes: orthologues of HxA are present in all

species available, but the presence of HxnS is patchy, i.e.

present in the nidulantes group and the black aspergilli, but

not, for example, in A. flavus. With the exception of Penicillium
paxilli and P. citrinum, which contain hxnS orthologues

(unlinked to hxnR; see below), the hxnS orthologues are miss-

ing from species of Penicillium. Within the Sordariomycetes, a

similar pattern of loss occurs, with hxnS orthologues present

in the Nectriaceae (order Hypocreales), but not in the Sordar-

iales (such as Neurospora crassa, Sordaria macrospora
and Podospora anserina). The only PH-like enzyme present in

O. maius (Leotiomycetes) could represent a second neo-

functionalization, in which an enzyme phylogenetically

related to HxnS would have reacquired HxA substrate speci-

ficity (see comments to electronic supplementary material,

figure S3). The phylogeny (figure 4; electronic supplementary

material, figure S3) strongly suggests a duplication of an

HxA ancestral gene occurring at the root of the Dikarya. This

duplication would have been followed by either neo-functio-

nalization, leading to HxnS (in the Pezizomycotina) or loss of

one of the two ancestral paralogues with HxA function (else-

where in Dikarya). This discrepancy between the timing of

duplication and neo-functionalization would account for the

two separated clades of the XDHs of the Basidiomycota (one

of them clustering with HxnS orthologues), the divergence of

Saitoella complicata and the Taphrina spp., and the position of

both the Saccharomycotina and Taphrinomycotina as outgroups

of HxA orthologues rather than as an outgroup of all the

Pezizomycotina PHs (see electronic supplementary material,

figure S3 legend).

The hxnS orthologues, which have been included in

figure 4 and the electronic supplementary material, figure

S3, show a highly variable exon/intron structure, as discussed

in the supplementary material (comments on the exon–intron

structure of hxnS orthologues).
2.4. Identification and characterization of the hxnR/aplA
gene

Closely linked to, but separated by locus AN9177 (to be

called hxnT; see below), there is an open reading frame of

2673 nt (interrupted by a single 75 nt intron) encoding a

protein of 865 residues comprising two typical Cys2His2
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Figure 5. A schematic representation of the HxnR transcription factor and verification of constitutivity of hxnRc mutants. (a) A schematic of the HxnR transcription
factor is shown, indicating the two Cys2His2 Zn-finger domains (C2H2, in purple), the putative nuclear localization signal (NLS, in orange), the putative nuclear
export signal (NES, in yellow), the fungal transcription factor domain ( pfam04082, in blue) and the two regions where the constitutive mutations occur (in green).
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Zn fingers near its amino terminus (AN11197). We have re-

sequenced this region (GenBank accession number

KX669266). In the A. nidulans open reading frame, there are

two possible in-phase initiation codons separated by three

residues (MKAKM; electronic supplementary material,

figure S4). In other aspergilli available in the databases,

only the second Met codon is present. As the first codon is

within the transcribed sequences (RNAseq data, J-Browse

module at http://www.aspgd.org/), we have assumed that

this is the genuine start codon in A. nidulans (in accordance

with Kozak [37]). Between residues 394 and 668, a PFAM

domain ‘Fungal transcription specific domain’ PF04082 was

detected (figure 5a). A nuclear localization signal from resi-

due 77 to 87 (NLS, VLETRKRMRRA) downstream from the

Zn fingers is strongly predicted by CNLS MAPPER, while a

nuclear export signal (NES, LDIDL) is predicted for residues

285–289 by NETNES (figure 5a).

We deleted the whole AN11197 coding region. The result-

ing phenotype is identical to that reported previously for

hxnR loss-of-function mutations [1,3,22] (figure 3; electronic

supplementary material, figure S1 and transcriptional pheno-

types in section ‘A tightly co-regulated gene cluster in

chromosome VI’): inability to use nicotinate and 6-OH nicotinic

acid as sole nitrogen sources, to which we can add now the

inability to use 2,5-dihydroxypyridine, an intermediate in the
catabolism of nicotinate in bacterial species [39,40]. Figure 3

confirms that 2,5-dihydroxypyridine is an inducing inter-

mediate in A. nidulans as this metabolite allows strong

growth on hypoxanthine in the presence of allopurinol,

which necessitates induction of hxnS.

Extant loss of function, as well as constitutive mutations

(alpAc mutations; see ‘Introduction’ section) map within the

hxnR open reading frame (figure 5a). We have thus renamed

the constitutive regulatory mutations, hxnRc. We attempted

to define the domain(s) comprising residues mutable to

constitutivity by selecting and sequencing additional hxnRc

mutations (see ‘Material and methods’ section). All

sequenced mutations are shown schematically in figure 5,

while the mutational changes are detailed in the electronic

supplementary material, table S2. As some mutational

changes were detected several times, in separate mutation

runs, we have probably near-saturated the hxnR gene with

constitutive mutations.

We constructed a CONSURF profile of the HxnR protein,

using putative orthologues from 123 species of the Pezizomy-

cotina subphylum (electronic supplementary material, figure

S4 and table S3). All missense mutations, either constitutive

or loss-of-function, map in highly conserved regions

(figure 5). Constitutive mutations map in two patches, one

well-defined patch between residues 219 and 239, the other,

http://www.aspgd.org/
http://www.aspgd.org/
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a larger domain between residues 565 and 639. For a number

of residues we have obtained several different amino acid

changes. Accessible aromatic residues at positions 226 and

228 and a basic residue at position 605 seem necessary for

HxnR to be in its default, inactive state, in the absence of

its physiological inducer.

We detected putative HxnR orthologues only among the

Pezizomycotina (electronic supplementary material, table

S3). We would expect a strong correlation between the pres-

ence of hxnR and hxnS orthologues. Out of 139 species of

the Pezizomycotina screened, 40 have only hxnR and 14

only hxnS (electronic supplementary material, table S4).

Among the 85 species where both genes are extant, tight clus-

tering is evident in most of them (see the section

‘Conservation of the hxn gene cluster in the Aspergillaceae’).

The absence of clustering is common among the Sordariomy-

cetes, with the exception of the Xylariales order where the

clustering is maintained. These 85 species include all classes

of the Pezizomycotina subphylum with the exception of the

Orbiliomycetes and the Lecanoromycetes.
2.5. A tightly co-regulated gene cluster in chromosome
VI

In A. nidulans, the hxnR and hxnS genes are within a cluster of

co-regulated genes. This is shown in figures 6 and 7. Six neigh-

bouring genes, inducible by nicotinate and 6-OH nicotinate,

are non-inducible in strains carrying either the hxnR2 or

hxnRD mutations and show strong constitutive expression in

the hxnRc7 background. The genes in the cluster are: hxnS
(AN9178), hxnT (AN9177), hxnR (AN11197), hxnP (AN11189),
hxnY (AN11188) and hxnZ (AN11196) (figure 6d ). The flank-

ing genes AN9179 (adjacent to hxnS) and AN9174 (adjacent

to hxnZ and transcribed convergently) are not induced by

nicotinate and they are not affected by hxnR constitutive or

loss-of-function mutations (not shown). The hxnP and hxnZ
genes encode transmembrane proteins of the Major Facilitator

superfamily (PF07690.13). hxnT encodes a flavin oxidoreduc-

tase (Oxidored_FMN, PF00724), while hxnY encodes a typical

a-ketoglutarate-dependent dioxygenase (PF14226.5 and

PF03171.19). The role of each gene in nicotinate utilization

and their phylogenetic relationships will be discussed else-

where, HxnP and HxnZ being involved in the uptake of

nicotinate-derived metabolites, and HxnT and HxnY in the

further metabolism of 6-OH nicotinic acid (E Bokor, M Flip-

phi, J Ámon, C Scazzocchio and Z Hamari, unpublished

results). We can however state that, for each of these genes,

the nearest homologue is a fungal and not a bacterial gene

(not shown). hxnR is itself an inducible gene (figure 6a,b).

There is a clearly detectable level of hxnR transcript under

non-induced conditions, at variance with the other genes of

the cluster. RNAseq data [23,42], available in J Browse

(http://www.aspgd.org/), confirm the co-regulation of the

cluster, where all genes in this cluster are non-expressed in

conditions of nitrogen sufficiency and derepressed by nitro-

gen starvation. Under our experimental conditions, with the

exception of hxnR, genes in the cluster are virtually non-

expressed in media that contain good nitrogen sources but

are expressed under nitrogen-starved conditions (figure 6c).

All genes in the cluster are drastically repressed by

ammonium (figures 6b and 7a). HxnR is necessary for

expression under nitrogen-starved conditions (figure 6c).
The strong constitutivity of hxnRc7 strains is clear in the pres-

ence of a non-repressive nitrogen source (acetamide) or under

conditions of nitrogen starvation. The transcript of hxB,

which had previously been found to be independently regu-

lated by HxnR and UaY (and thus independently induced by

nicotinate and uric acid [41]) behaves qualitatively as the five

structural genes in the cluster (figure 6b).

The role of AreA, the GATA factor mediating nitrogen

metabolite derepression [43–45], is shown for hxnS and

hxnP in figure 7a. Transcription of both hxnS and hxnP is

abolished in a strain carrying a null areA mutation

(areA600) under all conditions, including nitrogen starvation.

Surprisingly, the transcription of both hxnS and hxnP is

diminished in a strain carrying an xprD1 mutation (con-

sidered to be the most extremely derepressed allele of areA,

([46] and references therein)); the allele is called xprD1 for his-

torical reasons [43,47]. By contrast with the genes of the

nitrate and purine assimilation pathways [48–50], the gluta-

mate–aspartate transporter gene agtA [51] and also hxB [41],

the hxnS and hxnP genes are fully repressed by 10 mM

ammonium in an xprD1 strain. A similar atypical effect

has been reported for the main urea transporter ureA gene

[52].

A downstream metabolite of nicotinate is the physiologi-

cal inducer of the HxnS protein [12]. Figure 7b shows this to

be the case at the level of mRNA steady-state levels for both

hxnS and hxnP. In an hxB null mutant lacking HxnS activity,

nicotinate does not behave as an inducer but 6-OH nicotinate

does. Thus the effector of HxnR is not nicotinate but 6-OH

nicotinate or a metabolite further downstream the nicotinate

utilization pathway. The in vivo test shown in figure 3,

where 2,5-dihydroxypyridine acts as inducer, suggests the

latter to be the case.
2.6. Conservation of the hxn gene cluster in the
Aspergillaceae

The evolution of the whole nicotinate utilization pathway in

fungi will be dealt with in another publication (E Bokor,

M Flipphi, J Ámon, C Scazzocchio and Z Hamari, unpublished

results), but we discuss here the conservation of the hxn cluster

in the Aspergillaceae family. Examples of the organization of

the cluster are shown in figure 8. Episodes of gene gain and

loss are shown, including the duplication of hxnY or hxnT as

well as the loss of hxnT and hxnS. In A. ochraceoroseus, only

hxnS is present, a mirror image of the situation in A. flavus
(and other species in section Flavi) and P. digitatum (and all

other Penicillium species but two), where the genome includes

all hxn genes with the exception of hxnS. The absence of hxnS
may imply that, in these species, the cluster deals with the

utilization of nicotinate derivatives (such as 6-OH nicotinic

acid) rather than that of nicotinate per se.
The situation in P. citrinum (and P. paxilli) implies a sec-

ondary reconstitution of the pathway by horizontal

transmission, as an unlinked orthologue of hxnS is present,

seemingly reacquired from a member of the Hypocreales

(order of Sordariomycetes; see Phylogeny section, electronic

supplementary material, figure S3). In A. niger, and related

black aspergilli albeit not in A. carbonarius or A. aculeatus,

a new, intronless gene, encoding a putative nitroreduc-

tase is inserted in the cluster, between hxnR and hxnT
(see ‘Discussion’ section).

http://www.aspgd.org/
http://www.aspgd.org/
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Figure 6. Co-regulation of the genes in the hxn cluster. (a) mRNA levels measured by qRT-PCR for all the genes in the hxn cluster. Mycelia were grown on 1 mM
acetamide as the sole nitrogen source for 8 h at 378C. They were either maintained on the same medium for a further 2 h (non-induced, NI) or induced with 1 mM
nicotinic acid (as the sodium salt, I) or induced as above together with 5 mM of L-(þ)diammonium-tartrate (induced repressed, IR). Strains used: hxnRþ (FGSC A26),
hxnRD (HZS.136) and hxnRc7 (FGSC A872). (b) Northern blot showing qualitatively the co-regulation of all the genes in the cluster under different growth con-
ditions. Mycelia were grown on 500 mM urea for 8 h, and then transferred to 1 mM acetamide for an additional 2 h (non-induced, NI) or to the same plus 1 mM
nicotinic acid (as above, I) or to the latter together with 5 mM L-(þ)diammonium-tartrate (induced repressed, IR). Together with hxnS, hxnR, hxnT, hxnP, hxnY and
hxnZ transcripts we also monitored the expression of hxB, an unlinked gene, which was previously shown to be under the control of HxnR [41]. As a loading control,
the expression of acnA (actin) was monitored. Strains used are indicated by the relevant mutation: hxnRþ (FGSC A26), hxnR2 (CS302), a missense unleaky mutation
(Gly76Asp) and hxnRc7 (FGSC A872), our standard constitutive mutation (figure 5; electronic supplementary material figure S4 and table S2). (c) Expression of hxnS
and hxnP under conditions of nitrogen starvation. Mycelia were grown on 5 mM urea as the sole nitrogen source for 8 h, and then transferred to the same medium
for two additional hours (U, which is non-inducing and actually partially repressed conditions; see text) or to a medium without any nitrogen source (starvation
media, St) or to a medium with 10 mM nicotinic acid as the nitrogen source (inducing media, I). Strains as in panel (a). In all qRT-PCR experiments, data were
processed according to the standard curve method with acnA as the control mRNA. Standard errors of three independent experiments are shown in all qRT-PCR.
Gene probe primers are detailed in the electronic supplementary material, table S6. (d ) Cluster arrangement of the hxn genes on chromosome VI.
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3. Discussion
3.1. A nicotinate-inducible eukaryotic cluster
With the exception of some of our own old work (see ‘Intro-

duction’ section) no genes or enzymes involved in the

degradation of nicotinate have been described in any eukar-

yote. Degradation of nicotinic acid has been studied in

plant cell cultures and tea plant material fed with carboxyl-

C14-nicotinic acid and C14-6-nicotinic acid, monitoring the

formation of 14CO2 [53–55]. No enzymes involved in these

processes were identified and inspection of relevant genomes
only revealed one typical XDH. Thus, the A. nidulans HxnS is

the hitherto only eukaryotic nicotinate hydroxylase studied,

and the hxn gene cluster we have identified is the first

co-regulated eukaryotic gene cluster involved in the

utilization of nicotinate ever described.
3.2. The hxA/hxnS duplication compared to other
eukaryotic MOCO-enzyme duplications

Neo-functionalization of enzymes of the XDH group arising

from ascertained or presumed gene duplications occur in
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expression. hxnP and hxnS mRNA levels in areAþ (FGSC A26) and an areA
supposedly derepressed mutant (xprD1, HZS.216) and areA null mutant
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for further 2 h. Induced conditions (I): as above but transferred to 10 mM
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on metabolism of nicotinic acid via HxnS activity. mRNA levels of hxnP
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same as detailed in (a). (NA): induced with 1 mM nicotinic acid; (6-NA):
induced with 1 mM 6-OH nicotinic acid. The hxB20 mutation abolishes com-
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standard curve method; the housekeeping control transcript was actin (acnA).
Standard deviations based on three biological replicates are shown.
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both prokaryotes and eukaryotes. Fetzner and co-workers

have described the diversity of bacterial MOCO enzymes of

the XDH group, even if the phylogeny of these enzymes

with different specificities remains unstudied [39,56–59].

Duplication and neo-functionalization of genes encoding

XDH-like enzymes are widespread in Metazoa, studied

mainly in insects and vertebrates. In Metazoa, a close linkage

of the neo-functionalized genes with strict conservation of
intron/exon structure is the rule [30,60–63]. The implication

is that XDH gene duplication has occurred by different mech-

anisms in metazoans and fungi. In metazoans, duplication

seems to occur at the DNA level by unequal crossover. In

the fungi, the striking amino acid sequence conservation

among the HxA/HxnS paralogues together with the variabil-

ity of intron positions suggests that the duplication of an HxA

ancestral gene occurred via retroposition, followed by a

re-intronization either after or concurrent with re-functionali-

zation of the duplicated gene. Notwithstanding the

mechanism underlying this gene duplication, the hxA/hxnS
duplication is quite ancient, occurring before the divergence

of the Taphrinomycotina from other Ascomycota (greater

than 400 Ma [64,65]), which allows the possibility of intron

loss and reinsertion. The variation of intron–exon organiz-

ation in both the hxA and hxnS clades (not shown) is also

consistent with this possibility (figure 4 and electronic sup-

plementary material, figure S3, for the relevant positions in

the phylogenetic tree).
3.3. Convergent evolution of bacterial and fungal
nicotinate hydroxylases

MOCO enzymes able to catalyse the hydroxylation of nicoti-

nate to 6-OH nicotinate have been described in a variety of

bacterial species [40,66–68]. However, it can be excluded

that the HxnS proteins have originated by horizontal trans-

mission from bacteria. In all eukaryotes, XDH-like enzymes

are dimers of chains of approximately 1500 amino acid resi-

dues comprising three discrete domains (figure 2). In

bacteria, these domains are encoded by at least two genes,

one specifying a small subunit carrying the 2Fe/2S centres

and the FAD-binding sequences and a large subunit carrying

the MOCO and substrate-binding centres. These genes,

included in an operon, reflect the amino- to carboxy-terminus

order of the domains in the eukaryotic XDH-like enzymes. A

similar structure occurs in bacterial nicotinate hydroxylases

[40,67], which makes improbable a direct bacterial origin of

the fungal nicotinate hydroxylases. Figure 4 and the elec-

tronic supplementary material, figure S3 show that HxnS

orthologues have originated by gene duplication within the

fungal kingdom, possibly at the root of the Dikarya, with a

neo-functionalization process occurring within the Pezizomy-

cotina subphylum. BLASTP screening with the MOCO/

substrate-binding domains of both HxA and HxnS

(figure 2) against all bacterial sequences available in the

NCBI non-redundant protein (nr/nt) database yielded hom-

ologues of the MOCO-binding subunits of putative

bacterial XDHs, but in no case (among the first 100

sequences) were MOCO subunits of known bacterial nicoti-

nate hydroxylases found (not shown). Thus, fungal

nicotinate dehydrogenases show more similarity to bacterial

XDHs (and as a matter of course, to all genuine eukaryotic

XDHs) than to bacterial nicotinate dehydrogenases.

A comparison of the sequences of the MOCO and sub-

strate-binding subunits of bacteria suggests that there are at

least three classes of MOCO nicotinate hydroxylases, exem-

plified by Pseudomonas putida, Eubacterium barkeri and

Bacillus niacini, respectively [40,66,67]. We have stated that

the insertion of an Ala residue (HxnS Ala1065) between the

conserved Phe and Thr in the active site is a signature of

fungal HxnS orthologues (see §§2 and 3 of Results). Genuine



A. nidulans hxnZ hxnY hxnP hxnR

*

*

*

hxnT hxnS

A. niger

A. flavus

A. ruber

M. ruber

A. wentii

A. sclerotiorum

A. ochraceoroseus

A. fumigatus

P. citrinum

P. digitatum

Figure 8. Hxn cluster organization in the Aspergillaceae family. Boxes indicate genes; arrowheads indicate orientation. Colour stands for the orthologues found in
different species (Aspergillus nidulans, A. niger, A. flavus, A. ruber, Monascus ruber, A. wentii, A. sclerotiorum, A. ochraceoroseus, A. fumigatus, Penicillium citrinum,
P. digitatum). Stars indicate putative pseudogenes ( putative non-functional alleles); hatched boxes indicate duplicated paralogues. Vertical lines symbolize physical
unlinkage of genes on the same chromosomes. The blank box in A. niger stands for the orthologue of the A. nidulans gene at locus AN8360 (encoding a nitro-
reductase of bacterial origin), which is unlinked to the cluster in the latter fungus, while its expression is not regulated by nicotinate or the transcription factor HxnR.
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bacterial XDHs also carry an FT motif in the cognate place in

the structure [32,34]; however, the divergence of bacterial

nicotinate hydroxylases from bacterial XDHs is such that

neither sequence alignments nor structural modelling (not

shown) gave a clear inkling of which modifications resulted

in, or at least correlate with the shift in substrate specificity.

It seems that not only has there been convergent evolution

of fungal and bacterial nicotinate hydroxylases, but that nico-

tinate hydroxylases evolved several times independently

within bacteria. A hint to the shift in specificity towards

hydroxylation of nicotinic acid is provided by the molecular

structure of the nicotinate hydroxylase of E. barkeri [68,69].

In this enzyme, the substrate/MOCO-binding domain is

split into two independent peptides (L and M). Strikingly,

it carries a selenium rather than a sulfur atom as the terminal

ligand to the Mo(VI). Selenium also occurs in the XDH of this

organism [68,69], which is consistent with an independent

evolution of the E. barkeri nicotinate hydroxylase from

that of other bacterial enzymes of similar specificity (see

above). Most active-site residues are conserved, with an inter-

esting exception. Tyr13 of subunit M (Tyr13M) is modelled

to hydrogen-bind the heterocyclic N atom of nicotinate by

its hydroxyl group [68]. The corresponding residue in the

B. taurus XDH is Phe1005, which has not been proposed to

interact with the substrate [24,27]. This Phe residue, four

residues upstream of Phe1009 (of B. taurus), is conserved in

both HxA and HxnS (figure 2) and indeed in all HxA and

HxnS-like fungal enzymes included in the electronic sup-

plementary material, figure S3, with the exception of the

putative XDH of the four divergent Taphrina species, where

it is substituted by a His. Tyr13M is not conserved in several

other characterized or putative nicotinic acid hydrolases such

as those of Ps. putida and its putative orthologues, where the

corresponding residue is an Arg or a His. No sequence simi-

lar to FTAL or FATAL is present in the enzyme of E. barkeri
and its putative orthologues (see fig. S1 of [68]). It is tempting
to speculate that the change in orientation of Thr1066 in HxnS

allows an interaction with nicotinate by its hydroxyl group

similar to that seen for modelled Tyr13M in E. barkeri. Bio-

chemical evidence indicates that the carboxyl group of

nicotinate is essential for substrate binding of HxnS [11];

the hydroxyl of Thr1006 could potentially hydrogen-bind

the carboxyl group of nicotinic acid. Differently from HxnS,

the enzyme of E. barkeri does not accept hypoxanthine as sub-

strate [68]. It can be proposed that the bacterial enzymes (at

least the E. barkeri one) have fully evolved into dedicated

nicotinate hydroxylases, while the HxnS orthologues con-

serve properties of XDH. The specific situation discussed

for the homologue of O. maius, which can be proposed to

have reverted to a typical XDH activity from an HxnS-like

enzyme (see electronic supplementary material, figure S3

legend), would be in line with this speculation.

3.4. An unusual specific transcription factor
Fungal transcription factors regulating specific metabolic pri-

mary or secondary pathways are generally of the Zn2Cys6

(zinc cluster) class, while Cys2His2 (zinc finger) factors are

usually, with very few recorded possible exceptions [70,71],

broad domain regulators of either metabolism and/or mor-

phology. The closest characterized transcription factor that

shares architecture and has sequence similarity with HxnR

is Klf1p of Schizosaccharomyces pombe. This factor is necessary

for maintenance of long-term quiescence and its absence

results in abnormal cell morphology in the quiescent state

[72]. The nearest homologue and possible orthologue of

Klf1p in A. nidulans is the protein of unknown function

encoded by AN6733. The latter is strictly conserved in a syn-

tenic position in all aspergilli included in the AspGD

database and putative orthologues are present in all

sequenced members of the Pezizomycotina (not shown). As

hxnR is only present in the Pezizomycotina, it is tempting
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to speculate that it originated from a duplication of the poss-

ibly essential ancestral orthologue of AN6733, the duplicated

gene being then recruited into the nicotinate utilization

pathway.

The apparent high frequency of constitutive, gain-of-func-

tion mutations, and their mapping indicate that the HxnR

protein is, in the absence of inducer, in a default state non-

competent to elicit transcription, and that the domains

where constitutive mutations map are instrumental in main-

taining HxnR in this ‘closed’, inactive state. The amino-

terminal cluster of constitutive mutations maps outside the

PF04082 domain, in sequences that are conserved only

among HxnR orthologues. The carboxy-terminal mutations

map within the PF04082 domain conserved in Klf1,

AN6733 and NCU05242 (the N. crassa orthologue of

AN6733). Note, for example, mutations affecting Lys603 in

HxnR, a residue conserved in these four proteins (figure 5;

electronic supplementary material, figure S4). The PF04082

domain of Gal4p (244–537) coincides with the central

regulatory domain of similarity proposed by Poch [73]; see

also Stone & Sadowski [74]. The cognate domain of the

A. nidulans NirA (pathway-specific regulation of nitrate

assimilation) spans residues 230–487 [75]. Within this

region maps a cryo-sensitive, non-inducible mutation

(Arg347Ser) as well as its intragenic suppressors, some of

which result in constitutivity. This domain possibly interacts

with both the NES and the C-terminal transcription acti-

vation domain [75]. The evidence from different systems

indicates that PF04082 is an intramolecular interaction

domain. Thus, the proposed neo-functionalization of HxnR

would have involved the modification of the sequence

between residues 208 and 239 (electronic supplementary

material, figure S4), as a module interacting with PF04082.

3.5. The evolution of clustering
Old genetic and newly acquired data, which will be reported

elsewhere (E Bokor, M Flipphi, J Ámon, C Scazzocchio and

Z Hamari, unpublished data), established that not all the

genes involved in nicotinate catabolism are within the

hxnZ–hxnS gene cluster. We have described the conservation

of this cluster within the Aspergillaceae. We discussed the

origin of both hxnS and hxnR within the Pezizomycotina sub-

phylum. While the selective pressures that led to the

conservation of clustering of genes of a specific metabolic

pathway have been the subject of animated discussion

[76–78], we have no inkling of the recombination processes

that led to clustering of the hxn genes in the first place. A

model of recent local gene duplication can be excluded for

the origin of all genes in the cluster, each nearest paralogue

in the same organism being in every case unlinked and

actually on a different chromosome (not shown). Within the

Aspergillaceae, A. nidulans represents the possible primeval

situation, with a pattern of both loss and duplication for

other members of this family (figure 8). Recent duplication

has occurred for some of the genes in the cluster. In Monascus
sp. (exemplified by M. ruber in figure 8) an unlinked paralo-

gue of hxnT is extant, showing 58% amino acid identity with

the copy within the cluster and a strict conservation of intron

positions. Duplicated paralogues of hxnY occur in the flavii/
nomius group and in species of the section Aspergillus. The

fact that these duplicated genes are unlinked to the cluster

excludes a model of duplication by unequal crossover.
It is noteworthy that instances of duplications are coupled

with instances of loss. Duplication of hxnY in the section

Aspergillus (exemplified by A. ruber, figure 8) is coupled

with the loss of hxnT, while that of hxnT in section Flavi

(exemplified by A. flavus, figure 8) is coupled with the loss

of hxnS. This coupling may result from just one single recom-

bination event. Note that in M. ruber, where there is no gene

loss, duplication of hxnT coincides with the separation of

hxnS from the cluster. The duplication of hxnY, with conser-

vation of (some) intron positions, seems to have occurred

before the divergence of the flavi and the fumigati groups.

Remarkably, only the duplicated hxnY paralogue is retained

in A. fumigatus and Neosartorya fischeri.
Horizontal transmission from pre-existent clusters has

been established for both primary and secondary metabolism

pathways. It has been proposed that nitrate assimilation gene

cluster of fungi was horizontally transmitted from oomycetes

[79]. We can exclude such horizontal transmission as the

origin of the hxn cluster. The nearest paralogue of all the

genes comprising the cluster is another fungal gene, usually

in the same organism (data to be presented elsewhere, E

Bokor, M Flipphi, J Ámon, C Scazzocchio and Z Hamari,

unpublished results).

One exception to this is the incorporation of an intronless

nitroreductase gene into the hxn cluster of most aspergilli of

the section nigri and its presence outside the cluster in four

other aspergilli including A. nidulans. A phylogenetic analysis

(not shown) establishes that this gene originates from a hori-

zontal transfer from a cyanobacterium to an ancestral

member of the Leotiomyceta (42% and 41% identity shared

by the enzymes from A. niger and A. nidulans, respectively,

with nfsA product from Anabaena variabilis; see [80] for a com-

parison of fungal and bacterial nitroreductases). Its

incorporation within the hxn cluster of some aspergilli is

quite intriguing. It may be relevant that many nitroreductases

are involved in the degradation of N-heterocyclic compounds

[81].

We have only presented a detailed phylogenetic analysis

for HxA/HxnS, but work to be detailed elsewhere (E Bokor,

M Flipphi, J Ámon, C Scazzocchio and Z Hamari, unpub-

lished results) suggests that, with the one exception

mentioned, all genes in the hxn cluster have originated

from duplications within the Pezizomycotina, and that clus-

tering followed or was synchronous with duplication.

Similar evolutionary patterns for the clusters were described

in fungi. A pattern of gene duplication and clustering

underlies the origin and variable arrangement of the alc (etha-

nol utilization) gene cluster in the aspergilli [82]. These

patterns of gene clustering resemble those described in

plants, where genes organized in clusters involved in second-

ary metabolism originate from duplication of non-clustered

genes of primary metabolism ([83–85] and references

therein).
4. Material and methods
4.1. Strains, media and growth conditions
The A. nidulans strains used and/or constructed in this work

are listed in the electronic supplementary material, table S5.

Standard genetic markers are described in http://www.

fgsc.net/Aspergillus/gene_list/. Complete (CM) and

http://www.fgsc.net/Aspergillus/gene_list/
http://www.fgsc.net/Aspergillus/gene_list/
http://www.fgsc.net/Aspergillus/gene_list/
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minimal media (MM) contained glucose as the carbon source;

MMs supplemented with different N-sources were used

[13,86]. The media were supplemented according to the

requirements of each auxotrophic strain (www.fgsc.net).

Nitrogen sources, inducers, repressors and inhibitors were

used at the following concentrations: 10 mM sodium nitrate,

10 mM nicotinate (1 : 100 dilution from 1 M nicotinic acid dis-

solved in 1 M sodium hydroxide), 10 mM 6-OH nicotinic acid

(1 : 100 dilution from 1 M 6-OH nicotinic acid dissolved in 1 M

sodium hydroxide), 10 mM 2,5-dihydroxypyridine, 1 mM

hypoxanthine, 5 mM L-(þ)diammonium-tartrate, 5 mM urea,

1 mM acetamide as sole N-sources; 1 mM or 100 mM nicotinic

acid sodium salt, 1 mM or 100 mM 6-OH nicotinic acid,

100 mM 2,5-dihydroxypyridine and 0.6 mM uric acid as indu-

cers; 5 mM L-(þ)diammonium-tartrate as repressor; 5.5 mM

allopurinol as inhibitor of purine hydroxylase I (encoded by

hxA) enzyme activity. Cesium chloride at a 12.5 mM final con-

centration was used in mutagenesis experiments to reduce the

background growth of the nitrogen-source non-utilizer strains

(http://www.fgsc.net/Aspergillus/gene_list/supplement.html#

other). The strains were maintained on CM; otherwise MM with

various N-sources were used in the experiments supplemented

with the required vitamins. The mycelia for protein extraction

were grown for 14 h at 378C shaken at 150 r.p.m. in MM with

acetamide or urea as nitrogen sources and induced when

appropriate after 12 h of growth with 6-OH nicotinate. For

mRNA extraction, mycelia was grown on acetamide, or

urea N-sources were used for growth for 10 h at 378C with

150 r.p.m. and after 8 h of growth, nicotinic acid, 6-OH nic-

otinic acid or uric acid was added to the medium as

inducer and ammonium as repressor. For total DNA extrac-

tion, mycelia were grown in MM with nitrate as a N-source.

4.2. Mutagenesis
For UV mutagenesis, 109 conidia of A. nidulans strains

HZS.98, HZS.248 and HZS.418 in 20 ml 0.01% Tween (in a

Petri dish with a 14.5 cm diameter) were exposed to UV

light (Philips TUV15 W 9L1, 254 nm) with gentle shaking

(50 r.p.m.) for 20 min, resulting in 95% kill. For 4-nitroquino-

line 1-oxide (4-NQO) mutagenesis, conidia of HZS.248 were

mutagenized as previously described [87]. Spores were

plated on MM with hypoxanthine as the sole nitrogen

source supplemented with 5.5 mM allopurinol and 12.5 mM

cesium chloride. Strains able to grow on this medium were

expected to be hxnR constitutive (hxnRc) mutants. The pres-

ence of allopurinol resulted in the complete inhibition of

purine hydroxylase I (encoded by hxA) in a recipient hxAþ

strain (HZS.98), therefore the hypoxanthine utilization must

result from the activity of purine hydroxylase II (encoded

by hxnS), which requires either induction by nicotinate or

6-OH nicotinate or the presence of a constitutive mutation

in the hxnR gene. In the hxAþ strain HZS.98, gain-of-function

allopurinol-resistant mutations at the hxA locus also may

occur. The hxnRþ hxA-linked allopurinol-resistant mutants,

however, show reduced growth on hypoxanthine compared

to hxAþ hxnRc mutants [1,29].

4.3. Staining for enzyme activity in gels
Crude protein samples of mycelia were obtained from 300 ml

liquid cultures incubated at 378C with 180 r.p.m. agitation for

20 h, and induced after 15 h of growth with inducers where
appropriate. Protein extraction was carried out as previously

described [88]. The concentrations of crude protein samples

were determined by the Bradford assay [89]. Native 10%

PAGE using 0.025 M Tris, 0.19 M glycine cathode buffer

(pH 8.3) according to Laemmli [90] was used to fractionate

the crude extracts, containing 50 mg of protein/well. HxA-

and HxnS-specific activities were detected by staining with

hypoxanthine-tetrazolium [1], nicotinate-tetrazolium (100 mM

pyrophosphate (pH 9.4), 1.27 mg ml21 iodonitrotetrazolium

chloride and 0.5 mg ml21 nicotinic acid), while the diaphorase

activity was detected with NADH-tetrazolium [16,91].

4.4. DNA and RNA manipulations
Total DNA was prepared from A. nidulans as described by

Specht et al. [92]. For Southern blots [93] hybond-N mem-

branes (Amersham/GE Healthcare) were used and

hybridizations were done by DIG DNA Labeling and Detec-

tion Kit (Roche) according to the manufacturer’s instructions.

Transformations of A. nidulans protoplasts were done as

described by Karacsony et al. [88] using a 4% solution of Glu-

canex (Novozymes, Switzerland) in 0.7 M KCl. For cloning

procedures, Escherichia coli JM109 [94] and KS272 [95] were

used and transformation of Es. coli was performed according

to Hanahan [96]. Plasmid extraction from Es. coli and other

DNA manipulations were done as described by Sambrook

et al. [93]. Total RNA was isolated using a NucleoSpin RNA

Plant Kit (Macherey-Nagel) and RNase-Free DNase

(Qiagen) according to the manufacturer’s instructions.

cDNA synthesis was carried out with a mixture of oligo-dT

and random primers using a RevertAid First Strand cDNA

Synthesis Kit (Fermentas). Quantitative PCR (qPCR) and

quantitative RT-PCR (qRT-PCR) were carried out in a

CFX96 Real Time PCR System (BioRad) with SYBR Green/

Fluorescein qPCR Master Mix (Fermentas) reaction mixture

(948C 3 min followed by 40 cycles of 948C 15 s and 608C
1 min). Specific primers are listed in the electronic sup-

plementary material, table S6. Data processing was done by

the standard curve method [97]. Northern blot analysis was

performed using the glyoxal method [93]. In northern blots,

equal RNA loading was calculated by optical density

measurements (260/280 nm). [32P]-dCTP labelled gene-

specific DNA molecules were used as gene probes using

the random hexanucleotide-primer kit following the suppli-

er’s instructions (Roche Applied Science). DNA sequencing

was done by the Sanger sequencing service of LGC (http://

www.lgcgroup.com). Primers used are listed in the electronic

supplementary material, table S6.

4.5. Gene deletions
Deletion of hxnR and hxnS was obtained by Chaveroce’s

method [95], which uses phage l Red expressing Es. coli
strain KS272 for obtaining the gene replacement by introdu-

cing a plasmid carrying the candidate gene and a PCR

product of a transformation marker gene flanked with

50 bp regions of homology with the target DNA into the

Es. coli strain (for details see the electronic supplementary

material, Supplementary materials and methods). The

obtained recombinant plasmid is then used for A. nidulans
transformation in order to obtain an allelic exchange between

the mutant allele on the plasmid and the wild-type locus. The

detailed procedure is written in the electronic supplementary

http://www.fgsc.net
http://www.fgsc.net/Aspergillus/gene_list/supplement.html%23other
http://www.fgsc.net/Aspergillus/gene_list/supplement.html%23other
http://www.fgsc.net/Aspergillus/gene_list/supplement.html%23other
http://www.lgcgroup.com
http://www.lgcgroup.com
http://www.lgcgroup.com
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material, Supplementary materials and methods. The first

available hxnSD strain (HZS.106 and its progeny HZS.254

used in the enzyme assays) was unfortunately found to

carry additional ectopic copies of the recombinant plasmid,

therefore a new hxnSD strain (HZS.599) was obtained by

the gene substitution method using the double-joint PCR

[98] for constructing the gene substitution cassette (see elec-

tronic supplementary material, Supplementary materials

and methods). All the genetic work and growth tests were

done with the new hxnSD strain.

4.6. In silico analysis
Sequence searches were carried out in both general (http://

blast.ncbi.nlm.nih.gov/Blast.cgi) and specialized databases

(http://www.aspgd.org/, http://genome.jgi-psf.org/pro-

grams/fungi/index.jsf ). We used (with permission) 59

unpublished DNA sequences from the JGI databases; the

species involved are tagged with ‘*’ in the electronic sup-

plementary material, tables S1 and S3 (see the electronic

supplementary material, table S1 footnote for further details).

In every case, the gene models were manually derived by

ourselves. Alignments were carried out with MAFFT

(MAFFT E-INS-i and MAFFT G-INS-i); colour labelling of

alignments was done with BOXSHADE (http://www.ch.

embnet.org/software/BOX_form.html). Alignment curation

for phylogeny was carried out with BMGE 1.0 (http://

mobyle.pasteur.fr/cgi-bin/portal.py#forms::BMGE) [99] and

maximum-likelihood phylogeny with PHYML 3.0 with auto-

matic model selection (LG substitution model selected)

[100,101] indicating approximate likelihood ratio tests [102].

Tree drawing was done with FIGTREE (http://tree.bio.ed.ac.

uk/software/figtree/, http://mafft.cbrc.jp/alignment/

server/) and localization signals were searched for at

http://www.cbs.dtu.dk/services/TargetP/ [103], http://

www.peroxisomedb.org/ [104], http://nls-mapper.iab.keio.

ac.jp/cgi-bin/NLS_Mapper_form.cgi [105], http://wolfpsort.

org/ [106], http://genome.unmc.edu/ngLOC/cite.html

[107]. Structural analysis and modelling was carried out

with SWISS-PDBVIEWER [108] and I-TASSER, (http://zhanglab.
ccmb.med.umich.edu/I-TASSER/ [109,110], and model ren-

dering with VMD 1.9. (http://www.ks.uiuc.edu/Research/

vmd/) [111]. Structure superposition was done with the

MultiSeq version integrated in VMD [112].
4.7. Statistical analysis
The significance of differences between datasets was deter-

mined by an unpaired t-test using the GraphPad PRISM 6

software.
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