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COVID-19 is a distinctive infection characterized by elevated inter-human transmission
and presenting from absence of symptoms to severe cytokine storm that can lead to
dismal prognosis. Like for HIV, lymphopenia and drastic reduction of CD4+ T cell counts in
COVID-19 patients have been linked with poor clinical outcome. As CD4+ T cells play a
critical role in orchestrating responses against viral infections, important lessons can be
drawn by comparing T cell response in COVID-19 and in HIV infection and by studying
HIV-infected patients who became infected by SARS-CoV-2. We critically reviewed host
characteristics and hyper-inflammatory response in these two viral infections to have a
better insight on the large difference in clinical outcome in persons being infected by
SARS-CoV-2. The better understanding of mechanism of T cell dysfunction will contribute
to the development of targeted therapy against severe COVID-19 and will help to rationally
design vaccine involving T cell response for the long-term control of viral infection.
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INTRODUCTION

An outbreak of an unknown infectious pneumonia occurred in Wuhan, China, in December 2019
(1). The pathogen of the disease was quickly identified as a novel coronavirus coined severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disease was named coronavirus
disease-19 (COVID-19) by the WHO (2–4). The virus has since caused more than 48 million
confirmed cases and over 1.2 million deaths worldwide by November, 2020 (5). The majority of
individuals with COVID-19 have mild clinical presentation with or without flu-like symptoms
including dry cough, fever, a runny nose, fatigue, muscle pain and diarrhea. Some cases can evolve
into acute respiratory distress syndrome, septic shock, coagulation dysfunction, and multiorgan
failure (1, 6, 7). The severity of the disease is influenced by factors such as older age, obesity and
metabolic syndrome (8, 9). Acute infection with SARS-CoV-2 is associated with lymphopenia
in approximately 80% of patients (6, 10–21). Furthermore, lymphopenia with the suppression of
B, helper (CD4+) and cytotoxic (CD8+) T cell function, is an indicator of a poor clinical outcome
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(10–15, 17–19, 21–27). It is likely that lymphopenia delays
viral clearance, favoring macrophage stimulation and the
accompanying cytokine storm, leading to organ dysfunction (7,
15, 18, 19, 21, 23, 24, 26, 28, 29).

Apart from SARS-CoV-2, other viruses—including SARS
coronavirus, measles virus, avian influenza virus H5N1, swine
foot-and-mouth disease virus, respiratory syncytial virus and
human immunodeficiency virus (HIV)—are associated with
lymphopenia (30). Among them, HIV can cause an well-
known lymphopenia-associated disease acquired immune
deficiency syndrome (AIDS) (31). The acute phase of HIV
infection is characterized by a substantial drop in peripheral
CD4+ T cell counts, while during the chronic phase, a slower and
persistent decline of these CD4+ T cells is associated with the
development of AIDS. Antiretroviral therapy (ART) rapidly
suppresses HIV replication, and the number of CD4+ T cell
counts recovers, preventing AIDS. However, systemic immune
activation persists in those people even after years of ART (32),
and is characterized by increased proinflammatory mediators
and low CD4/CD8 ratio (33), combined with exhausted and
senescent T cells. Systemic immune activation is also associated
with non-infectious comorbidities, such as cardiovascular
diseases, neurocognitive disorders and cancers.

CD4+ T cells orchestrate the response to acute and chronic
viral infections by coordinating the immune system. These cells
activate multiple cells of the innate immune system, as well as B
cells, cytotoxic CD8+ T cells, and non-immune cells. CD4+ T
cells also play a key role for the establishment of long-term
cellular and humoral antigen specific immunity, which is the
basis of life-long protection for many viral infections and
vaccines (34, 35).

Both HIV-1 and SARS-CoV-2 have distinct virological
characteristics while sharing CD4+ T cell lymphopenia. In this
review, we critically assessed the possible mechanisms and the
potential influence of CD4+ T cell lymphopenia in acute and
chronic viral infections. We also discuss host characteristics and
hyper-inflammatory response in these two dramatic viral
infections and the impact of COVID-19 infection in people
living with HIV (PLWH).
THE T CELL DYSREGULATION IN PLWH
AND COVID-19

The acute phase of HIV infection is characterized by a
substantial drop in peripheral CD4+ T cell counts while in the
chronic phase, a continued decline of CD4+ T cells is associated
with the development of AIDS (Figure 1). In contrast,
expansion of CD8+ T cells is observed which is driven
mainly by an exhausted cytotoxic response toward HIV,
leading to an inversed CD4/CD8 ratio. Despite ART,
PLWH still present persistent immune activation and
inflammation. The expressions of CD38 and HLA-DR as well
as programmed death -1 (PD-1) are biomarkers of activated T
cells, contributing to T cell exhaustion (36). Exhausted virus-
specific CD4+ T cells express PD-1 at elevated levels correlating
Frontiers in Immunology | www.frontiersin.org 2
with disease progression, viral loads and reduced CD4+ T cell
count (37).

Compared to healthy controls, in both acutely and chronically
PLWH, the absolute number of regulatory T cells (Tregs) in the
circulating blood is decreased, however the percentage of Tregs
in chronic infection is increased (38, 39), further contributing to
T cell dysfunction. Gut CD4+ T cells with a mucosa protective
Th17 function are rapidly depleted (40) contributing to mucosal
barrier dysfunction, leading to increase microbial translocation
and systemic immune activation (41). Despite the decreased
CD4+ T cell subgroup, both cell number and relative percentage
of circulating T follicular helper (Tfh) cells increased in the blood
during the chronic phase of HIV infection (42, 43). Tfh cells
provide help to B cells in germinal center of secondary lymphoid
organs and are central to the generation of efficient neutralizing
and non-neutralizing antibody responses in HIV infection and
will be essential in generating an effective vaccine (44).
Expansion and altered features of HIV-specific and non-HIV
specific circulating Tfh cells do not improve during ART and
may be driven by persistent HIV antigen expression (45).
Viral suppression by ART resulted with a reduction in the
expression of genes associated with Tfh cells compared to
viremic phase, which is accompanied by persistently low
expression of genes associated with Th17 cells compared to
persons who spontaneously control viremia (46).

Lymphocytopenia is a hallmark of patients with severe
COVID-19 (6, 10–15, 17–19, 21) and is associated with poor
clinical outcomes. The CD4+ lymphocyte count dynamic during
mild and severe COVID-19 is shown in Figure 1. Helper CD4+
T cells are important in mediating protective humoral immunity
by stimulating B cells to produce virus-specific antibodies. On
the other hand, CD8+ T cells are responsible for the elimination
of infected cells, mainly through the production of perforin and
granzyme, and are key players in controlling different types of
viruses through the secretion of cytokines. Both CD4+ and CD8+
T cell counts are reduced in severe COVID-19 (10–15, 17–19,
21–27). Similarly, reduced B cell counts are also observed in
severe COVID-19 (14, 23). Moreover, within the CD4+ T cell
subset, decreased numbers of effector memory T cells
(CD45RO+) and Tregs (CD25+CD127low) were noted, while
the proportion of naive T cells (CD45RA+) increased (16). The
frequency of Tregs, which are responsible for the maintenance of
immune homeostasis by suppressing activation and pro-
inflammatory functions, was very low in severe cases. In
addition, relative increased recirculation of activated CXCR5
+PD-1high CD4+ Tfh cells is observed in severe COVID-19.

CD4+ T cells in COVID-19 are activated as characterized by
expression of cellular markers like HLA-DR, CD25, CD38 and Ki-
67 (47). T cell exhaustion based on increased inhibitory markers
such as PD-1 and TIM-3 receptor on peripheral T cells has also
been reported (47–49). Studies have demonstrated that decreases in
polyfunctionality (multiple cytokine secretion) and cytotoxicity of
T cells were correlated with disease progression (21, 49).
Conversely to HIV, a study demonstrated an increase in the
number of Th17 cells in the peripheral blood in COVID-19
patients (50). In hospitalized patients compared to non-
December 2020 | Volume 11 | Article 596631
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hospitalized patients, Mathew et al. found increased proportion of
cytotoxic follicular helper cells and cytotoxic T helper cells
responding to SARS-CoV-2 and reduced proportion of
SARS-CoV-2-reactive Treg cells (47). Elevated SARS-CoV-2-
specific CD4+ and CD8+ T cells were each associated with
milder disease, fostering important roles for both CD4+ and
CD8+ T cells in protective immunity in COVID-19 (51).
Furthermore, absence of these virus-specific cells leads to
uncoordinated antigen-specific immune responses and failure to
control COVID-19, predominantly in older individuals with low
naïve CD4+ T cells. Similarly, PLWH are not able to mount an
effective HIV-specific CD4+ and CD8+ T cell responses with the
Frontiers in Immunology | www.frontiersin.org 3
exception of HIV controllers who canmaintain undetectable or low
levels of viremia despite not being on ART (46, 52, 53). Features of
different peripheral blood cell types in PLWH and severe COVID-
19 are shown in Figure 2.
LEAKY GUT

Depletion of gut CD4+ T cells will be followed by disruption of
the tight junctions, and cell death of intestinal epithelium.
Epithelial gut damage leads to both an imbalance of the
intestinal microbiota composition (dysbiosis) and the release of
FIGURE 2 | The changes of different peripheral blood cell types in HIV and severe coronavirus disease-19 (COVID-19). In COVID-19 and HIV infection, total count of
natural killer cells, B cells, CD4+ T cells, regulatory T cells, memory T and B cells decrease, whereas the count of follicular helper cells increase. These common
changes between HIV and COVID-19 were shown in the central circle. However, distinct changes were shown in total count of macrophage, CD8+ T cells, Th17
cells and naive T cells between people living with HIV (PLWH) and severe COVID-19. (The red arrow indicates a decrease in the number of cells; the blue arrow
indicates an increase in the number of cells).
FIGURE 1 | CD4+ lymphocyte count during acute infection in people living with HIV (PLWH) and coronavirus disease-19 (COVID-19).
December 2020 | Volume 11 | Article 596631
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bacterial products in the circulation (microbial translocation),
participating in chronic immune activation and inflammation
(54, 55).

Apart from relevant metabolic functions for the host
homeostasis, the gut microbiota exerts protective actions
against pathogenic colonization of bacteria and viruses, which
could be at least partially attributed to their role in educating and
strengthening the immune system (56). The triad gut microbiota
dysbiosis–immune hyper-response–inflammation is involved in
both HIV and COVID-19 pathogenesis (57).

Within a few weeks of HIV infection, the virus begins a
massive assault on the gut, which undergoes a significant
depletion of CD4+ T cells with Th17 function (58). PLWH
have an altered microbiota composition with an increase of pro-
inflammatory and potentially pathogenic bacteria as well as a
decrease of beneficial bacteria (59, 60). Gut damage allows
microbial translocation, a cause of systemic immune activation
in chronic HIV which is usually determined by measuring
plasma levels of markers of microbial translocation such as
lipopolysaccharide (LPS) and (1!3)-b-D-Glucan (BDG), all of
which are elevated in PLWH, even those on ART (61, 62).
Previous studies have shown that LPS and BDG were
associated with disease progression, lower CD4+ T cell count,
and induce immune activation (61–63).

Over 60% of patients with COVID-19 report evidence of
gastrointestinal symptoms, such as diarrhea, nausea and
vomiting (64). There is direct evidence that SARS-CoV-2 can
replicate in intestinal cells (65). Moreover, many viral infections,
including influenza, drive changes in the gut and lung microbiota
with viral-mediated changes in the gut including dysbiosis and
increased permeability (66). Indeed, recent studies found some
differences in gut microbial features and related metabolites in
SARS-CoV-2 infection (67). More attention should be directed
to gut dysbiosis and microbial translocation in the contribution
to severe COVID-19.
HYPER-INFLAMMATION IN HIV
INFECTION AND COVID-19

Examination of plasma cytokines of acute HIV infection revealed
that interferon (IFN)-a was the first cytokine to be increased
within a few days after detection of viremia, followed by tumor
necrosis factor a (TNF-a), IFN-g, and interleukin (IL)-12 (68).
Initiation of ART during Fiebig stages I-II can abrogate the HIV-
induced cytokine storm (69). Elevation of IFN-a, IFN-g,
monocyte chemoattractant protein (MCP)-1, soluble IL-2
receptor (sCD25), IL-6 and IL-8 was seen in chronically-
infected untreated individuals (63, 70, 71). Initiation of ART
significantly reduces plasma levels of inflammatory cytokines,
markers of inflammation and monocyte activation, without
normalization compared to HIV-uninfected individuals (72).

Similarly, in COVID-19 patients, elevation of inflammatory
cytokines was also observed. In severe cases, elevations of TNF-a,
IFN-g, IL-2R, IL-6, IL-8, and IL-10 were detected (7, 15, 18, 19, 21,
23, 24, 26, 28, 29). However, a highly impaired interferon (IFN)
Frontiers in Immunology | www.frontiersin.org 4
type I response was observed, characterized by no IFN-b and low
IFN-a production and activity (73). Furthermore, studies have
found increased production of proinflammatory cytokines and
chemokines, IL-2, IL-7, IL-10, granulocyte colony-stimulating
factor (G-CSF), CXCL-10/IP-10, TNF-a and macrophage
inflammatory protein (MIP)-1a in intensive care unit (ICU)
patients compared with non-ICU patients (7). In addition, IL-6
levels were considered as a biomarker of disease severity and
mortality (28, 29) and ongoing clinical trials are assessing IL-6
blockade to improve outcome in COVID-19 patients (74).

A pre-existed low-level inflammation and leaky gut in type 2
diabetes mellitus (T2DM) may be associated with higher
COVID-19 mortality (75, 76). Retrospective studies have
shown a reduction in mortality in metformin users compared
with non-users among patients with T2DM hospitalized for
COVID-19 (77). The potential effects of metformin in
COVID-19 could be through inhibition of the mTOR pathway
and prevention of immune hyperactivation (78). Reduced
production of cytokines such as TNF-a and IL-6 was seen in
metformin-treated patients (79). Furthermore, metformin may
also reduce inflammation by altering the composition of gut
microbiota (80, 81). A retrospective cohort study on PLWH with
diabetes mellitus showed that Metformin use was associated with
improved CD4 recovery (82). Whether metformin could be a
potential treatment strategy for CD4+ T cells lymphopenia in
COVID-19 need further investigation.
COMORBIDITIES IN PLWH AND COVID-19

Although ART reduced the risk of developing AIDS (83), it does
not normalize inflammation that is associated with risk of non-
AIDS comorbidities, including cardiovascular and metabolic
diseases and neurocognitive dysfunctions (84–86).

In COVID-19, direct viral attack and systemic hyper-
inflammation can cause dysfunction of several organs.
Postmortem analyses showed that the main damage occurred
in the lungs, to the alveolar epithelial cells, hyaline membrane
formation, and hyperplasia of type II pneumocytes, all
components of diffuse alveolar damage (87, 88). Nearly 20% of
patients hospitalized for COVID-19 in Wuhan, China showed
evidence of cardiac injury (89, 90). More than half of COVID-19
patients hospitalized had elevated levels of enzymes indicating
injury to the liver (91). In a case series of 214 patients with
COVID-19, neurologic symptoms were seen in 36.4% of patients
which included acute cerebrovascular events, impaired
consciousness, and muscle injury (92).
MECHANISMS OF CD4+ T CELL
LYMPHOPENIA

The thymus supports T cell differentiation from T progenitor
cells, which differentiate from hematopoietic stem cells in bone
marrow, and selects mature CD3+ CD4+ and CD3+ CD8+
thymocytes (41). Quantitative estimates indicate that healthy
December 2020 | Volume 11 | Article 596631
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young (<30 year old) adults harbor about 2.2×1011 mature CD4+
T cells (93). Most CD3+CD4+ and CD3+CD8+ T cells reside in
peripheral lymphoid organs where T and B cell responses are
coordinated by antigen-presenting cells (APC). CD4+ T cell
numbers are kept constant in the human body by homeostatic
mechanisms including IL-7 (41). Total CD4+ T cells may be
depleted due to cell death, shortened half-life or impaired
production. In addition, the proportion of circulating CD4+
cells may decrease through lymphoid tissue redistribution at
sites of inflammation. A number of dynamic models have been
put forth explaining HIV-mediated depletion of CD4+ T cells
(94, 95). However, CD4+ lymphopenia is poorly understood
in COVID-19. Potential mechanisms and consequences of
CD4+ lymphopenia in PLWH and COVID-19 are shown in
Figure 3.

Direct Attacks on CD4+ T Cells
Early experiments done with laboratory-adapted HIV isolates in
tissue culture revealed a cytopathic virus with high tropism for
CD4+ T cells (96). There is a homeostatic response by which the
loss of CD4+ T cells due to HIV infection is counteracted by
production of T cells; however, this balance is ultimately
disrupted once the production of T cells in response to
homeostasis is exhausted. This has been substantiated by
quantitative image analysis of decreased numbers of CD4+ T
cells and increased levels of cellular proliferation and apoptosis
in PLWH (97, 98). However, evidence showed that HIV
pathogenesis cannot be solely explained by the direct viral
killing hypothesis as uninfected CD4+ T cells have a shortened
half-life by cellular viral contact affecting IL-7 signalization (99).
Another explanation is phospholipase A2 group IB (PLA2G1B)
which synergizes with the HIV gp41 envelope protein and
targets the CD4+ T cell surface, leading to CD4+ T cell
unresponsiveness (anergy) (100).

The question arises whether SARS-CoV-2, like HIV, can directly
decrease CD4+ T cell count. ACE2 (angiotensin-converting enzyme
Frontiers in Immunology | www.frontiersin.org 5
2) is the SARS-CoV-2 internalization receptor (101), in concert
with the host’s TMPRSS2 (transmembrane protease serine 2)
membrane protease that primes the coronavirus spike S protein
to facilitate its cell entry (102). ACE2 and TMPRSS2 are co-
expressed in lung, heart, liver, kidney, neurons and immune cells
(103). Immune cells could potentially be infected by SARS-CoV-2,
as in the case of SARS-CoV (104), with both viruses sharing the
same receptor ACE2 (102). Studies showed that SARS-CoV can
infect 50% of lymphocytes in the circulation (105), resulting in cell
death by apoptosis, necrosis, or pyroptosis (106, 107). Furthermore,
under the influence of SARS-CoV, the germinal center regressed,
and both T and B lymphocytes are depleted (108). Extensive cell
death of lymphocytes was observed in an autopsy study of spleens
and hilar lymph nodes of six patients with COVID-19. However,
the direct evidence of whether SARS-CoV-2 infects T cells is
still lacking.
Immune Activation and T Cell Death
Previous studies proposed that activated CD4+ T cells have a
very short life span due to activation-induced cell death or
apoptosis (109). In HIV infection, the activation of CD4+
T cells is driven by the antigenic stimulus by HIV proteins
(110) and in part by antigen-independent mechanisms through
the production of inflammatory cytokines. Continuous
hyperactivation of T cells may lead to accelerated consumption
of naïve T cells through apoptosis or differentiation toward a
memory phenotype.

Elevation of inflammatory cytokines and cytokine storm was
observed in COVID-19 patients. Previous studies showed that a
number of inhibitory cytokines are released by infected lung
macrophages or epithelial cells. These cytokines include TNF-a
which causes T cell apoptosis (111), IL-10 which is known to prevent
T cell proliferation (112), and type-I IFNwhich regulates lymphocyte
recirculation (113). Whether these inflammatory cytokines
contribute to the loss of CD4+ T cell needs further investigation.
FIGURE 3 | Potential mechanism and consequence of CD4+ lymphopenia in people living with HIV (PLWH) and coronavirus disease-19 (COVID-19).
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Redistribution of CD4+ T Cells
Circulating CD4+ T cell counts are most studied due to their ease
of access. However, CD4+ T cell in the blood compartment does
not always reflect the composition of lymphoid organs or
infected sites where CD4+ T cells are recruited. Hence, CD4+
T cell lymphopenia could be a reflection of CD4+ T cell
redistribution throughout the body.

Some evidence from simian immunodeficiency virus (SIV)
macaque models indicates CD4+ T cell redistribution from the
peripheral blood to lymph nodes and the gut (114). When blood
levels of CD4+ lymphocytes begin to drop significantly, these
cells often increase in number in the lymph nodes (115). This
suggests that the loss of CD4+ T cells in the blood can in part be
explained by an enhanced homing of CD4+ lymphocytes into the
lymph nodes. Furthermore, CD62L, the receptor for lymph node
homing, could be unregulated after infection with HIV (116).
After the initiation of effective antiretroviral therapy, decreased
levels of adhesion molecules like VCAM-1 and ICAM-1, which
mediate lymphocyte sequestration into lymphoid tissue, were
associated a rapid increased of CD4 T cells and decreased LN
size (117).

SARS-CoV-2 prefentially infects and destroys alveolar
epithelial cells that may in turn trigger the production or the
overproduction by macrophages of pro-inflammatory cytokines
and chemokines (including interleukin-6 (IL-6), IL-8, CXCL10/
IP-10, CCL3/MIP1a, CCL4/MIP1b) (118). Secretion of such
cytokines and chemokines attracts immune cells, notably
monocytes and T lymphocytes, from the blood into the
infected site, which may explain the circulating lymphopenia.
Additionally, the first autopsy of a patient with COVID-19
revealed an accumulation of mononuclear cells (monocytes
and T cells) in the lungs, coupled with low levels of
hyperactive T cells in the peripheral blood (88). Furthermore,
anti-IL-6 immediately reversed lymphopenia favoring tissue
redistribution in patients having multicentric Castleman
disease, a condition characterized by an enhanced level of
IL-6 (119). Animal models and future clinical trials will
help decipher the mechanism responsible for SARS-CoV-2
associated lymphopenia.
WHEN HIV MEETS COVID-19

Several case reports assessed the influence of COVID-19 in PLWH
(120–123). In a case series of 33 PLWH patients with COVID-19,
three out of 32 patients with documented outcome died (9%).
However, 91% of the patients recovered and 76% have been
classified as mild cases, indicating that there is no excess
morbidity and mortality among PLWH with symptomatic
COVID-19 compared to COVID-19 HIV-negative patients
(123). In a study in Wuhan, there were 8 COVID-19 out of
1174 investigated HIV/AIDS patients. The authors reported
absence of influence of sex, CD4+ T cells counts, HIV viral load,
or ART regimen associated with the occurrence of COVID-19,
only older age was associated with COVID-19 infection (124).
Frontiers in Immunology | www.frontiersin.org 6
HYPOTHESES FOR THE NON-INFLUENCE
OF HIV INFECTION IN COVID-19 DISEASE

A compromised immune system with a lower CD4+ T cells
counts and elevated interferon levels in HIV infection might
reduce clinical symptoms of COVID-19. There is a hypothesis
that a lower active immune status might protect the human body
from a virus-induced cytokine storm, such as SARS and
MERS (125).

Some ART medications (lopinavir/ritonavir, ritonavir,
darunavir, and dolutegravir), were screened for anti-SARS-
CoV-2 replication activity and were initially used to treat
COVID-19 (126). However, clinical trials using lopinavir/
ritonavir, a protease inhibitor that could suppress SARS-CoV-2
replication in vitro, had no impact on COVID-19 outcome (127).
Another drug is tenofovir (TDF), a nucleoside analog of
remdesivir, which can inhibit SARS-CoV-2 RNA-dependent
RNA polymerase (RdRp) activity in vitro and shorten the time
to recovery in adults who were hospitalized with COVID-19 and
had evidence of lower respiratory tract infection (128).

In a cohort study with 77 590 HIV-positive persons receiving
ART, the result showed that HIV-positive patients receiving TDF/
Emtricitabine (FTC) had a lower risk for COVID-19 and related
hospitalization than those receiving other therapies (129). These
findings warrant further investigation in healthy individuals taking
these two drugs for HIV preexposure prophylaxis studies and
randomized trials in persons with and without HIV.
POTENTIAL TREATMENT OF CD4+
T CELLS LYMPHOPENIA

IL-7
IL-7 levels are known to be inversely correlated with CD4+ T cell
counts in patients with HIV/AIDS, and is likely associated with a
homeostatic response (130). IL-7 is essential to B and T cell
lymphopoiesis in the bone marrow. Clinical studies showed that
recombinant IL-7 treatment increased the number of naive and
memory CD4+ and CD8+ T cells while conserving T cell functions
(131, 132). Several clinical trials are currently under way to
evaluate the efficacy of IL-7 to improve clinical outcomes in
lymphopenic patients with COVID-19 (NCT04407689,
NCT04379076, NCT04442178 and NCT04442178).

IL-2 and IFN-g
IL-2 is a potent mitogen and growth factor in antigen-stimulated
CD4+ T cells (133). IL-2 has been studied in HIV and has been
shown to increase CD4+ T cells counts (134, 135). IL-2 levels in
the peripheral blood were increased in severe COVID-19 cases
compared to mild cases (7, 15, 18, 19, 21, 23, 24, 26, 28, 29).
Whether IL-2 can be used to improve CD4+ T cell lymphopenia
in COVID-19 patients should be carefully considered. The
efficacy of low-dose IL-2 administration is under evaluation in
patients with SARS-CoV2-related acute respiratory distress
syndrome in a randomized controlled trial (NCT04357444).
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LIMITATIONS

There are still some knowledge gaps about CD4+ T cell loss in
PLWH and COVID-19. Firstly, the dynamic of change in CD4+ T
cell is difficult to be compared, especially as HIV induces both an
acute and chronic disease state. Secondly, the data inCOVID-19 are
limited. New studies need to be conducted to learn more about this
new disease, and lessons from studies onHIV infection and care of
PLWH could definitely help designing new therapeutic tools.
CONCLUSION

Both HIV-1 and SARS-CoV-2 infection share CD4+ T cell loss in
association with disease outcome and immunodeficiency. Direct
attacks on CD4+ T cells, immune activation and redistribution of
CD4+ T cell are contributing mechanisms in very different
proportion for CD4+ T cell lymphopenia in both diseases.
During the period of immunodeficiency, systemic inflammation
could be fueled by leaky gut and lead to severe complications.
However, when HIV meets COVID-19, no increase in the
occurrence of COVID-19 and no excess morbidity and mortality
among PLWH with symptomatic COVID-19 has been reported.
IL-7 and IL-2 were previously used to increase CD4+ T cell counts
in HIV-1 infection, however, no improvement in their function
were reported. Despite this, the short-term effect for COVID-19 is
under investigation. As CD4+ T cells orchestrate immune
responses, proper CD4+ T cell function is required for effective
vaccine responses. Hence, anti-SARS-CoV-2 antibodies and CD4
responses should be studied in order to develop long-term
efficiency vaccine formulation. Overall, experience in HIV
clinical management and past clinical trials represent a special
use case for innovative studies aiming at increasing CD4+ T cell
function and reducing COVID-19 morbidity.
Frontiers in Immunology | www.frontiersin.org 7
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