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Abstract: Treatments of metastatic melanoma underwent an impressive development over the past
few years, with the emergence of small molecule inhibitors targeting mutated proteins, such as
BRAF, NRAS, or cKIT. However, since a significant proportion of patients acquire resistance to these
therapies, new strategies are currently being considered to overcome this issue. For this purpose,
melanoma cell lines with mutant BRAF, NRAS, or cKIT and with acquired resistances to BRAF,
MEK, or cKIT inhibitors, respectively, were investigated using both 1H-NMR-based metabonomic
and protein microarrays. The 1H-NMR profiles highlighted a similar go and return pattern in the
metabolism of the BRAF, NRAS, and cKIT mutated cell lines. Indeed, melanoma cells exposed to
mutation-specific inhibitors underwent metabolic disruptions following acute exposure but partially
recovered their basal metabolism in long-term exposure, most likely acquiring resistance skills.
The protein microarrays inquired about the potential cellular mechanisms used by the resistant
cells to escape drug treatment, by showing decreased levels of proteins linked to the drug efficacy,
especially in the downstream part of the MAPK signaling pathway. Integrating metabonomic and
proteomic findings revealed some metabolic pathways (i.e., glutaminolysis, choline metabolism,
glutathione production, glycolysis, oxidative phosphorylation) and key proteins (i.e., EPHA2, DUSP4,
and HIF-1A) as potential targets to discard drug resistance.

Keywords: metastatic melanoma; targeted therapies; resistance to drugs; metabonomics; proteomics;
metabolic switch; cancer metabolic reprogramming

1. Introduction

Melanoma is the deadliest form of skin cancer [1]. Its incidence has been steadily increasing for
the last 20 years and it represents the first form of cancer among people aged 25 to 29 [2]. This type
of cancer is particularly difficult to treat, especially when diagnosed at advanced stages. Indeed,
the 5-year survival for metastatic melanoma is less than 15% [3]. Most melanoma cells are radio
and chemoresistant, mainly due to their melanin production. The current treatments for metastatic
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melanoma rely on targeted therapies and, more recently, immunotherapies. The most used targeted
therapies act on the MAPK pathway, which is mutated in NRAS and BRAF in about 25% and 60% of
melanoma patients, respectively [4]. Nevertheless, the major challenge with such inhibitors is that
melanoma cells possess an hypermutable genome and activate many alternative signaling pathways,
leading to acquired resistances to such therapies [5]. Indeed, the great majority of patients with
metastatic melanoma treated with a targeted therapy develop resistance in weeks or months following
the onset of treatment [6]. Strengthened by this fact, the concept of combinatorial therapy has
imposed itself.

Altered metabolism is a hallmark of cancer [7]. This can be partially explained by the fact that
some protooncogenes, such as KRAS or c-myc, act on key metabolic enzymes [8–11]. The metabolic
patterns significantly differ in cancer cells compared to healthy ones. Notably, the energy substrates
and building blocks often differ between cancer and healthy cells. This adaptation is mandatory
to support a higher demand in energy and biosynthetic precursors needed by malignant cells in
order to sustain their malignant progression, high rates of proliferation, and invasion [12]. The major
metabolic pathways modified in cancer cells are glycolysis [13,14], oxidative phosphorylation [15],
and glutaminolysis [16]. This metabolic reprogramming also affects the level of oxidative stress in
cancer cells and can impair their antioxidant capacities [17]. For a decade, many researchers studied
the metabolic reprogramming occurring in cancer cells in order to better understand and characterize
these processes, with a special focus on the identification of potential biomarkers and new therapeutic
targets [18,19]. In this respect, metabolomic approaches are believed to play a major role in the
management of cancer patients by helping the development of more personalized therapies [20].

To date, studies on melanoma cell metabolism under targeted therapies or after resistance
acquisition mainly focused on cells treated with BRAF inhibitors. These studies indicated that BRAF
inhibitors used in BRAF-mutated melanoma cells led to a decreased expression of glycolytic enzymes
associated with lower glucose consumption. These studies indicated that the resistance to BRAF
inhibitors was linked to an increased oxidative metabolism associated with an increased mitochondrial
dependency [21–23]. They also demonstrated a higher mitochondrial biogenesis in resistant cells.
These metabolic changes developed along with a switch from glucose to glutamine as the main source
for energy synthesis. An overexpression of glutamine transporters was also observed in resistant
cells [21–23]. Regarding these results, BPTES, a glutaminolysis inhibitor, was used on melanoma cells
either sensitive or resistant to BRAF inhibitors. The results indicated that resistant cells were more
sensitive to glutaminolysis inhibition than sensitive ones [21,23]. Another important finding from
the literature is the observation that resistant cells produce more glutathione and overexpress many
antioxidative genes, indicating stronger antioxidant defenses in these cells, in order to survive in a
more oxidative environment due to increased oxidative metabolism [17].

MAPK and PI3K-AKT, the two major oncogenic signaling pathways in melanoma, have been
extensively studied. It turns out that resistance to BRAF and MEK inhibitors mainly occurs through
new modifications in these signaling pathways [24–28]. Acting on cell signalization alone still
fails to overcome the acquisition of such resistance. More recent studies have demonstrated many
interconnections between metabolic fluxes and the RAS-MAPK and PI3K-AKT-mTOR pathways [29,30],
highlighting the importance of an integrative approach of metabolism and cell signalization.

In the present work, we evaluated which metabolic pathways are affected in melanoma cells that
are exposed to targeted therapies, in cells with acquired resistance to these drugs and their parental
counterpart. The aim was to understand the metabolic changes occurring among melanoma lines,
either sensitive or resistant to targeted therapy, with the perspective of identifying new targets for
combinatorial studies in order to overcome or at least delay the development of acquired resistance.
As the current literature concerning metabolic changes in resistant melanoma cells mainly focuses on
BRAF mutated cells, we decided to expand our studies to other important mutational profiles. We used
three different cell lines with frequent gene mutations in melanoma. The two mutually exclusive BRAF
and NRAS mutations account for about 85% of the mutations affecting the MAPK pathway [31,32].
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The cKIT mutation, only occurring in 2%–3% of all melanoma cases, is mutated or amplified in about
30% of mucosal melanoma [5,33].

2. Results

2.1. 1H-NMR Cellular Extract Signature of the Three Types of Cell Lines with Acquired Resistance

2.1.1. Identification of the Discriminant Metabolites Using Multivariate Data Analysis

We performed our analyses on three different cell lines: HBL (D820YcKIT), MM074 (V600EBRAF),
and MM161 (Q61RNRAS). 1H-NMR spectra of the cellular extracts of each cell line were generated.
For each cell line, three main experimental conditions were conducted. The first one consisted of
sensitive cells free of any drugs (MM074, MM161, HBL). The second one corresponded to sensitive cells
exposed to their corresponding targeted therapy for a short time (24 and/or 72 h) for results purposes
(MM074 DABRA 24 h, MM074 DABRA 72 h, MM161 PIMA 72 h, HBL DASA 72 h). The latter included
the resistant counterpart for each cell line considered. Those resistant cells were produced in-lab using
a continuous exposure of melanoma cells to increasing concentrations of their corresponding targeted
therapy for at least 12 weeks (MM074-R DABRA, MM161-R PIMA, HBL-R DASA).

The 1H-NMR spectra of cellular extracts (Figures S1–S3) were binned into small subregions of
0.04 ppm stepwise (called descriptors), the AUC of each subregion was integrated, and all numerical
data exported to an Excel table. Then, each signal was independently normalized, dividing each
descriptor by the total spectral area under the curve (AUC) signal of their corresponding cell line and
experimental group.

A supervised partial least square analysis (PLS-DA) was next applied to the data to highlight the
most reliable discriminating metabolites in group separation, resulting in a scores plot (Figure 1a) and
its matching loadings plot (Figure 1b). Focusing on the scores plot, the first principal component t [1]
discriminated the HBL groups from the others, with, however, a notable exception. Indeed, the ‘MM161
PIMA 72 h’ group found itself distributed in the HBL zone, highlighting the Pimasertib effect on the
MM161 metabolic signature. The second principal component t [2] clearly separated both the ‘MM074
DABRA 24 h’ and ‘MM074 DABRA 72 h’ groups from the others, underlying the Dabrafenib effect on the
MM074 metabolic response. The matching loadings plot (Figure 1b) displays the six most discriminating
metabolites (including metabolites, carbohydrates) with a variable importance in the projection (VIP) value
above 1, namely lactate, glycine, glutamine, glutamate, glucose, and alanine, as well as two groups of
metabolites, creatine and phosphocreatine (Cr/PCr), and the total choline content (tCho) (Figure 1c).
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Figure 1. Scores plot (a) and loadings plot (b) of the partial least square analysis (PLS-DA) of the drug-
free (MM074, MM161, HBL), short-time drug-exposed (MM074 DABRA 24 h, MM074 DABRA 72 h, 
MM161 PIMA 72 h, HBL DASA 72 h) and long-time drug-exposed (MM074-R DABRA, MM161-R 
PIMA, HBL-R DASA) cellular extracts (R2X = 0.929; R2Y = 0.527; Q2cum = 0.415). (c) NMR spectra of 
the IC compartments highlighting the discriminant-identified metabolites. For the sake of 
completeness, spectra were normalized against the total AUC to visualize the relative intensities of 
each metabolite between the groups. The metabolites were identified and tagged as follows: a: Lactate; 
b: Alanine; c: Acetate; d: Glutamate; e: Succinate; f: Glutamine; g: Glutathione (GSH); h: Aspartate; i: 
Creatine (Cr); j: Phosphocreatine (PCr); k: Phosphocholine (PCho); l: Glycerophosphocholine (GPC); 
m: Glycine; n: Glucose; o: Formate. 

2.1.2. Additional Spectral Investigations 

1H-NMR intracellular (IC) spectra were further investigated using the MestRenova software. 
Indeed, some metabolites can be hidden due to spectral overlapping or low intensity. Using the 
MestRenova Peak Picking tool, numerical data were successfully collected and separated from the 
two metabolic groups identified in the loadings plot. Thus, the resonances of PCho and GPC, as well 
as Cr and PCr, were successfully separated from each other. Furthermore, five extra metabolites with 
a low intensity were detected thanks to additional spectral investigations, being acetate, aspartate, 
glutathione (GSH), succinate, and formate. The global signature was next processed through 
statistical analyses (Tables S1–S3) and displayed into a heatmap (Figure 2d). 

 

Figure 1. Scores plot (a) and loadings plot (b) of the partial least square analysis (PLS-DA) of the
drug-free (MM074, MM161, HBL), short-time drug-exposed (MM074 DABRA 24 h, MM074 DABRA
72 h, MM161 PIMA 72 h, HBL DASA 72 h) and long-time drug-exposed (MM074-R DABRA, MM161-R
PIMA, HBL-R DASA) cellular extracts (R2X = 0.929; R2Y = 0.527; Q2cum = 0.415). (c) NMR spectra of
the IC compartments highlighting the discriminant-identified metabolites. For the sake of completeness,
spectra were normalized against the total AUC to visualize the relative intensities of each metabolite
between the groups. The metabolites were identified and tagged as follows: a: Lactate; b: Alanine; c:
Acetate; d: Glutamate; e: Succinate; f: Glutamine; g: Glutathione (GSH); h: Aspartate; i: Creatine (Cr);
j: Phosphocreatine (PCr); k: Phosphocholine (PCho); l: Glycerophosphocholine (GPC); m: Glycine;
n: Glucose; o: Formate.

2.1.2. Additional Spectral Investigations

1H-NMR intracellular (IC) spectra were further investigated using the MestRenova software.
Indeed, some metabolites can be hidden due to spectral overlapping or low intensity. Using the
MestRenova Peak Picking tool, numerical data were successfully collected and separated from the two
metabolic groups identified in the loadings plot. Thus, the resonances of PCho and GPC, as well as
Cr and PCr, were successfully separated from each other. Furthermore, five extra metabolites with
a low intensity were detected thanks to additional spectral investigations, being acetate, aspartate,
glutathione (GSH), succinate, and formate. The global signature was next processed through statistical
analyses (Tables S1–S3) and displayed into a heatmap (Figure 2d).
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Figure 2. Scores plots highlighting the evolution of the IC metabolic signatures from an initial parental
to a resistant status, in the case of mutant cKIT (a), mutant BRAF (b), and mutant NRAS (c) acquired
resistance. Arrows were used to draw the metabolic switches followed by sensitive cells during
resistance acquisition and exposed or not to targeted treatments. (d) Heatmap of the 15 IC discriminant
metabolites identified between the 3 considered cell lines. Data normalization from [0 to 1] for each
metabolite, enabling the metabolic signature investigation within and between the groups.

2.1.3. Independent Evaluation of the NRAS, cKIT, and BRAF Resistance Signatures

The scores plot can be used as a tool to visualize and evaluate metabolic changes. Indeed,
the localization of each sample on the plot depends on the metabolic composition of the medium.
In this context, the trajectory of different group samples on the plot reflect metabolic changes between
groups. To fully view the metabolic resistance trajectory occurring in each resistance case, independent
multivariate data analysis models were generated and discussed below. At first sight, a similar two-step
pattern was detected in each case. First, a metabolic shift occurred during acute drug exposure as
compared to the initial unexposed condition. More interestingly, a longer exposure allowed partial
recovery of the basal metabolic profile, as can be seen by the relocation of resistant groups close to the
unexposed ones. This “roundtrip” pattern is marked by arrows on the scores plot.

Focusing on the HBL scores plot (Figure 2a), the previously described pattern is perfectly
highlighted. Some explanations of the HBL metabolic signature shift due to the acute Dasatinib
exposure can be found in the heatmap (Figure 2d). Thus, when comparing the acute signature to the
unexposed one, increases in creatine, phosphocreatine, succinate, alanine, and GPC levels, as well
as decreases in lactate, glutamine, formate, acetate, and phosphocholine levels were recorded. Then,
when the HBL resistant signature is compared to the two others, it gives clues on the metabolic recovery
process. Thus, most of the metabolites returned to their unexposed levels, but lactate, aspartate,
and glutamine remained as affected as in the acute exposure condition.

Considering the BRAF-mutated cell line MM074, exposed signatures were collected at 24 and
72 h, enabling the short-term kinetic evaluation of the Dabrafenib exposure (Figure 2b). A progressive
increase in the levels of glucose, aspartate, acetate, formate, and glutamine, as well as a progressive
decrease in the levels of alanine, glycine, glutamate, GSH, PCho, and GPC were noticed. The creatine
shuttle (Cr/PCr) appeared to be disrupted only at 72 h. In the resistant signature, most of the metabolites
returned to their basal unexposed levels. Interestingly, both aspartate and acetate conserved the same
levels from 72 h (acute study) up to longer term (chronic study) exposure to Dabrafenib.

Finally, the “roundtrip” metabolic pattern of the NRAS-mutated cell line MM161 was screened
(Figure 2c). When comparing the acutely exposed cell signatures to the unexposed one, decreases in
the levels of lactate, acetate, and succinate, and increases in the levels of creatine, phosphocreatine,
and glutamine were noticed. The resistant signature showed a return to basal unexposed levels for
most of the metabolites, except for the glutamine levels, which were sustained to the levels reached
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during acute exposure. Furthermore, exclusive metabolic changes were detected in the resistance
signature, with increased levels in GSH, PCho, and succinate, associated with a drop in aspartate levels.

2.2. 1H-NMR Extracellular Signature Investigations

Culture media were also analyzed using the combination of 1H-NMR spectroscopy and
multivariate data analysis. As it turned out, the independent PLS-DA analysis of the extracellular (EC)
returned the same “roundtrip” pattern as the one already described in the IC signature (Figure 3a–c).
Four metabolites were responsible for the group separation, being lactate, alanine, glutamine,
and glucose, as shown in the heatmap (Figure 3d) and spectra (Figure 3e).
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Figure 3. Scores plots showing the evolution of the culture media composition from an initial to a
resistant status, in the case of cKIT (a), BRAF-V600E (b), and N-RAS (c) acquired resistance. Arrows
were used to draw the metabolic path followed by sensitive cells during resistance acquisition.
(d) Heatmap of the 4 EC discriminant metabolites identified between the 3 considered cell lines and
experimental conditions. (e) NMR spectra of the EC compartments highlighting the discriminant
identified metabolites, tagged as follows: a: lactate; b: alanine; c: glutamine; d: glucose.

One of the most significant changes observed in the HBL culture medium composition is the
decrease in the glutamine concentration during resistance acquisition, most likely due to higher cellular
intake. These resistant cells also slightly reduced their glucose use and lactate production.

Considering the MM074 and MM161 EC compartments, the medium composition was modified
in the acute exposed condition, where a decrease in both the glucose and glutamine concentrations
as well as a decrease in the lactate concentration were recorded. Alanine levels were also exclusively
reduced in the MM074 culture medium in the Dabrafenib acute exposure condition.

2.3. Protein Microarray and Interactome Analyses

For protein microarray analysis, 447 antibodies were probed with the three cell lines of this study
under two experimental conditions, lines with acquired resistance (MM074-R, MM161-R, HBL-R) and
their parental drug-sensitive counterparts (MM074, MM161, HBL). We used the log2 transformed data
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(Table S4), enabling the fold-change (FC) analysis of this panel of protein-relative intensities between
the sensitive and resistance conditions.

The first plot (Figure 4a) shows the comparison of the MM074-sensitive and -resistant conditions,
with the identification of 13 proteins with a log2 (FC) above 1. The analysis successfully indicated that
MM074-R presented higher abundances in DUSP4, HIF-1α, MAPK, PLCG1, and Tau (MAPT) proteins,
as well as reduced amounts of ATRX, Caveolin 1 (CAV1), EPHA2, Rho GTPase activating protein 45
(ARHGAP45), mixed lineage kinase domain-like protein (MLKL), PARG, PREX1, and STAT5A.

Considering the HBL-resistant cell condition (Figure 4b), higher amounts of BCL2L11, DNMT1,
DUSP4, FOXM1, MSH6, and RB1, and decreased levels of Akt1/2/3, EPHA2, GYS1, p21 (CDKN1), rpS6,
SRC, and ZAP-70 were recorded.

Finally, a bench of nine proteins with a modified abundance were highlighted in the
MM161-resistant case thanks to the fold change analysis (Figure 4c). Thus, increased levels of
CDC-6, ER-α (ESR1), histone H3, MAP2K1/2, and rpS6 and decreased levels of c-kit (KIT), HK2,
and CDK1 were observed.

Using the Human Reference Protein Interactome Mapping Project, protein–protein interaction (PPI)
analysis was next applied on the 18 most abundant proteins identified in the resistant cases to get some
understanding of the resistance mechanisms. The first PPI network (Figure 4d) returned the interactions
between the imputed targets, with 9 of the 18 involved targets. The next PPI network (Figure 4e)
clustered the abundant proteins in the resistant counterparts with their interactors, and generated a
total of 306 proteins with 331 interactions and an average node degree of 2.15.
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between the 18 imputed proteins (d), or expanded to known interactors (e).

2.4. Integration of Metabonomics and Protein Microarray Data

All 15 discriminant metabolites were selected for a metabolic set enrichment analysis (MSEA)
using the MetaboAnalyst 4.0 online software. MSEA can connect the metabolites set presenting relative
concentration variations to biological pathway(s), thus improving data interpretation. The resulting
bar chart (Figure 5a) highlighted the potential biological pathways related to the metabolic data
set. Pathways were classified depending on the number of hit(s), corresponding to the number of
the 15 imputed metabolites recovered from currently available referenced pathways. Depending on
the number of imputed metabolites retrieved from a whole pathway, p-values were calculated and
used for classification. Focusing on the pathways that come out from the MSEA analysis, from a
cancer point of view, special attention is paid to: ‘Glutamate metabolism’, ‘glutathione metabolism’,
‘Warburg effect’, ‘aspartate metabolism’, ‘alanine metabolism’, ‘malate-aspartate shuttle’, ‘alanine
metabolism’, and ‘glycine and serine metabolism’.

A joint pathway analysis was also performed using both discriminant metabolic and protein levels.
The analysis returned a metabolome view (Figure 5b), where relevant pathways to the melanoma
cancer topic were highlighted.
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3. Discussion

The aim of this work was to combine both metabonomic and proteomic approaches in order to
better understand the resistance adaptations occurring in metastatic melanoma exposed to targeted
therapies and to identify new targets paving the way for novel combinatorial drug strategies. We used
three different cell lines with frequent gene mutations in melanoma (BRAF, NRAS, or cKIT).

The metabonomic analysis of HBL cells indicates that the treatment of these HBL cells with
Dasatinib leads to a disruption of their metabolism in first place, rapidly followed by a metabolic
adaptation to survive under Dasatinib chronic exposure. The same dynamic evolution of metabolism
is observed in both IC and EC compartments. To understand how these cells can survive under chronic
treatment and become resistant, we were particularly puzzled by the behaviors of IC lactate, aspartate,
and glutamine, as well as EC lactate and glutamine. Both lactate and glutamine (IC and EC) levels
decreased after a short exposure to Dasatinib and stabilized after resistance acquisition. The aspartate
level decreased slightly after acute exposure but more intensively after chronic treatment. Lactate is
the end-product of glycolysis and is overproduced in many cancer cells under the Warburg effect [34].
Its decreased production could be linked to an inhibition of glycolysis by Dasatinib, as already reported
in chronic lymphocytic leukemia [35]. As lactate levels stay low in lines with acquired resistance,
in both IC and EC compartments, we suspected resistant cells to be less dependent on glycolysis for
their energetic needs. This reprogramming could lead to an increased glutaminolysis as suggested
by the lower glutamine levels in both acute and chronic exposures to Dasatinib. Glutamine is used
as another important energetic fuel in many cancer cells [36], and cases of glutamine addiction have
already been described in melanoma with resistance to BRAF inhibitors [21,23]. Finally, the decreased
aspartate level can be related to a decreased use of the malate-aspartate shuttle for mitochondrial
ATP production [37], or an increased anaplerotic use of aspartate [38]. Regarding the joint pathway
analysis, the ‘EGFR tyrosine kinase inhibitor resistance’ strongly indicates adaptive mechanisms in
those resistant cells. Indeed, resistant cells express less AKT, SRC, EPHA2, or rpS6. This led us to the
hypothesis that resistant cells rely more on the downstream effectors of the MAPK and PI3K/AKT
pathways in order to keep their oncogenic properties. This could favor an escape from some regulators
acting on upper proteins of these pathways, such as NF1, COT1, or PTEN.

The metabolomic analysis of the BRAF mutated cell line MM074 exposed to Dabrafenib (1µM) for
24 and 72h indicated a metabolic switch in the IC score plot, followed by a return to a previous state
when becoming resistant. The same “roundtrip” pattern was also observed in the EC compartment.
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Once again, we focused on those metabolites that did not follow the “roundtrip” evolution after
resistance development, namely aspartate and alanine. They both increased after short exposure to 1µM
Dabrafenib and kept relatively high levels after resistance acquisition. As already mentioned, an increase
in the aspartate level can be indicative of a higher production of mitochondrial ATP [39]. It has long been
known that BRAF mutation in melanoma cells confers them high glycolytic properties [39,40]. Studies
have also demonstrated that BRAF inhibitors act on glycolysis by downregulating many glycolytic
enzymes [17,23]. The same effect can be seen in our results, with increased levels of EC glucose and
decreased levels of EC lactate after exposure to Dabrafenib. The adaptation to chronic Dabrafenib
exposure led to an increase in mitochondrial ATP production that has already been documented in
melanoma [22]. Another study also indicated that aspartate can be a growth-limiting metabolite in
tumors [41]. Regarding alanine levels, a decrease under short exposure to drug was also observed
followed by a very significant raise along with resistance development. An alanine increase can be
correlated to an increase of protein synthesis [42]. Regarding the joint pathway analysis, reinforcement
of the MAPK and HIF-1α signaling is strongly suspected in the MM074-R, a phenomenon already well
documented in the literature [43–45]. Similar to the results in HBL-R cells, EPHA2 expression was also
decreased in MM074-R cells, indicating a loss of MAPK regulation.

Finally, metabolomic analysis of the NRAS mutated cell line MM161 under either short or chronic
exposure to the MEK inhibitor (1 µM Pimasertib) indicates the same switch and return pattern. In this
case, the metabolites of interest are mainly found in the IC with an increase in the glutamine level after
a short exposure that lasted after resistance development, pointing to a higher activity of glutaminase
enzymes. Indeed, a major role of glutaminases as oncogenic drivers has been highlighted in many
cancer types [46–48]. Their implication in drug resistance mechanisms has already been demonstrated
in leukemia and glioma [49,50]. The increased conversion rate of glutamine to glutamate is a marker of
increased glutaminolysis in these cells under treatment and after resistance development. We made
the hypothesis that while acquiring resistance to the MEK inhibitor, these cells would switch from
glycolysis to glutaminolysis as their main source of energy, but glutamine consumption could also
be linked to increased antioxidant defenses. Indeed, glutamate does not reach its untreated level
after resistance development, but this could be explained by its use for GSH synthesis. Indeed, GSH
levels are strongly increased in MM161-R cells. Similar increased antioxidant capacities after resistance
development to MEK inhibitors have been reported in BRAF mutated melanoma cells [17]. We made
the hypothesis that while acquiring resistance to the MEK inhibitor, these cells would switch from
glycolysis to glutaminolysis as their major source of energy. This is supported by the decreased
expression of hexokinase II (HKII) observed in our RPPA analysis. Slightly contradictory findings
between the reduced expression of HKII and the IC lactate level (indicating a glycolysis still active in
MM161-R cells) could be explained by the strong effect of Pimasertib on glycolysis, although during
the short exposure. Indeed, lactate production is strongly decreased after 72 h of Pimasertib exposure.
Several studies indicated an apoptosis induction in many cancer types after HKII inhibition [49,51,52].
We made the assumption that MM161 cells could decrease their HKII levels in order to adapt and
be able to escape the Pimasertib effect on its glycolytic mechanism. Similar to the results reported
in HBL-R cells, aspartate levels dropped in MM161-R cells. High phosphocholine levels can be
linked to a higher activity of the choline kinase, which catalyzes the transformation of choline into
phosphocholine, which was highlighted by our joint pathway analysis and described in many types of
metastatic tumors [53–55]. Interestingly, a study indicated that the overexpression and activation of
choline cycle enzymes are mediated by oncogenic signaling pathways, such as the RAS-MAPK and
PI3K-AKT [56]. This is in agreement with what we already know about the changes in the MAPK and
PI3K-AKT pathways after resistance acquisition in melanoma cells [3]. This is of particular interest
because this study also indicated the involvement of choline metabolism enzymes in the regulation of
oncogenic signaling pathways [56]. In addition to its metabolic role in the TCA cycle, succinate can act
as a communication signal molecule via its membrane receptor GPR91 whose activation can lead to
increased PI3K-AKT and MAPK signaling pathways [57,58]. This is in line with our RPPA analysis
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that indicates an overexpression of the different MAP kinases in the MM161-R cell line, as well as the
decrease of the upstream effector cKIT.

Based on a better understanding of the mechanisms of resistance, the aim of our work was to find
new biomarkers linked to drug resistance development and/or new targets, allowing such resistance
to be delayed or overcome. We studied three melanoma cell lines with representative mutations in
order to find a common pattern of resistance to different targeted therapies. Regarding the metabolism,
the common point between our different cell lines is that while acquiring resistance, cells tend to
switch to a metabolism relying more on glutamine and mitochondria for ATP production. This opens
some interesting perspectives to disrupt this resistant metabolome by using mainly two kinds of
metabolic inhibitors. First, glutaminolysis [59] could be targeted by glutaminase inhibitors, such as the
small inhibitor CB-839, that already showed promising results in resistant myeloma [60], esophageal
carcinoma [61], and ovarian cancer [62]. Another possibility could be the use of agents targeting
mitochondrial ATP, which has also already showed promising results in melanoma cells with acquired
resistance to BRAF inhibitors [63] and should be tested in melanoma cell lines with acquired resistance
to MEK or cKIT inhibitors. Mutation-related specific changes also need to be investigated. For example,
the increase of the choline metabolism in MM161-R cells could be targeted by choline kinase inhibitors
that can also negatively moderate the MAPK signaling pathway [56]. Regarding protein expression,
the most interesting targetable protein is EPHA2 whose expression is decreased in both HBL-R and
MM074-R cells. As EPHA2 is a modulator of the MAPK pathway, its early inhibition may delay the
development of drug resistance. Such inhibitors have already shown an antitumoral effect in vitro and
in vivo in colorectal and lung cancers [64,65].

4. Materials and Methods

4.1. Cell Lines and Culture

Metastatic melanoma cell lines were derived from tumors by the Laboratory of Oncology and
Experimental Surgery at Institut J. Bordet, Université libre de Bruxelles (Brussels, Belgium). For the
work, we selected 3 cell lines harboring different mutations: HBL (D820YcKIT), MM074 (V600EBRAF),
and MM161 (Q61RNRAS). These lines are sensitive to targeted therapies, but we also worked with their
resistant counterparts. To develop these resistances, cells have been chronically exposed to increasing
doses of targeted therapies for 12 weeks (0.01–1 µM) by M. Krayem and A. Najem. This model mimics
what happened in patients developing resistances to targeted therapies. Acute drug exposure effects
were generated by exposing sensitive cells to 1 µM of their corresponding drug during 72 h. Due to
Dabrafenib’s impact on the MM074-sensitive cell density, a shortened time-point of 24 h of exposure
was also considered.

Cells were grown in Ham-F10 medium (Lonza, Bâle, Switzerland) supplemented with 10% fetal
bovine serum and 1% penicillin/streptomycin (both from Life Technologie, Carlsbad, CA, USA) at
37 ◦C in a humidified 95% air and 5% CO2 atmosphere. The cultures were determined to be free of
Mycoplasma contamination using PCR-based detection.

4.2. Effectors

The BRAF inhibitor Dabrafenib, used for BRAF mutated cells, and the MEK inhibitor Pimasertib,
used for NRAS mutated cells, were from Selleck Chemicals (Houston, TX, USA). The tyrosine kinase
inhibitor Dasatinib, used for cKIT mutated cells, was from Bristol-Myers (New York, NY, USA).

4.3. 1H-NMR Spectroscopy

Before sample collection, 675-mm3 flasks of each cell line were cultivated to confluency. Concerning
the culture media collection, they were replaced 48h before sample collection. They were then collected
and stored at −20 ◦C until analysis. Concerning the cell collection, we washed them twice with cold
DPBS (4 ◦C) (Life technologies, Carlsbad, CA, USA) and used 3 mL of cold methanol to quench their
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metabolism. Finally, cells were collected using a scraper. Prior to −80 ◦C storage, cell pellet was de
novo quenched using a liquid nitrogen immersion for a few seconds.

Before 1H-NMR samples’ preparation, an additional methanol:water:chloroform 1:0.9:1 extraction
was required for cell pellet preparation, to separate the polar metabolites from macromolecules.
The resulting polar phase containing the metabolites held a mix of methanol and water, which
interacted with the NMR signal. The solvents were therefore dried using a SpeedVacuum.

For 1H-NMR sample preparation, either the cellular extracts or culture media were mixed with
phosphate buffer (0.2 M Na2HPO4/0.04M NaH2PO4, pH 7.4), previously prepared in a mixture
of H2O/D2O (80:20). For the intracellular samples, 700 µL of buffer were added to the dried cell
pellets, whereas 250 µL of buffer were mixed with 500 µL of the culture media. To remove residual
macromolecules, samples were centrifuged for 10 min at 13,000 g. Next, 650 µL of each supernatant
were mixed with 50 µL of a solution of Trimethylsilylpropanoic acid (TSP) solubilized in D2O, 7mM
for cell pellets, and 14 mM for culture media.

For 1H-NMR spectra acquisition, the previous described samples were loaded into 5-mm NMR
tubes. Spectra acquisition was processed on a Bruker 600-MHz Advance spectrometer, using the
NOESYPRESAT-1D pulse sequence and 256 scans.

Both the phases and baseline of the obtained spectra were corrected using the MestreLab Research
10.0.2 software (Mestrelab Research, S.L, Santiago de Compostela, Spain). Next, spectra were merged
into one page using the Stack tool, and the water peak region ranging from 4.20 to 5.20 ppm excluded.
After ensuring good spectra alignment, spectra were binned into small subregions of 0.04 ppm width,
and the area under the curve (AUC) of each descriptor calculated. Each 0.04-ppm width AUC was
normalized to the total spectrum AUC.

Binned spectra were investigated using the SIMCA-P+ 12.0 software (Umetrics, Umeå, Sweden).
To ensure the quality of the spectra processing, principal component analysis (PCA) was always
carried out on the dataset prior to partial least square discriminant analysis (PLS-DA). The quality
of the PLS-DA models was ensured by the two parameters R2 and Q2 values, based on the Umetrics
recommendations. The supervised PLS-DA technique enabled variable importance in projection (VIP)
calculation, with ones greater than the 1 value retained for further analyses.

The lack of sensitivity of the multivariate data analysis, as well as metabolites overlapping within
the 0.04 ppm width, can hide some valuable information. Therefore, a semi-quantification analysis of
the spectra within the MestRenova software was essential and returned additional spectral areas of
interest. Next, the selected spectral areas were identified as metabolites using the Chenomx NMR suite
software (version 8.1.1) and the human metabolome database (HMDB) [66].

Identified metabolites were then submitted to statistical analysis. First, the precise AUC of
each metabolite was calculated within MestRenova using the Peak Picking tool. Then, the obtained
numerical data were submitted to a Kruskal–Wallis test followed by a Dunn test. The considered
p-values were Holm-corrected.

The relative intensity of each discriminant metabolite was illustrated as a heatmap using the
Morpheus online software.

4.4. Protein Microarray

Protein microarray was performed by RPPA analysis at the Functional Proteomics Core Facility at
The University of Texas MD Anderson Cancer Center [67].

4.5. Protein–Protein Interactions (PPI)

Protein–protein interaction studies were conducted according to the Human Reference Protein
Interactome Mapping Project [68].
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4.6. MSEA and JOINT Pathway Analysis

Connection of the discriminant metabolites to metabolic pathways was performed using
the Metabolic Set Enrichment Analysis (MSEA) tool from the online available software
Metaboanalyst 4.0 [69], using the Homo Sapiens Pathway Library as a reference.

Data integration of both metabolite and protein sets was performed using the Joint Pathway
Analysis of MetaboAnalyst, with the Homo Sapiens Pathway Library.

5. Conclusions

As metastatic melanoma is still one of the deadliest forms of cancer with a 5-year survival below
15% and as there is a lack of therapies effective in the long term due to the hypermutable genome of
melanoma cells inducing the development of resistance to targeted therapies, it is crucial to better
understand how these mechanisms take place. It is now clear that metabolic reprogramming plays
a key role in resistance development. Our study indicated that common patterns took place in cells
with different mutations exposed to different molecules of targeted therapy. As we showed that these
common patterns indicate a particular role of glutaminolysis, glycolysis, and oxidative phosphorylation,
we successfully targeted these processes and showed the disruption of the metabolome associated
with the resistance to various targeted drugs.

Our integrative metabolomic and proteomic approach also pointed out the importance of cross-talk
between metabolic enzymes and oncogenic drivers in the MAPK and PI3K-AKT pathways. This once
again highlights the importance of integrative studies involving metabolic approaches in order to
better understand the resistance mechanisms occurring in cancer cells.
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line, Table S1: Intracellular (A) and extracellular (B) metabonomic signatures of the MM161 cells in various
experimental conditions, Table S2: Intracellular (A) and extracellular (B) metabonomics signatures of the MM074
cells in various experimental conditions, Table S3: Intracellular (A) and extracellular (B) metabonomics signatures
of the HBL cells in various experimental conditions, Table S4: Median centered Log2 data of the relative protein
levels between the HBL, MM074 and MM161 resistant and sensitive counterparts.
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