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A possible link between BDNF and mTOR in control of food
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Food intake is intricately regulated by glucose, amino acids, hormones, neuropeptides,
and trophic factors through a neural circuit in the hypothalamus. Brain-derived neurotrophic
factor (BDNF), the most prominent neurotrophic factor in the brain, regulates differentiation,
maturation, and synaptic plasticity throughout life. Among its many roles, BDNF exerts
an anorexigenic function in the brain. However, the intracellular signaling induced by
BDNF to control food intake is not fully understood. One candidate for the molecule
involved in transducing the anorexigenic activity of BDNF is the mammalian target of
rapamycin (mTOR). mTOR senses extracellular amino acids, glucose, growth factors, and
neurotransmitters, and regulates anabolic reactions response to these signals. Activated
mTOR increases protein and lipid synthesis and inhibits protein degradation. In the
hypothalamus, mTOR activation is thought to reduce food intake. Here we summarize
recent findings regarding BDNF- and mTOR-mediated feeding control, and propose a link
between these molecules in eating behavior.
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INTRODUCTION
Several lines of evidence indicate that neurons in the hypotha-
lamus sense nutrient sufficiency. These neurons are regulated
by many factors involved in feeding control, such as lep-
tin (Morton et al., 2006). The roles of many other feeding-
related peptides, both orexigenic and anorexigenic, have also
been extensively studied. For example, clear obesity and
leanness phenotypes are observed in knockout mice lacking
pro-opiomelanocortin (POMC; a precursor of α-melanocyte-
stimulating hormone (MSH); Yaswen et al., 1999) and melanin-
concentrating hormone (MCH; Shimada et al., 1998), respec-
tively. Recently, another factor involved in regulation of feed-
ing and metabolic regulation in the brain has come into the
spotlight: brain-derived neurotrophic factor (BDNF; Ooi et al.,
2012; Rios, 2013; Vanevski and Xu, 2013; Marosi and Mattson,
2014).

BRAIN-DERIVED NEUROTROPHIC FACTOR
Brain-derived neurotrophic factor is the most prominent
neurotrophic factor in the central nervous system. Indeed,
BDNF and its cognate high-affinity receptor, TrkB, are widely
expressed in the brain from development to adulthood. BDNF
promotes differentiation, maturation, and survival of neu-
rons, and plays important roles in synaptic plasticity through
the activation of TrkB, a receptor tyrosine kinase (Nawa
and Takei, 2001; Park and Poo, 2013). TrkB-expressing
(i.e., BDNF-responsive) neurons are distributed in the arcu-
ate nucleus (ARC), paraventricular nucleus (PVN), lateral
hypothalamus (LH), ventromedial nucleus (VMH), and dor-
somedial nucleus (DMN) of the hypothalamus (Yan et al.,
1997).

BDNF AND REGULATION OF FOOD INTAKE
The first evidence that BDNF is involved in body weight con-
trol came from a rather serendipitous result. While assessing
the neuroprotective effects of neurotrophins, Lapchak and Hefti
(1992) found that chronic intracerebroventricular (ICV) infusion
of BDNF in adult rats after fimbrial lesion reduced body weight.
Subsequent systematic experiments also revealed that ICV injec-
tion of BDNF suppressed appetite and promoted weight loss in
rats (Pelleymounter et al., 1995). The second clear line of evi-
dence that BDNF plays crucial role in food intake comes from
studies of genetically manipulated mice. Mice heterozygously
deleted for the gene encoding BDNF (Bdnf+/−) produce half
of the wild-type level of BDNF protein and exhibit a severely
obese phenotype due to overeating (Lyons et al., 1999; Kernie
et al., 2000). Furthermore, brain-specific deletion of Bdnf (Rios
et al., 2001), deletion of dendritic BDNF mRNA (Liao et al.,
2012), shRNA-mediated knockdown of BDNF using a viral vec-
tor (Unger et al., 2007), and a hypomorphic allele of Trkb that
expresses only a quarter of TrkB all result in hyperphagia, obe-
sity, and metabolic imbalances such as hyperglycemia (Xu et al.,
2003).

Genotype–phenotype interactions indicate that BDNF–TrkB
signals also play important roles in weight control in humans.
For instance, a de novo missense mutation of the TRKB gene,
Tyr722Cys, which leads to a defect in downstream signaling, was
identified in an 8-year-old male who presented with hyperpha-
gia, severe obesity, and developmental delay (Yeo et al., 2004).
Similarly, patients with Wilms’ tumor, aniridia, genitourinary
anomalies, and mental retardation (WAGR) syndrome, who have
a truncation of chromosome 11, exhibit hyperphagia and obe-
sity. Analysis of the genomes of WAGR patients revealed that
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they are heterozygous for deletion of BDNF. Patients with BDNF
haploinsufficiency were all obese, whereas only 20% of WAGR
patients without BDNF deletion were obese (Han et al., 2008).
A common single-nucleotide polymorphism (SNP) of BDNF,
G196A, produces the amino acid substitution Val66Met in the
prodomain. The Val66Met mutant exhibits defects in intracellular
trafficking and activity-dependent release of mature BDNF (Egan
et al., 2003). A genome-wide association study linked this SNP to
susceptibility to obesity in humans (Beckers et al., 2008; Speliotes
et al., 2010; Waterhouse and Xu, 2013). Likewise, in an experimen-
tal model, G196A knock-in mice exhibit increased body weight
(Chen et al., 2006). Because these mutations in humans are all
genomic, not somatic, the effect of BDNF deficiency on metabolic
abnormalities may arise from systemic and/or developmental
activities. Indeed, it has been proposed that BDNF contributes
to metabolism in peripheral organs (Nakagawa et al., 2000; Hanyu
et al., 2003). However, brain- or hypothalamus-specific deletion
or knockdown of BDNF induces overeating and obesity. These
results suggest that BDNF acts directly on the hypothalamic cir-
cuit that regulates food intake and metabolism, thereby controling
body weight. In addition, BDNF injection into the brain can res-
cue the obese phenotype of mutant mice. These results indicate
that BDNF exerts its anorexic action in an acute, temporally spe-
cific manner, and that the effects of loss of BDNF on feeding
behavior are not the result of developmental defects in neural cir-
cuits. BDNF also acts on midbrain dopaminergic neurons, which
are involved in hedonic eating related to the reward/addiction
system (Cordeira et al., 2010; Alsiö et al., 2012). Thus, this sys-
tem may contribute to overeating in individuals carrying these
mutations. Future studies should investigate these issues in greater
detail.

Previous studies of eating behavior have focused on extracel-
lular cues and neural circuits in the hypothalamus, but have not
looked as closely at intracellular signaling mechanisms. Consider-
ing the acute effect of BDNF on food intake, we wondered what
signaling molecules play major roles in BDNF-mediated feed-
ing control. Mammalian target of rapamycin (mTOR), a kinase
that governs metabolism in peripheral cells, has attracted atten-
tion as a regulator of food intake through the brain (Cota, 2009;
Wiczer and Thomas, 2010; Howell and Manning, 2011; André
and Cota, 2012). BDNF is a major activator of mTOR in neu-
rons (Takei et al., 2001, 2004; Inamura et al., 2005) therefore,
we hypothesize that the anorexigenic action of BDNF is medi-
ated by mTOR in neurons. Before elaborating on this idea, we
will provide a brief introduction of mTOR and its signaling
pathways.

MAMMALIAN TARGET OF RAPAMYCIN
Mammalian target of rapamycin is the mammalian ortholog
of yeast TOR, which is the target molecule of rapamycin, an
anti-fungal and immunosuppressant compound. mTOR is a ser-
ine/threonine kinase that forms two complexes, mTOR complex
1 (mTORC1) and 2, which have different molecular partners.
mTORC1 is a key component of the nutrient-sensing network
that controls cellular metabolism: it integrates various extra-
cellular cues, such as nutrients (amino acids and glucose) and
growth factors, and it regulates various biochemical processes,

including translation, autophagy, transcription, and lipid biosyn-
thesis. These biochemical reactions induce anabolic states and
thereby promote cell growth. The signaling pathways upstream
and downstream of mTORC1 have recently been elucidated
(Laplante and Sabatini, 2012; Takei and Nawa, 2014); we have
provided a simplified schematic of neuronal mTOR signaling in
Figure 1 Leucine, taken up by the system L-amino acid trans-
porter, activates mTORC1 (Ishizuka et al., 2008). Growth factors
such as BDNF (Takei et al., 2001, 2004; Inamura et al., 2005),
insulin (Lee et al., 2005), and insulin-like growth factor (Quevedo
et al., 2002) activate the phosphoinositide 3-kinase (PI3K)/Akt
pathway through their tyrosine kinase receptors in neurons. Akt
directly phosphorylates tuberous sclerosis complex 2 (TSC2), a
suppressor of Rheb that activates mTORC1. When glucose lev-
els are sufficient, AMP-activated protein kinase (AMPK) activity
decreases, and thus mTORC1 becomes active (Dash et al., 2006).
These inputs converge on mTORC1; therefore, the availability of
amino acids and/or glucose is essential for growth factor-mediated
mTORC1 activation (Hara et al., 1998; Ishizuka et al., 2013).
mTORC1 phosphorylates eukaryotic initiation factor 4E-binding
protein (4EBP) and thereby stimulates translation. In addition,
phosphorylation of p70S6 kinase (p70S6K) by mTORC1 also
promotes translation and lipid biosynthesis, whereas phosphory-
lation of ULK1 inhibits autophagy. All of these processes increase
total protein and lipid levels in the cell and thereby increase
cellular mass (Laplante and Sabatini, 2012; Takei and Nawa,
2014). It should be noted that mTORC1 signaling is regulated
by a feedback mechanism: mTORC1 and p70S6K phosphorylate

FIGURE 1 | Simplified schematic of upstream and downstream

mTORC1 signaling.
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and inactivate insulin receptor substrate (IRS; Tremblay and
Marette, 2001; Figure 1), which interacts receptor tyrosine kinases
such as insulin receptor and TrkB (Yamada et al., 1997). Thus,
prolonged activation or overactivation of mTORC1 results in
desensitization of this signaling cascade; this is thought to be
one mechanism of insulin resistance (Tremblay and Marette,
2001).

mTOR AND REGULATION OF FOOD INTAKE
In the brain, the first hint of a relationship between food intake and
mTORC1 signaling was provided by the involvement of AMPK on
feeding. AMPK is a cellular fuel gage that senses the AMP/ATP
ratio and turns off metabolic pathways that consume ATP (Kemp
et al., 2003). Because AMPK itself plays a key role in metabolism,
the regulation of hypothalamic AMPK was initially investigated
independently of mTOR (Minokoshi et al., 2004, 2008). Leptin,
insulin (Minokoshi et al., 2004), and cilliary neurotrophic fac-
tor (CNTF; Steinberg et al., 2006) reduce AMPK activity in the
hypothalamus similarly to re-feeding after fasting; thus, these
molecules suppress food intake and thereby reduce body weight.
By contrast, adiponectin (Kubota et al., 2007), ghrelin, and AICAR
(Andersson et al., 2004), a pharmacological activator of AMPK,
stimulate AMPK activity, and thus increase food intake and body
weight. Moreover, adenovirus-mediated expression of dominant-
negative (DN) AMPK reduces food intake and body weight,
whereas expression of constitutive-active (CA) AMPK increases
them (Minokoshi et al., 2004). Recent findings regarding the sig-
naling network (Figure 1) suggest that regulation of food intake
by AMPK may converge on the mTORC1 system in the hypotha-
lamus. AMPK activates TSC2, a suppressor of mTORC1, and
thereby inhibits mTORC1 (Inoki et al., 2003). In addition, AMPK
phosphorylates Raptor, a scaffold protein of mTORC1, also lead-
ing to inhibition of mTORC1 (Gwinn et al., 2008). Thus, like
rapamycin, AMPK activation suppresses mTORC1 and increases
food intake.

Direct evidence that mTORC1 signaling might be coupled
with feeding has been reported (Cota et al., 2006). Similar to
the action of leptin, ICV injection of leucine activates mTORC1
and reduces food intake. Moreover, the effects of both leucine
and leptin in the brain on mTORC1 signaling and food intake
are counteracted by rapamycin, a specific mTORC1 inhibitor.
Fasting and re-feeding also affect mTORC1 signaling in neu-
rons in the hypothalamus. It remains unclear which area of the
hypothalamus, as well as which types of neurons, participates
in mTORC1-mediated regulation of food intake. The answer
to this question might be provided by precise analysis using
methods such as immunohistochemistry with phospho-specific
antibodies to mTOR network molecules. Studies of mTORC1
signaling on food intake using genetically modified mice have
yielded seemingly paradoxical consequences. Global deletion of
p70S6K (s6k−/−), a downstream signaling molecule of mTORC1,
protects against diet-induced obesity (Um et al., 2004). By con-
trast, injection of an adenovirus vector carrying DN-p70S6K
into the mediobasal hypothalamus increases food intake and
body weight, whereas overexpression of CA p70S6K reduces both
parameters (Blouet et al., 2008; Ono et al., 2008). Furthermore,
conditional deletion of Tsc1, an upstream suppressor of mTORC1

in hypothalamic neurons (and in beta cells of the pancreas),
induces hyperphagic obesity, and hypothalamic POMC neuron-
specific deletion of Tsc1 results in the same phenotype (Mori
et al., 2009). Because Tsc1 deletion induces mTORC1 activation,
this phenomenon seems contradictory to the anorexic effect of
mTORC1.

Two issues complicate our understanding of mTORC1’s action
on food intake and weight control: the negative-feedback mech-
anism and the difference between the peripheral (or systemic)
and central (brain) activities of mTORC1. Prolonged activation
of mTORC1 signaling induced by gene knockouts of upstream
or downstream molecules may cause inactivation of mTORC1
in the hypothalamus via negative-feedback. Thus, for example,
knockout of Tsc1 may cause orexigenic rather than anorexigenic
effects due to long-lasting feedback suppression of mTORC1. Pre-
cise biochemical analysis of mTORC1 signaling in these animals
may help to resolve this paradox. Systemic mTORC1 pathway
activation induces cell growth in many organs, and thereby
increases body weight; this may explain why global knockout
of p70S6K suppresses weight gain (Blouet et al., 2008; Ono
et al., 2008). Nevertheless, because the organism must maintain

FIGURE 2 | Hypothetical roles of mTORC1 on metabolism and food

intake, comparing the cellular and organismal levels. Through the
activation of mTORC1, cells that receive nutrients and growth factors grow
by increasing total levels of proteins and lipids. Cells (neurons) in the brain
activate mTORC1 in response to nutrients and a variety of feeding-related
factors. The resultant signals give the order to stop eating and maintain
whole-body homeostasis.
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whole-body homeostasis, it is quite likely that phasic activa-
tion of mTORC1 in hypothalamic neurons drives an anorexic
state. In other words, mTORC1 senses the “satiety” signal in
the brain in order to maintain an appropriate body weight
(Figure 2).

BDNF AND mTOR
Amino acids, glucose, and growth factors induce mTORC1 acti-
vation in the hypothalamus and reduce food intake. In addition
to leucine and leptin, CNTF (Cota et al., 2008) and bone mor-
phogenic protein 9 (BMP9; Townsend et al., 2012) also suppress
food intake. Culture studies have revealed that these molecules
elicit mTORC1 signaling in neuronal cells. Leucine activates
mTORC1 through the system L-amino acid transporter in primary
cultured neurons (Ishizuka et al., 2008), whereas CNTF induces
the phosphorylation of STAT3 via mTORC1 in neuroblastoma
cells (Yokogami et al., 2000). These phenomena are similar to the
effects of BDNF on both mTORC1 signaling and food intake.
On the cellular level, BDNF is a potent activator of mTORC1
in neurons, and it stimulates anabolic responses such as protein
synthesis (Takei et al., 2001, 2004). Although there is as yet no
direct evidence, it is very likely that the anorexigenic action of
BDNF is mediated by mTORC1 activation in the hypothalamus.
Importantly, BDNF-mediated mTORC1 activation is limited by
glucose availability (Ishizuka et al., 2013). Because glucose and
amino acids are indispensable for the maintenance of home-
ostasis, this observation suggests the existence of a safeguard
system in which glucose sufficiency overrides other mTORC1-
activating stimuli in neurons. Therefore, it is necessary to obtain
direct evidence that the anorexigenic action of BDNF is really
mediated by mTORC1 signaling, either via the use of mTOR
inhibitors such as rapamycin or knockdown of mTORC1 com-
ponents in the hypothalamus. In addition, it is also important to
determine which types of neurons in the hypothalamus are actu-
ally responsible for mTORC1-mediated feeding control. The use
of a unique promoter-driven Cre-mouse (such as POMC-Cre)
to make conditional knockout in mTOR or mTORC1 compo-
nents in certain hypothalamic neurons may be useful in this
regard.

In unicellular organisms and at the single-cell level in meta-
zoans, nutrient uptake and subsequent mTORC1 activation lead
to cell growth (i.e., increase in cellular mass and/or prolif-
eration). In multicellular organisms, the brain regulates food
intake to maintain whole-body homeostasis. Thus, mTORC1
in hypothalamic neurons senses many complex signals, both
from the periphery (e.g., glucose, amino acids, insulin, lep-
tin, and ghrelin) and from neural networks within the brain
(e.g., via peptides and BDNF; Figure 2). The mechanisms by
which the brain controls feeding behavior are complex, but
mTORC1 may represent a cellular crossroads for the regula-
tion of food intake and metabolism by nutrients and other
inputs.
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