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Iron-catalyzed carboazidation of alkenes
and alkynes
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Xinhao Zhang 4 & Hongli Bao 1,2

Carboazidation of alkenes and alkynes holds the promise to construct valuable molecules

directly from chemical feedstock therefore is significantly important. Although a few exam-

ples have been developed, there are still some unsolved problems and lack of universal

methods for carboazidation of both alkenes and alkynes. Here we describe an iron-catalyzed

rapid carboazidation of alkenes and alkynes, enabled by the oxidative radical relay precursor

t-butyl perbenzoate. This strategy enjoys success with a broad scope of alkenes under mild

conditions, and it can also work with aryl alkynes which are challenging substrates for

carboazidation. A large number of diverse structures, including many kinds of amino acid

precursors, fluoroalkylated vinyl azides, other specific organoazides, and 2H-azirines can be

easily produced.
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Amino acids, the basic building blocks of proteins are being
used increasingly in bio-relevant modification of proteins
and pharmaceutical applications. Development of more

versatile methods to provide useful but synthetically challenging
amino acid frameworks from chemical feedstocks is always
highly desired1–4. Carboazidation of alkenes and alkynes holds
the promise to construct valuable molecules including amino acid
precursors and has therefore attracted much attention recently.
Although several carboazidations of alkenes have been developed
by Huang5, Renaud6,7, Liu8, Masson9, Zhu10, Jiao11 and Xu12,
there are some unsolved problems in this field. How to realize the
carboazidation reaction using nontoxic, inexpensive and readily
available reagents with a broad scope of olefins remains a ques-
tion. In addition, the carboazidation of alkynes is even more
challenging than carboazidation of alkenes (Fig. 1a). There is
only one successful carboazidation of alkynes reported by Liu13

which works for single carbon functionality, i.e., a trifluoromethyl
group using Togni’s reagent (Fig. 1b). The reason for the lack
of methods for carboazidation of alkynes might be attributed to
the relative lower efficiency of incorporation of azido species
compared to other competing reactions. The development of
carboazidation of alkenes and alkynes is significantly important
from the synthetic point of view.

t-Butyl perbenzoate (TBPB) is a commercially available and
inexpensive oxidant frequently used as a precursor of the
t-butoxyl radical14–22. Lately, TBPB has been proved to be a
good source of methyl radical by Yu23 and our group4,24,25.
Although our understanding of the selective formation of methyl

radicals is limited, we found previously that in the presence of
Fe(OTf)2 or Fe(OTf)3, the methyl radical is formed exclusively.
We envisioned that TBPB could serve as a polyfunctional reagent
for the carboazidation of alkenes and alkynes. Herein, we report
our development of a versatile iron-catalyzed rapid carboazida-
tion of both alkenes and alkynes, enabled by TBPB (Fig. 1c).

Results
Carboazidation of alkenes. We investigated the reaction para-
meters for carboazidation in the presence of TBPB and found
that ferrous trifluoromethanesulfonate (Fe(OTf)2, ferrous triflate)
is optimal (Fig. 2, see details in Supplementary Table 1 and
Supplementary Figures 2–4), delivering the corresponding pro-
duct 3 in 89% yield at rt with DME (dimethoxyethane) as
the solvent and azidotrimethylsilane (TMSN3) as the azidation
reagent. Possible by-products 4, 4′, and 4″ were not observed.

With the optimized conditions in hand, we studied the scope
of the reaction with alkyl iodides (Fig. 3 and Supplementary
Figures 5–34). Fluoroalkyl iodides were examined first and
the corresponding fluoroalkyl-azidation products (5–10) were
obtained in high yields26. The reaction of styrene with
iodoacetonitrile proceeds smoothly, affording the corresponding
product (11) in 86% yield. Reactions with ethyl iodoacetates
affords products (12–14) with the yield ranging from 71–85%.
With 1-iodo-3,3-dimethylbutan-2-one the reaction delivers the
azide (15) in 61% yield. Three electron rich alkyl iodides, i.e.,
1-chloro-4-iodobutane, 1-iododecane and 2-iodobutane are not
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Fig. 2 Optimized conditions for carboazidation of alkenes. Fe(OTf)2 (5 mol%), 1a (0.5 mmol), 2a (1.0 mmol), TMSN3 (1.0 mmol), TBPB (1.0 mmol) in DME
(2mL) at rt for 3 min under an N2 atmosphere
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effective in this reaction as the direct azidation of alkyl iodides to
form alkyl azides occurs. It should be noted that the reactions
with perfluoroalkyl iodides are very fast, completing in 10 min in
many cases.

Subsequently, we studied the substrate scope of olefins (Fig. 4
and Supplementary Figs. 35–189). As examples, α-azido esters
(16–27 in Fig. 4a), β-azido esters (28–37 in Fig. 4b), γ-azido esters
(38–63 in Fig. 4c), other azido acid derivatives (64–69 in
Fig. 4d–g) and organoazides (70–75 in Fig. 4h) were obtained.
The functional group compatibility of this reaction is good: a
series of functional groups, such as halogen, ester, carboxylic
acid (69), and free hydroxyl group (74) are tolerated under the
reaction conditions. Both terminal and internal alkenes (28–37,
58, and 65) are compatible with the reaction. The carboazidation
reactions of 1-octene with iodomethane and iodobutane are not
successful under the reaction conditions.

To highlight the synthetic applications, 8, 19 and 78 were
reduced to amine 7611, amino acid 7726 and pyrrolidinone 79,
respectively (Fig. 5 and Supplementary Figs. 190–199).

Carboazidation of alkynes. Vinyl azides (1-azidoalkenes)27,28 are
versatile building blocks in organic synthesis and have been used
in many transformations to synthesize bioactive alkaloids and
heterocycles29–36. Although the carboazidation of alkynes can
difunctionalize alkynes, affording 1-azidoalkenes which can be
subsequently converted to 2H-azirines, reports of such efficient
methods are rare13, and accordingly, we studied the carboazida-
tion of alkynes. After carefully screening the reaction conditions,
Fe(OTf)3 was found to be the best catalyst, producing a carboa-
zidation product (81) while avoiding the formation of the atom-
transfer radical addition (ATRA) product (81′) (Fig. 6a, see
details in Supplementary Table 2 and Supplementary Figs. 200–
208). In view of the broad synthetic utilities of 2H-azirines, the
conversion of vinyl azides to 2H-azirines was studied. It was

found that compound 81 could be converted into a 2H-azirine
(82) in toluene at 120 °C (Fig. 6b).

With these conditions identified, we studied the substrate
scope regarding alkyl iodides and alkynes. The results are shown
in Fig. 7 and Supplementary Figs. 209–283. Fluoroalkyl iodides
and aryl alkynes react well in these transformations. Reaction of
1-iododecane with ethynylbenzene does not deliver the desired
product. As an example, reaction of 1-octyne delivers only the
ATRA product (107)37 in 42% yield.

To highlight the synthetic applications of this method further,
vinyl azides and 2H-azirine were converted to 10838 10939 and
11040 in high yields (Fig. 8 and Supplementary Figs. 284–295).
The geometry of vinyl azides was confirmed by X-ray crystal-
lographic analysis of product 109 (see details in Supplementary
Figure 1 and Supplementary Table 3).

Discussion
In summary, we have developed a carboazidation of alkenes
and alkynes enabled by TBPB. This key transformation has
been successfully used to afford various valuable structural ske-
letons, including many amino acid precursors, vinyl azides and
2H-azirines. It is noteworthy that this carboazidation works for
both alkenes and alkynes with multiple carbon functionalities.

Methods
Typical procedure for carboazidation of alkenes. Fe(OTf)2 (9 mg, 0.025 mmol)
was added to a dried Schlenk tube equipped with a magnetic bar. This tube was
then flushed with N2 gas (3 times) and an N2 atmosphere was maintained using
an N2 balloon. A thoroughly mixed solution of alkene (0.5 mmol), alkyl iodide
(0.65–1.5 mmol), TMSN3 (0.7–1.7 mmol) and TBPB (0.75–1.75 mmol) in DME
(2 mL) was added to the catalyst by syringe and the mixture was stirred vigorously
for 3–120 min at the appropriate temperature. After completion of the reaction,
judged by TLC, the solvent was evaporated and the residue was purified by
flash chromatography on silica gel using petroleum ether and EtOAc to give the
corresponding product.
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Typical procedure for carboazidation of alkynes. Fe(OTf)3 (12.7 mg, 0.025
mmol) was added to a dried Schlenk tube equipped with a magnetic bar. Then this
tube was flushed with N2 (3 times) and an N2 atmosphere was maintained using an
N2 balloon. A thoroughly mixed solution of alkyne (0.5 mmol), RfI (0.75 mmol),
TMSN3 (1.0 mmol) and TBPB (1.0 mmol) in DME (2mL) was added to the
catalyst by syringe and the mixture was stirred vigorously for 5–20 min at rt.
After completion of the reaction, judged by TLC, the volatile compounds were
removed by pump and the residue was dissolved in toluene (3 mL). The resulting
mixture was then stirred at 120 °C for 10 min. The solvent was then evaporated and
the residue was purified by flash chromatography on silica gel using petroleum
ether and EtOAc to give the corresponding product.

Data availability
Detailed experimental procedures and characterization of compounds can be
found in the Supplementary Information. The X-ray crystallographic coordinates
for structures reported in this article have been deposited at the Cambridge
Crystallographic Data Centre (109: CCDC 1864994). These data could be
obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif. All data are available from the authors
upon request.
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