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Abstract: Microbial pathogens that cause severe infections and are resistant to drugs are simulta-
neously becoming more active. This urgently calls for novel effective antibiotics. Organisms from
extreme environments are known to synthesize novel bioprospecting molecules for biomedical appli-
cations due to their peculiar characteristics of growth and physiological conditions. Antimicrobial
developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate
several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes
the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutri-
tional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation
makes them promising candidates for drug discovery. More microbiota identified via sequencing and
‘omics’ approaches signify the hypersaline environments where compounds are produced. Microbial
genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number
of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from
halophiles including a consortia approach. Promising results indicate that halophilic microbes can be
utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural
product research towards diverse phylogenetic microbial groups which inhabit salterns. The present
study reviews interesting antimicrobial compounds retrieved from microbial sources of various
saltern environments, with a discussion of their potency in providing novel drugs against clinically
drug-resistant microbes.

Keywords: antibiotic resistance; salinity; halophilic; bioactive compound; pharmaceutical

1. Introduction

Clinical sectors have been confronted with health risk challenges provided by antibi-
otic resistance (ABR). This phenomenon warrants the development of effective antibiotics,
particularly against human pathogens that cause serious threads [1]. The usage of large
antibiotics for human therapy as well as for animals, such as those important for agriculture
andaquaculture, results in a selection of pathogenic microbes that are resistant to multi-
ple drugs. Regional surveillance of ABR, including Africa, America, Europe, the eastern
Mediterranean and the southeastern and western Pacific, was highlighted by the WHO with
respect to specific pathogens, such as E. coli (third-generation Cephelosporine resistance),
K. pneumoniae (Carbapenems and third-generation Cephelosporineresistance), S. aureus
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(methicilllin resistance), Shigella sp. (resistant to fluoroquinolones) and Neisseria gonorrhoeae
(susceptibility decreasing to 3rd generation Cephelosporines) [2]. Every year, at least 2.8
million people in the United States become sick with antibiotic-resistant bacteria or fungus,
and over 35,000 people die as a result [3]. Recently, due to the emergence of ABR, progress
reports were prepared by the CDC for the years 2016–2020, and various health practices, in-
cluding usage of drugs for human and veterinary health, were implemented and signed by
the respective partner countries [4]. ABR is also known to cause infections associated with
healthcare facilities and is likely to betransferred between healthcare facilities. Emerging
technologies are currently being used to eradicate drug-resistant strains by utilising diverse
medicines and functionalised biomaterials. However, not only in the human sector but also
in the animal and environmental sectors is the phenomenon of drug resistance difficult
to overcome [5]. As for the cell walls of bacteria, selective mechanisms emerged, such as
membrane permeability, efflux pumps, and the alteration of target molecules modifyingcell
wall precursors, resulting in drug resistance. Biomolecule discovery necessitates the de-
velopment of novel drugs to address these difficulties [6]. Microorganisms from extreme
habitats have recently attracted a lot of attention. This is mostly related to the evolution of
molecular components in their living systems, as well as the stability of macromolecules [7].
Halophilic microorganisms are salt-tolerant extremophiles that thrive at high salt concentra-
tions. Recent research indicates that halophilic or halotolerant bacteria and fungi from high
saline environments provide a suitable source of biosurfactants, enzymes, and aromatic
chemical degraders [8–10]. Hypersaline regions offer several possibilities for the synthesis
of secondary metabolites withbioactivities of industrial interest [11]. Several haline lakes,
salterns accommodating microbes such as Pisibacillus and Nocardiopsis possess antibacterial
activity by excreting its potential extract and compounds, such as pyrrolo (1,1-A(pyrazine-
1,4-dione,hexahydro-3-(2-methylpropyl)-) [12,13]. Cold environments, such as the Antarctic
Casey station, also support halophilic bacteria that create lipopeptides with enzymatic
and antibiotic properties of applied interest [14]. Arctic subsea sediments of the Barents
Sea harbour A. protuberus, which produces the antifungal compound Bisvertinole [15].
The halophilic bacterium Vibrio azureus MML1960 was found to have antifungal action
against fluconazole-resistant Candida albicans [16]. A metabolite secreted by the halophilic
Pseudomonas aeruginosa developed an antibiotic against methicillin-resistant S. aureus. [17].
Certain archaea, such as Haloquadratum walsbyi and the bacterium Salinibacter, have different
anaerobic growth, produce gas vesicles, and deliver halocins able to kill other archaea,
and certain strains produce pigments such as carotenoids with various strong bioactivities,
including antioxidants [18–21]. Some enzymes and proteins generated by halophiles were
tested for antibacterial activities against plant diseases, including L-asparaginase, amylase,
protease, lipase, cellulose, and glycoproteins from Halomonas and Bacillus spp. [22,23].
The bioactivity of halophilic microbes from diverse saline environments against various
pathogens has increased interest in biomolecule applications in the pharmaceutical indus-
try. Moreover, many prospective bioactivities of halobacteria, halofungi, haloarchaea, and
halo-diatoms remain unexplored [24]. More attention should be paid to halo-microbial
communities as a reliable source of novel drugs against drug-resistant bacteria. Conse-
quently, the current review emphasises the recent antimicrobials produced by halophilic
microbes against clinical drug-resistant strains and discusses the adaptation strategies of
halophiles for extreme environments.

2. Halophiles: A Potential Source of Antimicrobials

There are more examples of hypersaline locations throughout the world, such as
coastal lagoons, soda and salt lakes, hypersaline human-made ponds for salt produc-
tion (salterns), deep sea brine pools (formed by salt dissolution during seafloor tectonic
activity), brine channels in sea ice, and brine pickling solutions. Both halophiles and
halotolerants produce antimicrobials at optimal culture conditions, such as the halophilic
Actinomycetes sp., halophilic Kocuria sp., and halotolerant Micromonospora sp., which secrete
antibacterial compounds against Staphylococcus citreus, Staphylococcus aureus, and Vibrio
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cholera [25]. Even some antifungal activities were provided by hypersaline actinomycete
genera against Aspergillus niger, Cryptococcus sp., and Fusarium solani [26]. Antimicrobials
derived from Microbacterium oxydans and Streptomyces fradiae of foreshore soils showed
broad-spectrum action against P. aeruginosa, S. typhi, Micrococcus luteus, C. albicans, and
Colletotrichum gloeosporioide [27]. Ultimately, the principal phylum responsible for the in-
hibition of clinical pathogens are Actinobacteria, which are available as frequent isolates
from solar salterns, sea floor sediments, and mangroves. The predominant genera here
are Streptomyces and Nocardiopsis [26,28,29]. Aside from the Actinomycetes, other genera,
such as Bacillus (Bacillus sp. BS3) and Vibrio (Vibrio parahaemolyticus), have previously
been identified as antimicrobial producers against human pathogens, such as E. coli, P.
aeruginosa, S. aureus, and B. subtilis, as well as S. albus [30,31] (Table 1). Furthermore, an
ethyl acetate extract of the solar saltern Halomonas salifodinae bacteria exhibits antibacterial
action against aquatic pathogens, such as Vibrio parahaemolyticus, Vibrio harveyi, Aeromonas
hydrophila, and Pseudomonas aeruginosa, isolated from fish and shrimp [32]. The purified
fraction of the aforementioned metabolites has antiviral efficacy and contains compounds,
such as Perfluorotributylamine, Cyclopentane, 1-butyl-2-ethyl and 1,1′-Biphenyl]-3-amine,
Pyridine, 4-(phenylmethyl)-Hexadecane, 2-methyl-, and Nonandecane, which suppresses
the replication of white spot syndrome virus (WSSV) in Fenneropenaeus indicus. The domain
Archaea contains 56 genera and 216 species of procaryotes that produce halocin (antimi-
crobial peptides) [33]. The archaea Haloferaxlarsenii HA3 has cross-domain antibacterial
action and inhibits the growth of H. larsenii HA10 [34,35]. Furthermore, the supernatant of
the halocin-synthesising strain Haloferaxmediterranei DF50-EPS (incapable of making EPS
(Exopolysaccarides)) induces DNA uptake, as evidenced by the uptake of the pWL502
plasmid [36]. The Halocin C8 peptide (7.4 kDa) generated by Natrinema sp. AS7092 strongly
inhibits Halorubrum chaoviator [37]. However, there is no potential evidence that halocins are
effective against human pathogenic microorganisms. Chemical molecules from halophilic
microorganisms, such as indole derivatives, alkaloids, tripenoids, and peptides, showed
some bioactivity against certain pathogens [38]. Several bacterial genera isolated from
halophilic ecological environments produce antibiotic compounds that are effective against
various pathogens. Figure 1 depicts the phylogenetic representation of antimicrobial agents
producing halophilic bacterial strains generated from recent literature using MEGA –X
Software [39]. Other than bacteria, a halophilic fungus Aspergillus protuberus MUT 3638,
isolated from Arctic Ocean abyssal marine sediments, has antibacterial effectiveness against
A. baumanii, B. metallica, S. aureus, and K. pneumoniae [15]. Antibacterial and antioxidant ca-
pabilities are found in Aspergillus gracilis, Aspergillus penicillioides, and Aspergillus flavus [40].
The marine diatoms Chaetoceros pseudocurvisetus and Skeletonemacostatum have been studied
lately for their anti-tuberculosis action, particularly under phosphate-depleted circum-
stances, with non-toxic effects on human cell lines [41]. The Amberlite resin extract of
Chaetoceros pseudocurvisetus at 800 g/mL inhibited the growth of Mycobacterium tuberculosis
by 99%. Skeletonema costatum also demonstrated antifungal and antibacterial activity against
Fusarium moniliforme and Streptococcus pyogenes with 18 mm diameter of inhibition zones via
methanol and ethanol extracts, and other diatoms, including Chroococcusturgidus, revealed
a significant inhibition zone against E. coli with 21.4 mm diameter via methanol and ethanol
extracts [42].
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Table 1. Produced antimicrobials from halophilic microbes against different clinical pathogens.

S.No Organism Isolation Source Compound Activity Reference

1. Bacillus sp.

Condenser water, solar salt
works in Thamaraikulam,

Kanyakumari district, Tamil
Nadu, India

13-Docosenamide,
9-Octadecenamide, Cylohex-

1,4,5-triol-3-one-1-carbo

Antibacterial and
Antifungal [31]

2. Halomonassalifodinae

Solar salt condenser,
Thamaraikulam solar astern,
Kanyakumari district, Tamil

Nadu, India

Perfluorotributylamine,
Pyridine, 4-(phenylmethyl),

Nonadecane
Antibacterial [32]

3. Pseudonocardiaendophytica
Sediments of mangrove

Nizampatnam, Bay of Bengal,
Andhra Pradesh, India

3-((1H-indol-6-yl) methyl)
hexahydropyrrolo [1,2-a]

pyrazine-1,4-dione
Antibacterial [43]

4. Piscibacillus sp. Sambhar Lake in India Crude extract Antibacterial and
anticancer [12]

5. Nocardiopsis sp. Saline soil of Kovalam solar
salterns India

Pyrrolo (1,2-A
(pyrazine-1,4-dione,

hexahydro-3-(2-
methylpropyl)-)

Antibacterial [13]

6. Nocardioides sp. Antarctic Casey Station,
Wilkes Land,

Glycolipids and/or
lipopeptides

Enzymatic and
antimicrobial

activities
[14]

7. Aspergillus flocculosus Putian saltern of Fujian,
China

6-(1H-pyrrol-2-yl)
hexa-1,3,5-trienyl-4-methoxy-

2H-pyran-2-one
Antibacterial [44]

8. Bacillus subtilis, Bacillus
licheniformis

Halophilic MaharluSalt
Lake—Iran glycoprotein Antifungal,

Antibacterial [22]

9. Virgibacillusmarismortu,
Terribacillushalophilus Halophilic Tunisian Sebkha Glucanase, thermotolerant

chitinases

Antimicrobial
activity, Antifungal

enzymes
[45]

10. Nocardiopsis terrae Saline soil, Qaidam Basin,
north-west China

Quinoloid alkaloid
4-oxo-1,4-dihydroquinoline-

3-carboxamide,
Indole-3-carboxylic acid

Antibacterial and
anticancer [46]

11. Aspergillus flavus,
Aspergillus gracilis

Solar saltern, Phetchaburi,
Thailand

Crude extracellular
compounds

Antibacterial and
antioxidant [40]

12. Halomonas sp. Halophilic bacteria Yuncheng
Salt Lake, China

Amylase, protease, lipase,
cellulase, pectinase and

DNAase

Antimicrobial
activity, hydrolytic

activities.
[23]

13. Streptomonosporaalba Soil sample, Xinjiang
Province, China Streptomonomicin Antibacterial [47]

14. Salinisporaarenicola
Great Barrier Reef (GBR)

sponges, Queensland,
Australia

Rifamycin B, S and W Antifungal [48]

15. Nocardiopsis
lucentensis

Salt marsh soil, Alicante,
Spain Nocarbenzoxazole G Antibacterial and

anticancer [49]

16. Buttiauxella sp.
Halophilic, marine bacteria

mangrove forest, Qeshm
Island, south of Iran

Glycolipid biosurfactant Antimicrobial
activity [50]

17. Actinomyces sp.

Halophilic
AranBidgolandMaharlu

Lakes in center and south of
Iran

Chloroacetate,
ethylcholoroacetate and 4-

chloro-3hydroxybutyronitrite
groups

Antimicrobial
activities [51]

18. Paludifilumhalophilum Sfax solar saltern, Tunisia
Gramicidin S, Cyclo(l

-4-OH-Pro- l -Leu), Cyclo(l
-Leu- l -Pro)

Antibacterial [52]

19. Vibrio sp.
Brine and sediments from
Manaure solar saltern. La

Guajira, Colombia
13-cis-docosenamide Antibacterial [53]

20. Nocardiopsis sp. Salt lake soil, Algerian Sahara.
Algeria

Compound 1:(−)-8-O-
methyltetrangomycin Anticancer [54]
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Table 1. Cont.

S.No Organism Isolation Source Compound Activity Reference

21. A. protuberus Arctic sub-sea sediments
from the Barents Sea Bisvertinolone Antifungal [15]

22. Bacillus sp. Halophilic
carotenoids, polyhydroxy

alkanoates, ectoine,
bioplastics and enzyme

Antibacterial Activity [55]

23.

Halomonas elongate,
Halobacilluskarajiensis,

Alkalibacillus
almallahensis

Halophilic extreme saline soil
samples of Khewra Salt

Mines, Pakistan

Peptide furanomycin,
biosurfactants

Radical scavenging
activity, antioxidant

potential,
antimicrobial activity

[9]

24. Halomonaselongata Halophilic Ectoine Antimicrobial
activity [56]

25. Coccomyxaonubensis Tinto river, Spain Palmitic acid, oleic acid,
linoleic acid

Antibacterial and
Antifungal [57]

3. Biopotency of Halophiles as Antibacterials for Clinical Drug-Resistant Pathogens

Drug resistance in clinical strains is updated against antibiotics in both Gram-positive
and Gram-negative strains, such as Enterobacteriaceae (Cephalosporines- and Carbapenem-
resistant), Pseudomonas aeruginosa, and Neisseria gonorrhoeae (Aminoglycosides- and quinolone-
resistant) Helicobacter pylori (Clarithromycin), Haemophilus influenza (ampicillin), and Staphy-
lococcus aureus, a highly infectious strain to humans with resistance to methicillin (MRSA)
and intermediate to vancomycin, Enterococcus faecium (vancomycin- and cephalosporin-
resistant), and Streptococcus pneumoniae(penicillin-resistant) [58]. Surprisingly, the quo-
rum sensing (QS) of P. aeruginosa caused fluconazole resistance in Candida albicans by
generating QS component N-(3-Oxododecanoyl)-L-homoserine lactone via the reverse
pathway of ergosterol production [59]. To address these concerns, the use of halophilic
biomolecules against drug-resistant bacteria has recently gained attention, particularly
since novel anti-MRSA drugs were discovered (Figure 2). The halophilic bacterium Vibrio
azureus MML1960 from saltpan sediments (Kelambakkam saltpan) attributed anti-candidal
activity on fluconazole-resistant Candida albicans, with 0.375 mg/mL of its crude extract
with a maximum inhibition zone of a 26 mm diameter [16]. Furthermore, Vibrio sp. A1SM3-
36-8 was found in Colombian solar salterns to be the producer of 13-cis-docosenamide,
a unique antibacterial agent against MRSA [53]. The halophilic Bacillus provides a sig-
nificant amount of bioactive molecules. However, the majority of them were thought
to be anticancer agents rather than antimicrobials [38]. Bacillus firmis VE2, a halophilic
bacterium isolated from Vedaranyam sediments, produced Subtilisin ‘A’, a protein with
antifungal activity against C. albicans and C. parapsilosis with 15 mm diameter of inhibition
zones, as well as S. aureus with 16 mm [60]. The Batim and Ribandar saltpans with Bacillus
and Virgibacillus spp. produced metabolites against both MRSA and MSSA (methicillin-
sensitive S. aureus) with more than 20 and 18 mm diameter inhibition zones [61]. Halophilic
P. aeruginosa shows antibacterial activity against MRSA with MIC (Minimum Inhibition
Concentration) at 250 µg/mL [62,63]. The ethyl acetate extract of halophilic P. aeruginosa
isolated from coastal saltpan sediments exhibits broad antibacterial activity against Nor-
floxacin and Ciprofloxacin-resistant Klebsiella quasivariicola, vancomycin-intermediate E. coli,
and methicillin, as well as Norfloxacin-resistant S. argenteus isolates from diabetic foot
infections, with inhibition zones with diameters of 24, 21, and 22 mm [64]. The halophilic
actinomycete, Nocardiopsis sp. HR-4, recovered from the soil of a Salt Lake in the Algerian
Sahara, offers greater antimicrobials against drug-resistant bacteria. It produces a novel nat-
ural product,7-deoxy-8-O-methyltetrangomycin, which is effective against MRSA (ATCC
43300) [54]. Nocardiopsis sp. JAJ16 isolated from Crystallizer Pond and Nonomuraea sp. JAJ18
from Indian coastal solar salterns also provide antibacterial activity against MRSA [65,66].
Marinispora sp. NPS12745, isolated from marine sediments in Mission Bay, southern Cali-
fornia, produces Lynamicin E, which has antibacterial action against penicillin-resistant
Streptococcus pneumoniae ATCC 51915, vancomycin-sensitive E. faecalis ATCC 29212, and
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vancomycin-resistant E. faecium [67], and Streptomyces sp. CNQ-418 from marine sediments
of La Jolla, California, produces the compounds Marinopyrroles A and Marinopyrroles
B, which were also active against MRSA [68]. Substantially, the endophytic Streptomyces
SUK-25-derived compound DKPs cyclo-(l-Val-l-Pro), cyclo-(l-Leu-l-Pro) and cyclo-(l-Phe-
l-Pro) provoked bioactivity against MRSA and Enterococcus raffinosus [69]. Isolates from
the coasts of Papua New Guinea Bismarck and the Solomon Sea, such as Micromonospora
nigra DSM 43818, Micromonospora rhodorangea, and Micromonospora halophytica DSM 43171,
demonstrated bioactivity against several Gram-positive MDR strains, vancomycin-resistant
enterococci, and MRSA [70]. C. albicans was also inhibited by halophilic actinobacterial
strain H262 from Algerian arid habitats of the Sahara desert with a 17 mm inhibition zone,
19 mm for Penicillium expansum fungi PE1, 31 mm for the bacterium B. subtilis, and 37 mm
for MRSA [71]. Moreover, Gohel et al. (2015) [72] provided a thorough description of the
antibacterial activity of haloalkaliphilic actinobacteria. Extensively, halophilic Proteobac-
teria have already been shown to synthesise a variety of natural compounds [73]. The
marine alpha Proteobacteria Labrenzia spp. synthesised cyclopropane fatty acids with broad
antimicrobial action against MRSA and the fungus Eurotium rubrum DSM 62631 [74]. A
study conducted in Yuncheng Salt Lake, China, investigated potential halophilic strains,
such as 3, 6, 15, 12, 15, and 16, belonging to different families, such as the Clostridiaceae,
Staphylococcaceae, and Bacillaceae, that inhibit the growth of S. aureus, E. coli, C. albicans, F.
moniliforme, F. semitectum, and F. xysporum [23]. These reports also state that by using halo
microbial compounds, most drug-resistant strains are rendered less virulent.
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4. Recent Activity Findings from Halophiles—Against Clinically Important Pathogens
4.1. Halophilic Bacillus sp.

Bacillus and Virgibacillus were frequently isolated from saline systems with antimicro-
bial potential [75]. Bacillus pumilus NKCM 8905 Bacillus pumilus AB211228 isolates of coastal
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soil, Arabian Sea, Mumbai, produced antibiotics against E. coli, S. aureus, B. subtilis and
A. niger [76]. Phospholipid compounds produced from halophilic B. subtilis had a better
antimicrobial activity than alkaliphilic B. subtilis on S. aureus with a maximum of 26 mm
diameter inhibition zone, whereas alkalic Bacillus sp. showed 21 mm [77]. B. subtilis derived
from Haj Aligholi Salt Deserts and Dagh Biarjmand, Iran, revealed antimicrobial activity
against pathogenic fungi and bacteria with MIC ranges from 12.5 to 25 µg/mL, fungus in-
cludes A. flavus, F. oxysporum, C. albicans, and the bacterium includes B. cinerea, and N. crassa
with inhibition zones with diameters of 14, 11, 8, 39, and 13 mm [75]. B. subtilis isolated
from Kovalam Beach waters, Chennai in India, shows activity against clinical pathogens
P. aeruginosa, Proteus mirabilis, K. pneumonia, Salmonella typhi and S. typhi B. The chloroform
crude extract of this bacterium containing compound Pyrrolo (1, 2-a) pyrazine-1, 4-dione
might be responsible for the reduction in OD (optical density) compared to the control for
the aforementioned bacterial species [78]. Bacillus persicus 24-DSMisolated from Dead Sea
mud provided activity against B. subtilis and E. coli [79]. Another discovery revealed that
the Bacillus species DSM2 from the same location has activity against pathogenic fungi,
including C. albicans ATCC 10231 and A. brasiliensis ATCC 16404 (Maher 2017) [80].

4.2. Halophilic Actinomycetes

Due to the wide range of biopharmaceutical applications of Actinobacteria, there is a
great diversity of halophilic strains being studied [81]. Nocardiopsis dassonvillei halophilic
actinomycetes showed antibacterial efficacy against human pathogens, such as S. aureus,
E. coli, B. cereus, and P. aeruginosa [82]. The ethyl acetate extracts of Kocuria sp. strain rsk4
inhibit S. aureus at the lowest MIC of 30 g/mL by secreting an antibacterial unknown
compound with a molecular mass of 473 g/mol [83]. The phenolic extracts of the halophilic
actinomycetes isolate GD3007 provided activity at 50 µL/g against different pathogens
such as E. coli, S. aureus, Vibrio sp., P. aeruginosa, and K. pneumonia with inhibition zone
diameters of 30, 27, 24, 25, and 26 mm [84]. Corum salterns actinomycetes were found to be
active against B. subtilis, E. coli, and A. niger. The most significant activity was obtained
from strains belonging to Streptomyces providing gene clusters including PKS-I, PKS-II,
and NRPS, which were also tested for antibacterial efficacy using similar primers [85].
Streptomyces sp. MA05, which was isolated from a salt lake in Chennai, showed antibacterial
activity against S. aureus with an inhibition zone larger than 15 mm [86]. Streptomyces spp.
AJ8 was isolated from the Kovalam solar saltern in India, with a single gene fragment of
NRPS length and was found to have antagonistic properties against bacterial and fungal
pathogens, such as V. harveyi (9.2 mm inhibition zone), A. niger (9.8 mm), and C. albicans
(5 mm) [87].

4.3. Other Halophilic Bacterial Species

Other Halomonas taxa isolated from the salty habitat of Northeastern Algeria showed
broad antifungal activity against Fusarium oxyporum, Botrytis cinerea, Phytophthora cap-
sici, and F. verticillioides [88]. Gamma Proteobacteria from coastal solar salterns, such as
Halomonas smyrnensis and Halomonas variabilis, were found to have antibacterial properties
against S. pasteuri and E. coli. Salinicoccus roseus and Virgibacillus salaries exhibited activity
against M. luteus, A. johnsonii, X. oryzae, C. lipolytica, S. cerevisiae, and M. luteus, X. oryzae,
C. lipolytica, S. cerevisiae [89]. The cell supernatants of Nocardioides sp. of halo-Antarctic
soils containing glycolipids and/or lipopeptides provided antimicrobial activity against
S. aureus and X. oryzae, whereas its salt medium supplemented with various carbon sources
provided enzymatic activity [14].

4.4. Halophilic Microalgae

Dunaliella salina alone produced several compounds with antimicrobial potencies
against several pathogens. Hexane extract of the microalga Dunaliella salina at 97.0 mg mL−1

concentration showed an inhibition zone with a diameter of 20 mm against B. subtilis, and
ethanolic extract at 214.0 mg mL−1 showed 21 mm against B. subtilis [90]. The methanol and
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chloroform extract of Dunaliella salina possesses antibacterial activity on Vibrio cholerae at a
maximum 10.4 mm inhibition zone due to the unique compounds such asn-Hexadecane
(M.W. 226.2) and 3, 3, 5-Trimethylheptane (M.W. 142.2) [91]. A mixed culture technique us-
ing marine and freshwater microalgae, such as Coelastrum sp., Scenedesmus quadricauda, and
Selenastrum sp., exhibited growth inhibition on S. epidermidis, S. marcescens, and P. fluorescens
via their methanol and hexane extracts [92]. Jafari et al., 2018 [93] proved the antibacterial
efficacy of D. salina by suppressing the growth of S. mutants at 6250 g mL−1 using methanol,
chloroform, and acetone extracts.

5. Novel Antimicrobials and Their Producing Strains from Halophiles

Interestingly, the novel bacterium Paenibacillus sambharensis isolated from a salt lake
suppressed the growth of S. aureus by producing the compound bacitracin A, with a
molecular mass of 1421.749 Da [94]. WT6 and R4A19 antimicrobials generating strains
were recently retrieved from an Iranian Salt Lake, producing activities against E. coli
and B. cereus [95]. The novel halophilic isolates AH35 and AH10 of the Algerian Sahara
showed antibacterial activity (13–45 mm) against K. pneumoniae, Pseudomonas syringae,
and Agrobacterium tumefaciens, and AH35 was active against Salmonella enterica (13 mm).
The phylogenetic clades of these potential strains represent the species Saccharomonospora
paurometabolica, Saccharomonospora halophila, and Actinopolysporairaqiensis [96].

The unexplored deep-sea habitats of the Andaman and Nicobar Islands provided a
source of novel halophilic species, including Bacilli, Alpha-, and Gamma-Proteobacteria,
with antibacterial activity against Gram-positive and Gram-negative strains, including
P. mirabilis MTCC1429, V. cholerae MTCC3904, K. pneumonia MTCC109, E. coli MTCC443,
and S. pneumoniae MTCC1935 [97]. The partially purified biosurfactants produced from
halophilic strains (Khewra Salt Mines, Pakistan) Halobacilluskarajiensis and Alkalibacil-
lusalmallahensis suppressed the growth of K. pneumoniae (94%) and A. flavus (80.4%) [9]. A
novel p-terphenyl 1 and a novel p-terphenyl derivative 3 providing a benzothiazole moiety
were discovered from halophilic Nocardiopsisgilva YIM 90087, thus p-terphenyl 1 signifies
its activity against F. avenaceum, F. graminearum, and F. culmorum with 8, 6, and 128 µg/mL
MICs. Compound 1 exhibits antifungal activity with MIC 32 µg/mL against C. albicans,
B. subtilis with 64 µg/mL, Novobiocin 4 showed antibacterial efficacy against B. subtilis
with 16 µg/mL MICs and S. aureus with 64 µg/mL MICs [98]. Despite the fact that the
saline environment produces antimicrobials, some saline niches still remain unexplored
and warrant urgent study for the discovery of novel antimicrobials and other bioactivities
of applied interest.

6. Halo-Microbial Derived Products as Antimicrobials
6.1. Pigments

A type of carotenoids, bacterioruberin, was retrieved from the halophilic bacterial
species Salinicoccussesuvii MB597, Aquisalibacillus elongatus MB592, and Halomonasaquama-
rina MB598, which were isolated from the salt range of Khewra, Pakistan, and provided
antimicrobial activity against some pathogenic bacteria. Here, Enterococcus faecium was
suppressed by a maximum inhibition zone diameter of 23 mm, besides wide antifungal
activity attained from a pigment derived from Halomonasaquamarina MB598 with 98%
growth inhibition on Aspergillus fumigatus and pigments derived from Aquisalibacillus elon-
gatus MB592 showing 96% growth inhibition against the same fungus. Pigment derived
from Salinicoccussesuvii MB597 gave 96.7% growth inhibition against Mucor spp. [9]. Red
pigment produced by the bacterium Candidatus chryseobacterium massiliae isolated from
Arabian seawater samples showed higher antibacterial activity among the isolated strains
against B. cerus (8 mm), S. aureus (6 mm), B. megaterium (7 mm), B. subtilis (6 mm), and
V. cholerae (8 mm) [99]. A crude extract of bright yellow pigment produced from marine
Brevibacterium showed antibacterial activity against S. aureus (29 mm), E. coli (17 mm),
P. aeruginosa (27 mm), and B. subtilis (28 mm) [100]. Salinococus sp. isolated from the Nellore
sea coast produced a pinkish orange pigment, and its crude extract revealed antimicrobial
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activity against K. pneumoniae, P. aeruginosa, and S. aureus with the respective inhibition
zone diameters: 16 mm, 14 mm, and 24 mm [101]. In addition, an interesting study says the
prodigiosin pigment extracted from marine Serratia rubidaea RAM Alex strain with textile
fabric coating showed antibacterial activity against S. aureus and E. coli, which significantly
decreased the hospital-acquired infections (HAI) [102]. Marine P. aeruginosa producing
pyocyanin was shown to act as an anti-chlamydial agent at a concentration of 0.02 µM [103].
Nanomelanin derived from P. aeruginosa obtained from the marine sponge T. citrine had
antibacterial activity against B. subtilis, S. aureus, and E.coli [104]. Marine-derived V. ruber
DSM 14379 producing prodigiosin showed strong killing efficiency on B. subtilis [105].
Marine Streptomyces sp. 182SMLY producing quinones exhibited strong antibacterial ac-
tivity against MRSA [106]. Medermycin-type naphthoquinone-streptoxepinmycin A to D
derived from the marine Streptomyces sp. XMA39 displayed antibacterial and antifungal
activities against S. aureus, E. coli, and C. albicans [107]. As a result of these findings, it
appears that marine bacteria create relatively more significant pigments with antimicrobial
properties [108]. Dunaliella spp. is well-known for creating bioactive pigments from their
methanol and chloroform extracts against pathogens, such as B. subtilis and E. coli, with
inhibition zones measuring 20, 19, 18, and 22 mm, respectively. Through GC-MS and HPLC-
DAD analyses, the chloroform extract of Dunaliella sp. 2 containing active pigments, such
as luetin, carotene, and Zeaxanthin, was proven to have the aforementioned activity [109].
Dunaliella sp., which produces orange-red pigments, showed antibacterial and antiviral
properties [110].

6.2. Biosurfactants

The partially purified biosurfactants containing compound 1, 2-Ethanediamine N, N,
N′, N′ -tetra, 8-Methyl-6-nonenamide, (Z)-9-octadecenamide, and fatty acid derivatives
retrieved from Halomonas sp. BS4 showed activity against human pathogens, including
S. aureus (15 mm), K. pneumoniae (15 mm), and S. typhi (17 mm), and growth inhibition
on the fungus A. niger [31]. The same team discovered halophilic Bacilllus sp. BS3 in
Kaniyakumari, India, which produced a lipopeptide biosurfactant comprising compounds
such as 13-Docosenamide., (z); Mannosamine,9-; and N,N,N′,N′-Tetramethyl and showed
antiviral activity against the White spot syndrome virus (WSSV) by suppressing viral
replication at their higher concentrations of 50%, 75% and 100%, respectively. The afore-
mentioned purified biosurfactants were found to have antibacterial activity against E. coli
and S. aureus at 20 µL concentrations, with inhibition zone diameters of 16.0 and 14.06 mm,
respectively. Alvionita and Hertadi (2019) [111] conducted an intriguing investigation
employing Halomonaselongata BK-AG18 to bioconvert glycerol into a biosurfactant in a
nutritional medium with glycerol as the sole carbon source at an optimal pH 6. The growth
inhibition efficacy of a purified biosurfactant was observed against S. aureus at 1000 mg/L
by reducing its optical density (OD600). The biosurfactants produced from halophilic
bacteria, such as Halomonaselongata, Halobacilluskarajiensis, and Alkalibacillusalmallahensis,
proved its antimicrobial activity at a 100 µg/mL concentration by reducing the OD value
on S. aureus (97.75%), Enterococcus faecalis (97.6%), and B. subtilis (97%) [9]. Antimicrobial
glycolipid biosurfactants were recovered from the halophilic bacterium Buttiauxella sp.,
isolated from soils of the Qeshm Island mangrove forest, southern Iran. The antimicrobial
activity of the produced biosurfactants was confirmed against the pathogens B. cereus
(250 µg/mL), E. coli (200 µg/mL), S. enterica (250 µg/mL), B. subtilis (300 µg/mL), A. niger
(100 µg/mL), and C. albicans (150 µg/mL) [49]. Pseudomonas sp., isolated from a polluted
saltpan, Puthalam district, Kanyakumari, developed biosurfactants with high antibacterial
activity to Gram-negative strains E. coli (15 mm), K. pneumoniae (13 mm), and V. cholerae
(10 mm) [112]. An interesting report says the anti-biofilm activity of a biosurfactant pro-
duced from Halomonas sp. isolated from the sediments of the Bay of Bengal showed 99.8%
growth inhibition on S. typhi and 99.5% on V. cholerae at 125 g/mL Con [113]. A new bio-
surfactant named leu/ile-7 C15 surfactin [M + Na]+ derived from the moderate halophilic
bacterium B. tequilensis ZSB10 isolated from Crystal salt pond, Las Ventas, showed an-
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tifungal action by growth inhibition of Helminthosporium sp. at 79.3% and also an IC50
at 1.37 mg/disc [114]. The biosurfactant produced from Halobacterium salinarum showed
antimicrobial activity against Bacillus spp., Streptococcus spp., E. coli, Pseudomonas spp.,
S. aureus, C. albicans, and A. niger [115].

6.3. Exopolysaccharides

Marine bacteria produceexopolysaccharides (EPS) with various sugar and non-sugar
compounds such as arabinose, xylose, glucose, acetic acid, and succinic acid from Bacillus,
Alteromonas, Pseudoalteromonas, and Vibrio species that possess several pharmacological
properties, including antimicrobial responses [116]. Several marine bacterial supernatants
were shown to exhibit anti-biofilm activity by generating active chemicals ranging from
furanones to multifunctional polysaccharides that were shown to be QS (Quorum sensing)
inhibitors [117]. The marine Bacillus altitudinis MSH2014 isolated from mangrove sediments
in Ras Mohamed, Red Sea Coast, Egypt, was able to produce mannuronic acid, glucose,
and sulphate-containing heteropolysaccharide that gave an antimicrobial response against
B. subtilis (17.8 mm), S. aureus (18.8 mm), E. coli (24.9 mm), P. aeruginosa (15.6 mm), and
yeast, as well as fungi, including S. cerevisiae (17.6 mm), C. albicans (17.3 mm), A. niger (20
mm), and F. oxysporum (10.5 mm) at 200 µg/disc [118]. Halomonassaccharevitans AB32 were
able to produce EPS at the optimum temperature of 25 ◦C and pH 9 using lactose and malt
extract as their carbon and nitrogen sources with maximum EPS yields at 138 gL−1. The
antimicrobial activity of the produced EPS was examined against the pathogenic bacteria V.
fluvialis and the fungus A. niger by growth inhibition at the maximum absolute units of 14.1
and 25.1 [119]. Raffinose carbohydrate was significantly present in the HPLC analysis for the
aforementioned EPS with a significant peak at a retention time of 3.910. Halophilic species
such as Bacillus, Halomonas, Psychrobacter, and Alcaligenes produced eight EPS compounds
with antimicrobial efficacies, and E15 strains were reported to be more active against
B. cereus, S. aureus, S. saprophyticus, Enterobacter cloacae, Proteus mirabilis, MRSA, Enterococcus
faecalis, Streptococcus pneumonia, Acinetobacter sp, and Campylobacter jejuni with MICs ranging
between 250 and 500 µg/mL [120]. E37 also exhibited a wide antimicrobial activity with
250, 62.5, 125, and 500 µg/mL MICs, respectively, against the same pathogens mentioned
above. Generally, EPS produced from halophilic isolates displayed more antibacterial
action from the genera Halomonas, Chromohalobacter, Salinivibrio, Nesiotobacter, Brevibacterium,
Virgibacillus, and Salinicoccus against E. coli, S. pasteuri, B. cereus, P. aeruginosa, M. luteus, and
S. cerevisiae [89]. According to the literature, a large number ofEPS were produced in saline
areas, but only moderate antibacterial activity against microbial pathogens was identified.

7. Strategies behind Halophiles for Bimolecular Adaptation to Extreme Habitats

Microbial metabolite secretions at challenging habitats, such as saline/hypersaline
ecosystems, could promote adaptations through specific pathways [121]. Moreover, hyper-
saline environments denoting salinities of more than ≈35‰, where seawater might even
show an oversaturation of salts [122,123]. Halophilic bacteria and eukaryotes exploit the
salt-out strategy that excretes salts from the cytoplasm, and they either synthesise or accrue
the de novo attuned solutes, including glycine betaine, and some zwitterionic compounds
in bacteria, such as glycerol, and certain polyols in eukaryotes [123]. Halophiles adopt com-
mon strategies to avoid an excessive loss of water due to NaCl saturation. These include
cellular adaptations, high salt-instrategy or low salt/solute-instrategy (Figure 3). The first
one produces osmoprotectants that increase osmotic-cytoplasm activity to adjust to the
external environment or reach the equilibrium state by increasing high salt concentrations
so that their cytoplasm matches with high environmental salt concentrations. The high
salt-in strategy performs the protection of halophiles through the accumulation of inorganic
solutes intracellularly to balance the salt concentration of the external environmentthrough
the uniport and symport system in the presence and absence of light. In the third strategy,
osmolytes from the external environment protect the cell protein from denaturation [124].
The adaptations of halophilic biomolecules are documented through various mechanisms.
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Especially in fungi, the glycerol signalling pathway with high osmolarity to increase the
salt level was screened between the fungus W. ichthyophaga and H. werneckii as halotoler-
ant/halophilic fungi [125]. Even some halophilic protists express high gene proportions
in duplicated genes at high salt concentrations that were expressing different levels in
H. seosinensis, which has its acquisition from bacteria that could evidence the evolutionary
process that might facilitate high salt adaptation [126]. Halophilic metabolite production
could depend on salinity, as evidenced for Bacillus VITPS3, which produced 3.18-fold more
metabolites in the presence of 10% (w/v) NaCl from various tested concentrations [127].
Moreover, in media enrichment apart from salinity, the source of carbon has its potential
towards antimicrobial production in the culture media [14]. The role of salinity in halophilic
and halotolerant microbes might vary since halotolerants can grow in the presence but
also in the absence of higher salt concentrations, which was recently shown for Exiguobac-
terium sp. SH31, which can grow in up to 50 g/L of NaCl [128]. In order to produce potential
metabolites from complex halophiles due to various salinity gradients, recent strategies
such asthe mixed culture approach were developed by Conde-Martinez et al. (2017) [53]. It
is used to isolate potential strains from different ecosystems, including brine and sediment
samples via inoculation into different media, and to finally obtain an organic extract to
screen for antimicrobial activity. Metagenomic applications such as the sequencing of 16s
rRNA illumine amplicon were applied in Karak mine salterns, Pakistan. Here, 66% of
the bacterial consortia occurred in brine, and 72% from salt regions were dominated by
Bacteroidetes and Proteobacteria with a high abundance of Archaea [129]. Hence, metage-
nomics demonstrated an efficient approach to address the bioactive microbial species at
different saline habitats.
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8. Applications and Future Perspectives of Halophiles as Pharmaceuticals

Halophilic microbial products are predicted to have significant uses in the pharmaceu-
tical sector and healthcare [130]. Proteolytic enzymes are used to produce pharmaceutical
products [131]. According to bioactive compounds, diverse halophilic bacteria are em-
ployed to produce bioactive compounds, which are significant and understudied sources of
bioactivities, such as antiviral, antibacterial, and anti-tumour agents [38]. Figure 4 depicts
the structure of different antimicrobial compounds produced by halophilic microbes gener-
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ated by the ChemDraw (Version 20.1.1) drawing tool. Marine cyanobacteria have gained a
lot of attention as a powerful group in the creation of pharmaceuticals such ascryptophycin
and curacin, which are currently in clinical trials [132]. Peptide molecules from marine
diatoms also have been explored with respect to their antioxidant and anticancer proper-
ties [133,134]. Biosurfactants from halophiles are receiving more attention for antioxidants,
antiviral antibacterial, antifungal, anticancer, antiviral, anti-adhesive, immunomodulator,
stimulating dermal fibroblasts, gene therapy, and vaccines [135]. Halophilic bacteria must
reach a tipping point in the future by manufacturing various novel drugs, antioxidants,
sunscreens, compatible solutes, and hydrolytic enzymes from unexplored regions. Recent
advances in the incorporation of halogenated compounds into peptoids (oligomers of N-
substituted glycines) improve antimicrobial efficacy against multi-drug-resistant pathogens,
with brominated analogues showing 32-fold increased activity against MRSA and 16-64-
fold increased activity against P. aeruginosa and E. coli [136]. In the future, halogenated
drugs may have increased action against drug-resistant bacteria [136,137]. OMIC tech-
nologies present new potential for the discovery of exclusive properties and/or novel
biomolecules derived from halophiles in the future [138,139] as a result of recent findings
of halophilic bacteria, even from terrestrial environments [140].
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Further research is needed to report on how halophilic microorganisms evolved
during the early phases of evolution of life on earth, as well as how they diversified and
spread around the world. Their biotechnological potency for generating compatible solutes,
biopolymers, and other molecules is of industrial interest. To fully realise their clinical
potential, additional research must focus on their physical organisation and modes of action,
allowing physicians to forecast which molecule could produce the desired medicinal effect.

9. Conclusions

Researchers focusing on halophilic ecosystems in their search for novel biomolecules
are mostly motivatedby the threat of drug-resistant human pathogens. This review high-
lights that no Haloarchaeon has been found to show antibacterial action. More new
compound extraction from more halophilic microbial genera is needed to combat hu-
man pathogenic drug-resistant microbes. Halophilic representatives of Bacillus and the
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dominating actinomycete biomolecules have already been demonstrated to be effective
against human drug-resistant infections. There is no benign report yet for the enzymes
from halophilic microbes against human pathogens. However, clinical trials should focus
more on antimicrobials produced from halophiles because knowledge on the mode of
action of halo-antimicrobials against drug-resistant organisms is lacking. Overall, this short
review summarises the risk of clinical drug-resistant strains and signifies its control using
halo-derived compounds as a more promising strategy.
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