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The increased use of newer potent immunomodulatory therapies for multiple sclerosis 
(MS), including natalizumab, fingolimod, and dimethyl fumarate, has expanded the 
patient population at risk for developing progressive multifocal leukoencephalopathy 
(PML). These MS therapies shift the profile of lymphocytes within the central nervous 
system (CNS) leading to increased anti-inflammatory subsets and decreased immuno-
surveillance. Similar to MS, PML is a demyelinating disease of the CNS, but it is caused 
by the JC virus. The manifestation of PML requires the presence of an active, genetically 
rearranged form of the JC virus within CNS glial cells, coupled with the loss of appropri-
ate JC virus-specific immune responses. The reliability of metrics used to predict risk for 
PML could be improved if all three components, i.e., viral genetic strain, localization, and 
host immune function, were taken into account. Advances in our understanding of the 
critical lymphocyte subpopulation changes induced by these MS therapies and ability to 
detect viral mutation and reactivation will facilitate efforts to develop these metrics.
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iNTRODUCTiON

Progressive multifocal leukoencephalopathy (PML) is a rare polyomavirus-associated disease 
involving progressive damage to brain white matter that often results in permanent disability or 
death. PML was first characterized in the 1950s in immunocompromised patients with lymphopro-
liferative disorders (1) and has come to be understood as an opportunistic infection associated 
with immunosuppression. The disease is caused by the infection, and subsequent loss of glial cells, 
especially myelin-producing oligodendrocytes, by a mutated form of the John Cunningham virus 
(JCV). Most people acquire JCV, usually in childhood, as it is found in 70–90% of the population. 
The initial infection is thought to occur in the tonsils or gastrointestinal tract, and then the virus 
remains latent, often in the kidneys or lymphoid organs, in an archetypal form that is incapable 
of productively infecting glial cells (2). Immunosuppression can lead to the reactivation of the latent 
virus and may promote viral mutation, thereby facilitating infection of glia by viral strains with mutated 
regulatory regions (3). Continued immunosuppression then prevents clearance of the virus from 
infected glia, resulting in demyelination and neurodegeneration.
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The AIDS epidemic of the 1980s led to a dramatic increase in 
new cases of PML, which helped fuel research toward the mecha-
nism, risk factors, diagnostic markers, and possible therapeutic 
interventions for this devastating disease (4). Unfortunately, 
while survival rates have increased, there has not been enough 
progress in the prevention of PML, and many immunocompro-
mised individuals remain at risk. The increased availability of 
antiretroviral therapies for HIV patients has not decreased rates 
of HIV-associated PML as much as anticipated (5). Furthermore, 
the recent widespread use of next-generation immunomodula-
tory treatments for autoimmune diseases such as multiple scle-
rosis (MS) has expanded the patient population at an increased 
risk for the development of PML.

The immunomodulatory drugs natalizumab, fingolimod, 
and dimethyl fumarate (DMF) have greater efficacy in reducing 
relapses for many relapsing-remitting MS (RRMS) patients than 
older treatments, such as interferon-β and glatiramer acetate, but 
have also led some patients to develop PML (6). Natalizumab was 
the first of these therapies to be tied to PML in MS patients, and, 
of all MS therapies, it has the highest global incidence for PML 
(7). The inability to accurately predict risk can lead to difficult 
treatment decisions, particularly in patients with highly active 
MS, which need to switch therapies. The off-label use of the chi-
meric anti-CD20 monoclonal antibody, rituximab, has not been 
associated with PML in MS patients. Consequently, MS patients 
who develop PML while taking other therapies, particularly 
natalizumab, are often switched to rituximab to prevent worsen-
ing of either MS or PML (8). However, cases of PML have been 
linked to the use of rituximab in other autoimmune conditions 
such as rheumatoid arthritis (9). The reasons for the discrepancy 
are not fully understood but may be related to the combinatorial 
use of rituximab with other immunosuppressive agents. The risk 
of PML for MS patients taking anti-CD20 therapy with a history 
of taking natalizumab remains unclear and merits further study. 
This is likely to become an increasingly important factor in future 
treatment decisions, as the humanized anti-CD20 antibody, ocre-
lizumab, has recently been approved by the FDA for RRMS and 
primary progressive MS.

The most commonly used clinical metric for identifying 
patients at risk for developing PML is absolute lymphocyte 
count. Unfortunately, this metric has not been a reliable predic-
tor. Indeed due to its mechanism of action, fingolimod generally 
lowers lymphocyte counts to a greater extent than natalizumab or 
DMF (10–12), but has a lower incidence of PML (7). Efforts have 
been made to determine the factors associated with increased 
risk, but thus far there are no truly predictive measures available.

Three factors identified to help stratify the pool of natalizumab-
treated MS patients at greatest risk for developing PML include 
the presence of JCV antibodies in patient’s serum, previous use 
of immunosuppressive drugs, and use of natalizumab exceeding 
24 months (13). A patient with all three factors has a 2.3% risk 
of developing PML, while a patient with none of the risk factors 
has a 0.002% risk (14). JCV blood antibody index can further 
stratify this risk, with an antibody index above 1.5 associated 
with a higher risk (15). Determining whether a patient is sero-
positive for JCV prior to the start of treatment is recommended; 
however, the high rate of false negatives in these assays can skew 

risk assessments (16). In addition, patients seroconvert at higher 
frequencies during treatment (17, 18). Therefore, it will be neces-
sary to monitor additional parameters throughout the course of 
treatment to more accurately determine risk.

Since PML has occurred in the context of several MS 
disease-modifying therapies, a better understanding of how 
PML develops under each of these conditions could lead to 
the identification of universal predictive risk factors, as well as 
those factors that are unique. Recent work suggests that efforts 
toward the combined monitoring of specific lymphocyte subsets, 
JCV reactivation, and viral genomic rearrangements within the 
central nervous system (CNS) may offer better insight toward 
predicting risk (see Figure 1).

iMMUNe CeLL FUNCTiON

Lymphopenia is a PML risk factor, but simply monitoring abso-
lute lymphocyte count does not accurately convey risk, because 
it does not take into account the diversity and complexity of the 
immune system. MS therapies have been designed to ameliorate 
the inflammatory overresponse to autoantigens (19). This inflam-
matory response toward myelin-associated proteins results in 
the demyelinating lesions that are hallmarks of the disease. 
Consequently, MS treatments do not affect all immune cell types 
equally, but rather attempt to restore the balance toward a more 
anti-inflammatory state (20). This can lead to alterations in 
specific critical immune cell subtypes without dramatic changes 
to the overall lymphocyte count. Since the immune system is 
composed of a multitude of cell types, which have unique roles 
in maintaining proper immune function, the loss of particular 
subsets of lymphocytes can disproportionately elevate PML risk. 
For instance, CD4+ T-cell lymphocytopenia has been associated 
with PML in the context of HIV (21); however, simply monitoring 
absolute changes in a single specific subset is also insufficient. 
Instead, changes in the relative distribution and function of 
specific immune cells are critical to both the therapeutic benefit 
toward MS and the potential risk of developing PML.

The shift toward a more anti-inflammatory environment is 
driven, in part, by changes in the balance between conventional and 
regulatory immune cells in number and/or function. Regulatory 
cells can dampen the response of conventional immune cells, 
thereby suppressing the immune system (22). In some cases, the 
balance may be shifted too far, resulting in chronic immunosup-
pression and increasing the risk for opportunistic infections. 
In MS patients, the function of regulatory cells is thought to be 
compromised, leading to an exaggerated inflammatory response 
(23–25). The cytokine interleukin-10 (IL-10) is a critical anti-
inflammatory mediator, which is decreased in RRMS patients 
(26). Many effective RRMS therapies have been found to increase 
the number or response of regulatory cells (20) and levels of IL-10 
(27). It is important to note, however, that there is no correlation 
between MS therapies, which affect IL-10 and the subset associ-
ated with PML. Consequently, changes in IL-10 levels alone are 
not prognostically useful in risk assessments for PML.

Many pathogens, particularly those which can remain latent 
within B-cells, exploit the immunosuppressive properties of 
IL-10 to promote their persistence (28). These mechanisms 
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FigURe 1 | Immunosuppressive activities of multiple sclerosis (MS) therapies facilitate John Cunningham virus (JCV) infection and replication in the central nervous 
system (CNS). MS immunomodulatory therapies associated with progressive multifocal leukoencephalopathy have different mechanisms of action, but ultimately 
lead to an immunosuppressed state within the CNS that increases the likelihood of a productive infection of glial cells by JCV, represented as the uncontrolled JCV 
state. (1) In a healthy immune system (or the absence of immunomodulatory therapy), lymphocytes can enter the CNS via the blood–brain barrier, blood–meningeal 
barrier, or blood–cerebrospinal fluid barrier (latter two not shown), and JCV infected B-cells have been proposed as carriers of the virus into the CNS. In contrast, 
MS therapies block CNS entry of specific lymphocyte subsets: (2) natalizumab prevents CNS access of α4 integrin expressing lymphocytes primarily across the 
BBB by blocking α4β1/vascular cell adhesion molecule 1 (VCAM-1) adhesion interactions; (3) fingolimod traps within lymph nodes the lymphocytes that utilize 
sphingosine-1-phosphate 1 (S1P1) receptors for homing; (4) dimethyl fumarate interferes with the maturation of Th1 T-lymphocytes, tipping the balance in favor of 
anti-inflammatory Th2 cells. (5) Within the CNS, the net effect reduced the entry of conventional lymphocytes secreting pro-inflammatory IFN-γ and a relatively higher 
percentage of interleukin-10 (IL-10)-producing anti-inflammatory regulatory lymphocytes, compared to the healthy/untreated state. (6) The altered cytokine profile 
affects cross-talk between lymphocytes and CNS-resident astrocytes leading to transcriptional changes, such as the suppression of SRSF1, which can promote 
viral T-antigen expression, reactivation, and replication. (7) The JCV-infected astrocytes could then pass on the virus to oligodendrocytes and (8) fail to properly 
recruit the subset of lymphocytes necessary to clear the virus. (9) While most are blocked, the JCV specific T-cells that are present fail to adequately clear JCV 
(Image copyright: Caitlyn Fisher and Yang Mao-Draayer, reprints use with permission).
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are especially prevalent among viruses that are associated with 
chronic infections and immune exhaustion. Some viruses, such as 
human cytomegalovirus and Epstein–Barr virus (EBV), encode 
for an IL-10 ortholog within their viral genome (29), whereas oth-
ers, such as hepatitis B virus, increase the expression of cellular 
IL-10 (30). The net effect of these strategies is to alter the balance 
of the endogenous cytokine secretions of immune cells toward an 
anti-inflammatory state. In some strains of mice, polyomaviruses 
are associated with tumor formation, and susceptibility appears 
to be related to the aberrant production of IL-10 in response to the 
virus in affected strains (31). A similar aberrant IL-10 response 
to JCV antigens by JCV-specific T-cells has been found in some 
PML patients, which facilitates the maintenance rather than 

the clearance of the virus (32, 33). This inappropriate response 
is typically a feature of exhausted immune cells in a chronically 
immunosuppressed environment (34). Furthermore, elevated 
cerebrospinal fluid (CSF) levels of IL-10 have been detected in 
about half of early stage PML patients (33). Consequently, treat-
ments that increase levels of IL-10 are therapeutically beneficial 
in the context of MS, but elevated IL-10, particularly in the CNS, 
may also prevent antigen-specific T-cells from appropriately 
responding to JCV.

Chronic infections involving the continued presence of anti-
gen lead to immune exhaustion, resulting in the eventual inability 
of T-cells to mount an effective response to the persisting antigen 
(35). In some cases, the development of an exhausted T-cell 
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response can represent a “compromise” between pathogen and 
host, which allows for maintenance of the virus without incur-
ring widespread tissue damage (36). Under these circumstances, 
attempts to restore T-cell responses can inflict great harm to the 
host, but in the context of other pathogens, restoration of immune 
responses can be beneficial. Thus, it is crucial to understand the 
relationship between immune exhaustion and pathogenesis for a 
given virus when developing or administering potential immune 
boosting therapies. Achieving the correct balance is a particularly 
challenging endeavor in the context of autoimmune diseases, 
since immune suppression promotes exhaustion both toward 
autoantigens and foreign antigens.

Sustained surface expression of the inhibitory receptor pro-
grammed death-1 (PD-1) is associated with T-cell exhaustion, 
and blockade of PD-1 can help restore immune responsiveness 
(37). Relative to the total population of CD8+ T-cells, elevated 
levels of PD-1 have been found on the JCV-specific CD8+ T-cells 
of PML patients and are associated with the lack of functional 
response to JCV peptides (38). The results of an in vitro assay sug-
gest that blocking PD-1 could help enhance JCV-specific CD8+ 
T-cell responses in a subset of PML patients, especially those at 
early stages (38). However, this particular experiment involved 
patients with HIV-associated PML, rather than immunomodula-
tory therapy-induced PML, and the use of anti-PD-1 therapy may 
exacerbate autoimmune diseases. Similar to IL-10, dysfunction 
of PD-1 is associated with MS, such that polymorphisms that 
decrease PD-1 function are linked to disease progression and 
severity (39, 40). Furthermore, these data suggest that targeting 
PD-1 may only be clinically useful in a specific subset of early 
PML patients and that monitoring PD-1 expression alone is 
unlikely to be a reliable predictive or diagnostic metric. As PD-1 
is only one of several co-stimulatory receptors associated with 
immune exhaustion, a reliable assay will likely require the com-
bined analysis of multiple markers.

Notably, in the context of murine polyomavirus, both sus-
ceptible and resistant mouse strains produce a similar antibody 
response, but differ in the strength of their antigen-specific 
cytotoxic T-lymphocyte (CTL) responses (41). In the process of 
co-opting B-cells as a host, EBV promotes B-cell proliferation 
and antibody production, with high antibody titers associated 
with chronic uncontrolled infection, rather than immunity (42). 
A similar situation may occur in JCV-infected B-cells, thereby 
explaining the seemingly paradoxical clinical finding that higher 
levels of anti-JCV antibodies are associated with greater risk in 
the context of PML (15), as there is a reason to believe that the 
infection of B-cells could be a significant risk factor for PML.

B-cells have been implicated as carriers of JCV from the 
periphery into the CNS, since they can be non-productively 
infected by JCV and serve as reservoirs of latent virus (43). The 
form of JCV associated with PML has a rearranged non-coding 
regulatory region (NCCR) and often contains binding sites for 
the transcription factor Spi-B, which promotes expression of early 
genes in the JCV genome (44). Similar to EBV, JCV may induce 
pathogenic mutations within its viral genome through activation 
of class-switch recombinases in B-cells, as the JCV NCCR contains 
putative recombination sites (45). Viral homology-based recom-
bination can also occur in B-cells co-infected with EBV and JCV 

and provides another potential avenue for pathogenic rearrange-
ment of JCV (46). Furthermore, because Spi-B is also important 
for proper B-cell maturation and function (47), therapies that 
affect the distribution or expression profile of B-cells could facili-
tate viral reactivation and spread. Indeed, natalizumab promotes 
B-cell differentiation-associated gene expression (48), including 
increased expression of Spi-B in CD19+ B-cells (49). It is likely 
that the subpopulation of B-cells infected by the virus is also of 
critical consequence, with some stages having a more detrimental 
effect on subsequent immune responses and viral transmission. 
The rearrangement of immunoglobulin genes through V(D)J 
recombination in pre-B-cells makes this population an attractive 
candidate to facilitate JCV NCCR rearrangement (50). Notably, 
circulating pre-B-cells also increase in response to natalizumab 
treatment (51, 52). Therefore, the use of diagnostic tests for JCV 
specifically within B-cells may help further stratify patients at 
greatest risk for PML.

As a disease of the CNS, there needs to be a correlation between 
peripheral and central changes for peripheral lymphocyte moni-
toring to have predicative and diagnostic merit for PML. Since 
each drug has a unique mechanism of action, the lymphocyte 
populations affected, and the cell subtype ratio changes that are 
most predictive of PML will also likely vary based on the treat-
ment history of the patient. In addition, changes in the relative 
frequencies and function of lymphocyte subsets may vary over-
time with a given therapy. Although accurate predictive metrics 
for PML are still lacking, recent advances in our understanding 
of how these next-generation MS therapies differentially affect 
lymphocyte populations may allow for the development of novel 
assays and monitoring guidelines with increased predictive 
power.

Natalizumab
Mechanism
Natalizumab is a recombinant humanized monoclonal immu-
noglobulin G4 antibody targeting α-4 integrin (CD49d) that has 
been approved for the treatment of RRMS and Crohn’s disease 
(53). Natalizumab treatment leads to CD49d downregulation in 
CD49d-expressing cells (54). Very late antigen-4 (VLA-4) is a het-
erodimer composed of CD49d and β-1 integrin (α4β1 integrin) 
found on several immune cell populations, which interacts with 
vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells 
and facilitates migration across endothelial barriers, including the 
blood–brain barrier (BBB) (55). VLA-4/VCAM-1 is one of the 
several adhesive molecule interactions that mediate CNS entry, 
and thus loss of this interaction will diminish, but not abolish, 
lymphocyte migration into the CNS. The other most prominent 
interaction is between lymphocyte function-associated antigen 
1 (LFA-1) and endothelial intercellular adhesion molecule 1 
(ICAM-1) (56). Some subsets utilize specialized mechanisms, 
such as melanoma cell adhesion molecule (MCAM)-expressing 
T helper 17 (Th17) cells, which interact with the vascular ligand 
lamin-411 to facilitate CNS entry (57). Furthermore, there are 
multiple routes of entry for lymphocytes into the CNS, including 
the BBB, blood–meningeal barrier (BMB), and blood–CSF bar-
rier (BCSFB) within the choroid plexus. The latter two barriers 
utilize additional adhesive molecules, and entry is less stringently 
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regulated. The BMB depends on P-selectin, which is expressed 
in a constitutive manner, as opposed to dynamically regulated 
VCAM-1 (58). The chemokine CCL20 produced by the choroid 
plexus can bind to the CCR6 receptor on lymphocytes, allow-
ing entry across the BCSFB into the ventricular space (59). This 
provides for the preferential CNS access of CCR6+ subsets, such 
as Th17 and T regulatory (Treg) cells in the absence of the VLA-4/
VCAM-1 interaction (60, 61). Since CD4+ anti-JCV responses in 
MS patients have been shown to depend primarily on Th1 cells, 
the reliance of this population on VLA-4/VCAM-1 contributes 
to the inability of natalizumab-treated patients to effectively clear 
JCV from the CNS (62).

Migration into the CNS is a two-step process, in which immune 
cells first migrate into CSF-drained perivascular, leptomeningeal, 
and ventricular spaces for the purpose of immunosurveillance. 
Interaction with antigen-presenting cells within these compart-
ments then allows for the α6β1 integrin-mediated migration of 
activated lymphocytes across the glial limitans barrier into the 
CNS parenchyma in a cytokine-dependent manner (63). This 
two-step process allows for blockade of surveilling lymphocytes 
from the CNS parenchyma in the absence of inflammation or 
infection. Effective immunosurveillance, then, relies on both 
productive antigen presentation and activation of the appropriate 
lymphocyte subpopulation.

Natalizumab impairs immunosurveillance on both of these 
fronts through its effects on the migration and activation of 
T-lymphocytes and antigen-producing cells. Mature dendritic 
cells within perivascular spaces, meninges, and choroid plexus 
are important for re-stimulating peripherally activated CD4+ 
T-cells and initiating a T-lymphocyte response in the CNS (64). 
CD49d expression on dendritic cells varies in a maturation-
dependent manner (65), such that a loss of CD49d interferes with 
the ability of mature dendritic cells to cross the BBB and activate 
T-lymphocytes (66). Furthermore, co-stimulatory signals, such 
as the VLA-4/VCAM-1 interaction, are necessary for effector 
memory T-cells to function optimally (67). Although the full 
extent to which natalizumab influences co-stimulatory molecule 
expression has not been delineated, natalizumab treatment has 
been shown to negatively impact surface expression of CD49d 
and OX40 (CD134) (68), thereby limiting T-cell activation capac-
ity. The loss of this CNS immunosurveillance capacity is thought 
to contribute to the increased risk of PML for MS patients treated 
with natalizumab.

Peripheral Lymphocytes
In contrast to other MS treatments associated with PML, natali-
zumab leads to increases in absolute lymphocyte counts in the 
blood (11). This change in distribution is expected from a therapy 
that primarily targets the migratory capacity of lymphocytes into 
the CNS. However, the increased peripheral levels are not neces-
sarily an indication that these particular populations are blocked 
from the CNS, since CD49d is important for adhesive interac-
tions that mediate entry into other organs systems as well. Indeed, 
a direct correlation between changes in immune cells subsets 
between the periphery and CNS in response to natalizumab treat-
ment has not been found. Instead, the elevated lymphocyte levels 
can be attributed to a selective release of lymphoid precursor cells 

in the hematopoietic precursor population from the bone mar-
row and B-lymphocytes from the spleen (69). Since natalizumab 
decreases surface expression of CD49d, longitudinal studies have 
indicated that lymphocyte subsets most dependent on CD49d for 
localization or trafficking are most affected, resulting in increased 
levels of conventional memory B-cells (51, 69, 70) and activated 
pro-inflammatory T-cells (68, 70–73) in the peripheral blood. 
This imbalance of T-cells likely occurs because certain subsets 
of CD4+ T-cells, such as Th1 cells, are particularly dependent on 
CD49d, whereas FoxP3+ regulatory T-cells express low levels of 
CD49d and are thus relatively unaffected by natalizumab (74). 
Disruption to the peripheral homeostasis of CD4+ T-cell popula-
tions has been proposed to contribute to the manifestation of 
both MS and PML, with natalizumab treatment disrupting the 
balance in a manner that favors the expansion of autoreactive 
T-cells over virus-specific T-cells (75).

A notable feature of these longitudinal studies is that the per-
centages of the activated subpopulations varied with duration of 
treatment, such that some of these changes occurred transiently at 
early time points, whereas others were only apparent after 1 year 
of treatment. This suggests that subpopulations of lymphocytes 
are dynamically changing in response to continued exposure to 
natalizumab. Since the risk of PML is typically associated with 
exposure to natalizumab for more than 2  years, short-term 
studies may not provide much insight into the relevant players 
conferring the increased risk, and a better understanding of the 
critical changes may be facilitated by long-term studies. Indeed, 
short-term studies have failed to detect significant changes in the 
peripheral CD4+/CD8+ ratio, whereas studies examining patients 
treated for at least 2  years found decreases in the CD4+/CD8+ 
ratio (76, 77). This is likely explained by the finding that while 
remaining within normal range, the peripheral CD4+/CD8+ ratio 
decreases in accordance with the number of doses of natalizumab 
(78). At this point, until a clear connection can be established 
between peripheral and CNS changes, the most meaningful 
predictive markers are likely to come from within the CNS.

CNS Lymphocytes
As expected, natalizumab treatment leads to a dramatic decline 
in lymphocytes within the CNS, particularly in CD19+ B-cells 
and CD4+ T-cells, due to their high dependency on CD49d for 
CNS entry (79, 80). While absolute numbers of CD8+ T-cells also 
decrease, the elevated expression of ICAM-1 and LFA-1 on these 
cells allows for preferential CNS access relative to CD4+ T-cells 
(81). Consequently, the CD4+/CD8+ ratio decreases toward levels 
seen in patients with HIV within a single dose (78), and low CD4+ 
T-cell counts have been implicated in HIV-associated PML (21). 
Furthermore, due to the loss of CD49d, the remaining CD4+ 
T-cells are forced to use alternative adhesion molecules, such as 
P-selectin glycoprotein ligand 1 and MCAM, for CNS entry (82), 
which will impact subset distribution and may negatively impact 
their functional and activation status.

In contrast to the peripheral blood, levels of pro-inflammatory 
chemokines and cytokines in CSF are decreased within 1 year of 
natalizumab treatment at the protein (83) and mRNA levels (84). 
This suggests that the overall milieu in the CNS is biased toward 
a less inflammatory state. This imbalance could be mediated by 
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a disruption in the balance between conventional and regulatory 
lymphocyte subsets; however, an analysis of CSF regulatory 
subsets has not been performed in this context, but could be 
highly informative. Overall, the significant loss of CD4+ T-cells 
within the CNS coupled with the imbalances of the remaining 
subpopulations is likely to be a primary driver of PML risk.

JCV-Specific Response
The inability of natalizumab-treated PML patients to effectively 
clear JCV from the CNS likely stems from both the decreased 
migration of lymphocytes and the loss of functional capacity in 
the small subset of immune cells that do enter the CNS. Cellular 
immune response assays testing the functional capacity of JCV 
specific T-cells have been shown to hold predictive power for 
disease control in HIV-associated PML (85, 86). Consequently, 
some efforts have been made to determine whether measure-
ments of the JCV-specific T-cell response also hold predictive 
or diagnostic power in natalizumab-associated PML. A potential 
caveat is the specific loss of immunosurveillance and immune 
function within the CNS, compared to the periphery, in natali-
zumab-treated patients. Unlike in HIV patients, the composition 
of immune cells in the CSF cannot be directly correlated to that 
of the peripheral blood, thus the usefulness of assays reporting 
the response of peripherally derived JCV specific T-cells remains 
unclear.

Most of this JCV-specific response testing involves a com-
bination of intracellular cytokine staining and enzyme-linked 
immunosorbent assays in peripheral blood mononuclear cells 
(PBMCs). Consequently, the results of these studies are affected 
by the selection of cytokines assayed, and the ex vivo stimulation 
paradigm, particularly the JCV viral strain or peptide library, 
used for antigen activation. Furthermore, they are unable to assess 
prospective differences between patients who will eventually 
develop PML with those who will not and thus cannot determine 
the predictive value of their findings.

One pilot study found that peripheral JCV viremia was associ-
ated with decreased IFN-γ responsiveness to a JCV VP1 peptide 
library over the course of natalizumab treatment (87). Another 
study looking at JCV-specific effector memory T-cell responses 
found that purified JCV was a more potent antigen than VP1 
alone using ELISPOT and that increased duration of treatment 
was associated with a stronger response (88). The probability 
that patients would show a positive IFN-γ response to JCV also 
increased the longer the patients were treated with natalizumab. 
Notably, stimulated PBMCs from the two PML patients in this 
study also exhibited robust IFN-γ responses to JCV. This suggests 
that while viremia and the presence of IFN-γ-producing JCV-
specific effector memory T-cells in PBMCs may be indicative of 
peripheral JCV reactivation, they are not on their own reliable 
predictors of which patients will eventually develop PML. The 
use of more comprehensive JCV peptide libraries and cytokine 
assays could improve the utility of this type of testing. Indeed, 
another study using a more comprehensive JCV peptide library 
and cytokine profiling found that PML patients had aberrant 
responses to JCV compared to natalizumab-treated patients 
without PML (33). These PML patients either failed to produce 
a response to JCV or produced an atypical cytokine response. 

The CD4+ T-cells in two of the PML patients produced IL-10 in 
response to JCV, and increased levels of IL-10 were detected in 
the CSF from 50% of early stage PML patients. The increased CSF 
IL-10 may be related to the loss of CD49d+CD4+ T-cells within 
the CNS.

Due to differences in CD49d dependency for CNS entry, 
natalizumab may produce a bias toward more Treg cells and less 
conventional T-cells, thereby skewing the CNS cytokine milieu 
in a manner that facilitates viral reactivation and persistence. 
In a murine model of another chronic virus, y-herpesvirus, 
CD4+ T-cell deficiency led to the development of a population 
of IL-10-producing PD-1+ CD8+ Treg cells during viral reac-
tivation (89). Furthermore, the loss of CD49d expression on 
T-cells can also impair their functional capacity. In the context 
of lymphatic choriomeningitis virus (LCMV) infection, virus-
specific CD4+ T-cells have been shown to be characterized by 
surface expression of CDllahi and CD49d (90). Moreover, it was 
the CD11ahi CD49d+ CD4+ memory T-cells which productively 
responded to a secondary challenge of LCMV, suggesting that 
the loss of CD49d expression on CD4+ T-cells could prevent an 
adequate immune response to JCV reactivation. Therefore, the 
monitoring of CD49d expression on peripheral CD4+ and CD8+ 
JCV-specific T-cells may provide another way to help determine 
PML risk.

Overall, the aberrant production of IL-10, expression of PD-1, 
and decreased expression of CD49d by JCV-specific T-cells 
may provide relevant PML risk-associated metrics although 
more work is needed to validate the reliability of these potential 
markers.

Fingolimod
Mechanism
Fingolimod is an immunomodulatory drug that targets the 
sphingosine-1-phosphate (S1P) receptor. The loss of S1P 
receptors prevents lymphocytes from traversing the endothe-
lial barriers of lymphatic compartments, effectively trapping 
them (91). This leads to decreases in circulating lymphocytes 
available to enter the CNS. The retention within lymph nodes 
is dependent on expression of the chemokine receptor CCR7, 
thus lymphocyte subsets that lack or downregulate this recep-
tor maintain the ability to egress (92). Therefore, fingolimod 
disproportionally affects cell populations that express both S1P 
and CCR7 receptors (93). This sparing of CCR7− populations 
was expected to mitigate the risk for PML by permitting the free 
migration of JCV-specific effector memory T-cells. However, 
PML has developed in MS patients treated with fingolimod, 
which may stem from recent findings that fingolimod affects 
effector T-cell function (94) and that CCR5−CCR7+ central 
memory Th1 cells play a role in the antiviral response to JCV 
(62). The initial cases of fingolimod-associated PML were 
found in MS patients who had had been previously treated 
with natalizumab and thus could not be conclusively linked to 
fingolimod (95). In recent years, there have been 15 additional 
MS patients where PML could be attributed to fingolimod 
alone, and it is important to note that there was no correlation 
between absolute lymphocyte count and PML onset or severity 
in these patients (96).
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Peripheral Lymphocytes
In accordance with its mechanism of action, the absolute lym-
phocyte count in the peripheral blood decreases within 2 days of 
initiating fingolimod treatment, and stabilizes within 2–4 weeks, 
in MS patients (97). The most drastic decreases take place in 
the CD19+ B-lymphocyte and CD4+ T-lymphocyte populations, 
which have been reported to reach a steady state by 3 months of 
treatment (98). The distribution of the remaining B-lymphocytes 
is shifted toward less pro-inflammatory memory B-cells and 
more IL-10-producing naive B-cells and regulatory B-cells 
defined as CD38+CD24+ or CD38+CD27-CD24+CD5+ (99–101). 
This skewed cell type distribution produces an overall cytokine 
profile with an anti-inflammatory bias (101).

In contrast to the B-lymphocytes, the peripheral T-lymphocyte 
population shifts with fingolimod treatment toward a lower 
proportion of naive T-cells and greater proportion of memory 
T-cells, specifically effector memory T-cells, in both conven-
tional and regulatory subsets (93, 98, 102), consistent with their 
differential expression of CCR7. Absolute levels of circulating 
CD4+ and CD8+ T-lymphocytes decrease in MS patients treated 
with fingolimod; however, CD4+ T-cells are affected to a greater 
degree, leading to a decrease in the CD4+/CD8+ ratio (93), which 
worsens over the course of treatment (103). The percentage 
of CD4+ and CD8+ T-cells that produce IFN-γ and IL-17 also 
decreases, primarily within the Th1 or Th1/Th17 subsets (102). 
Since these IFN-γ-producing populations have been shown to 
be critical for mounting an antiviral response to JCV (62), the 
fingolimod-induced decreases in these subsets has important 
implications for PML risk.

In addition, the relative percentage of CD25+CD127− Treg 
cells within the CD4+ population is increased peripherally in MS 
patients treated with fingolimod (97, 98, 102, 104). This loss of 
critical IFN-γ+ CD4+ T-cells coupled with the increase in Tregs 
may result in the failure of the immune system to appropriately 
respond to pathogens in some patients.

CNS Lymphocytes
If the effects of fingolimod were restricted to its ability to trap 
particular lymphocyte populations within lymph nodes, the 
relative composition of lymphocytes within peripheral and CNS 
compartments should be similar. However, studies specifically 
aimed at assessing the composition of immune cells in the 
CNS reveal discrepancies, which suggest that fingolimod also 
influences migration of lymphocytes into and out of the CNS. 
Fingolimod-treated patients exhibit an increased CSF/blood ratio 
for B-lymphocytes. Interestingly, the level of IL-10-producing 
Breg cells (CD38+ CD27− CD24+ CD5+) within the CSF was 
found not to change, despite decreases in the blood (100). The 
authors of this study used an in  vitro assay to determine that 
B-lymphocytes, especially Breg cells, from fingolimod-treated 
patients have increased transendothelial migratory capacity. If 
B-cells are the primary carriers of JCV, this augmented ability 
of B-cells to cross the BBB may facilitate the entry of JCV into 
the CNS.

The increased migratory capacity was not found to extend to 
T-lymphocytes, so differences in peripheral and CNS compart-
ments for this population may involve a different mechanism. 

Similar to the blood, CD4+ T-lymphocytes are disproportionally 
affected in the CSF by fingolimod treatment, but to a lesser 
degree (105), resulting in a decreased CD4+/CD8+ ratio, similar 
to what is seen in the CSF of natalizumab-treated MS patients 
(106). Overall, an increase in the percentage of IL-10-producing 
Breg cells and decrease in CD4+ T-cells could result in the CNS 
becoming an immunosuppressive environment with reduced 
immunosurveillance capacity, thereby allowing JCV to evade 
immune-mediated elimination.

JCV-Specific Response
Treatment with fingolimod has been associated with an 
increased risk for infection (107), indicating that the ability of 
these patients to mount an appropriate and effective immune 
response is compromised. Although there is currently no 
data regarding the effect of fingolimod on JCV-specific CTL 
responses, fingolimod treatment has been shown to produce a 
suboptimal response to another chronic latent virus, varicella 
zoster virus (VZV), with decreased cell proliferation and IFN-γ 
production (108). Notably, most fingolimod-treated MS patients 
exhibit a robust response to VZV, and only those who lack this 
response experience viral reactivation (109) The lack of response 
may be related to the finding that fingolimod can also impact 
CD4+ effector T-cell function through the upregulation of T-cell 
factor 1 (94). In this study, activated CD4+ T-cells were shown to 
produce lower levels of IFN-γ and granzyme B in the presence of 
fingolimod. More studies are needed to address whether a similar 
CTL impairment is found toward JCV in these patients.

Dimethyl Fumarate
Mechanism
DMF-associated PML usually occurs in the context of severe 
lymphopenia, leading to the establishment of lymphocyte 
count guidelines for treatment discontinuation (110, 111). 
Five cases of PML have been reported in MS patients taking 
DMF (112–115). In one of these patients, lymphocyte counts 
did not drop below the guideline threshold for over 6 months 
(114). PML has also been reported in a DMF-treated psoriasis 
patient without severe lymphopenia (116). As a result, outside 
of absolute lymphocyte count, additional monitoring measures 
are needed.

The therapeutic mechanism of action for DMF in MS is not 
completely understood, but it is believed to be related to its 
established roles in protecting cells facing oxidative stress and 
blocking NF-κB-mediated pro-inflammatory cytokine produc-
tion (117). The clinical benefit of fumarates in autoimmune 
disease is associated with their ability to disrupt the production 
of functional Th1  cells (117). Stimulated T-cells treated with 
DMF downregulate the expression of antiapoptotic Bcl-2, ulti-
mately resulting in the loss of activated T-lymphocytes (118). 
The decreased differentiation of Th1 cells also appears to involve 
the inhibition of dendritic cell maturation, which thwarts the 
process of antigen presentation to T-cells (119). Furthermore, 
the cytokine profile of T-lymphocytes treated with DMF is 
altered, leading to a polarization shift away from IFN-γ and 
toward IL-10 (120).
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Peripheral Lymphocytes
In a longitudinal study, the peripheral blood leukocyte and 
lymphocyte counts of DMF-treated MS patients decreased 
over a 12-month period (121). Significant loss of both central 
and effector memory CD4+ and CD8+ T-cells was apparent 
by 6  months of treatment, but CD8+ T-cells were more pro-
foundly affected, leading to an increase in the CD4+/CD8+ ratio 
(121–124). Although among total CD4+ T-cells, both Th1 and 
Th17 classes are decreased, there is a shift away from pro-inflam-
matory cytokine-producing Th1 and toward anti-inflammatory 
cytokine-producing Tregs and Th2 cells specifically within the 
memory T-cell subset (123, 124). Once again, the preferential loss 
of Th1 cells likely impedes the production of an effective anti-
JCV response, thereby increasing the risk for PML.

Similarly, DMF alters the profile of circulating B-lymphocytes 
in MS patients toward an anti-inflammatory state. The total levels 
of CD19+ B-lymphocytes are decreased, with the most profound 
loss occurring in the mature CD27+ B-lymphocyte subset 
(125–127). The proportion of Breg subsets (CD24highCD38high and 
CD43+CD27+) has been found to be significantly increased after 
12 months of treatment with DMF (125). Correspondingly, there 
is a shift in the B-cell cytokine profile toward more IL-10, relative 
to pro-inflammatory cytokines (125–127).

CNS Lymphocytes
Information on how DMF affects the composition of immune 
cells within the CNS is still needed. Since DMF works directly 
on the function and survival of the immune cells themselves, 
there has been an underlying assumption of a direct correlation 
between peripheral assays and central immune cell composition. 
This assumption may not be valid, based on in vitro studies indi-
cating that DMF can alter cytokine-induced adhesion molecule 
expression in endothelial cells (128–130). DMF decreases transen-
dothelial migration due to the downregulation of the adhesion 
molecules E-selectin, VCAM-1 and ICAM-1 (128). Since these 
adhesion molecules are important for lymphocyte trafficking 
into the CNS, the CNS lymphocyte composition of DMF-treated 
patients would be expected to differ from the periphery. In the 
context of experimental autoimmune encephalomyelitis (EAE), 
DMF also decreases the expression of CD49d on circulating 
lymphocytes (131), and similar to natalizumab, the loss of CD49d 
may prevent adequate JCV antigen presentation and clearance. If 
this finding applies to human MS patients, then the monitoring of 
CD49d expression may be prognostically useful in DMF-treated 
patients as well. Similar to the other PML-associated MS thera-
pies, the ability of DMF to shift the balance between IFN-γ- and 
IL-10-producing cells likely inhibits the effective clearance of JCV 
from the CNS.

JCV-Specific Response
Although there is currently no information about the JCV-specific 
CTL response, the CD8+ T-cell lymphocytopenia associated with 
DMF suggests that the loss of JCV-specific CD8+ T-cells may be 
a contributing factor in the development of PML in lymphopenic 
patients. Information regarding the activation profile and respon-
siveness of JCV-specific CD8+ T-cells from DMF-treated patients 

will be needed to determine how this population varies over the 
course of treatment and whether it can be used to assay risk for PML.

JCv eNTRY AND ReACTivATiON  
iN THe CNS

viral entry into CNS
As a disease of the CNS, changes in lymphocyte subsets cannot 
lead to the development of PML if JCV is not located in the 
CNS. The mechanism by which JCV enters the CNS is currently 
unknown, but it has been proposed that it could be transferred as 
free virus or carried by B-cells (43). Since B-cells utilize multiple 
ports of entry into the CNS, there are also several avenues by 
which JCV could enter. JCV could be transferred directly to glial 
cells from B-cells that have entered the CNS parenchyma, or it 
could be transferred indirectly via the BBB, BMB, or BCSFB.

Susceptibility to infection by polyomaviruses is primarily 
mediated by lactoseries tetrasaccharide c (LSTc), which serves as 
the attachment receptor for the virus via the VP1 capsid protein 
(132, 133), and the 5-HT2 serotonin receptors, which facilitate 
entry (134). However, these are likely not the only mechanisms 
for viral entry, as some cell types prone to infection lack at least 
one of these receptors. Notably, glial cells, even in individuals 
with PML, lack expression of LSTc (135). Similarly, the LSTc 
expressing brain vascular endothelial cells of the BBB have been 
shown to be capable of supporting viral entry in vitro, but lack 
5-HT2 receptors (136). The epithelial cells of the choroid plexus 
in the BCSFB express both LSTc and 5-HT2 and are thus also 
capable of being infected by JCV (135). Furthermore, there is 
clinical evidence for the productive JCV infection of the cells of 
the leptomeninges and choroid, resulting in meningitis (137). 
Interestingly, the regulatory region associated with JCV-related 
meningitis is not the rearranged form associated with PML, but 
rather the archetypal version typically found in the periphery. 
Thus, the NCCR rearrangements that facilitate the productive 
infection of oligodendrocytes are not required for JCV to enter 
the CNS but may play a role in the subsequent manifestation 
of PML.

Based on the NCCR sequence structure, four classes of JCV 
variants have been characterized. While particular variants are 
preferentially found in certain tissues, they have all been detected 
to some extent within both the CNS and the periphery (138). 
Correspondingly, latent virus has been found in the brains of 
healthy individuals, including both rearranged and archetypal 
regulatory region forms (139–141). Evidence of peripheral I-R 
forms, which are associated with PML and enriched in the brain, 
could indicate that JCV has already reached the CNS and that 
these patients have higher risk for PML. Therefore, prescreening 
of MS patients for JCV should focus not simply on seropositivity 
but on the detection of rearranged variants.

JCv Reactivation Markers
Many viruses have been shown to modify the contents of host 
cellular secretions to promote their own spread and survival 
(142). Exosomes are used as a form of communication and 
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molecular transfer between cells types and used extensively 
by immune cells to modulate inflammatory responses (143). 
The viral manipulation of exosome contents involves both 
altered secretion of host-derived factors and incorporation of 
viral-derived components (142). MicroRNAs (miRNAs) are key 
immunomodulatory components of exosomes. The circulating 
miRNA expression profile of patients with active viral infections 
has been shown to be altered in some cases (144). In the context 
of JCV infection, however, the profile of circulating host-derived 
miRNAs does not appear to be diagnostically useful (145). 
Viral-derived miRNAs, on the other hand, offer a potentially 
more relevant source of biomarkers, since they provide a direct 
readout of a specific virus. JCV encodes the miRNA jcv-miR-J1. 
jcv-miR-J1-5p, which is derived from the 5p arm and specific to 
JCV, has been detected in the urine, plasma, and CSF of JCV-
seropositive individuals (146, 147). Furthermore, the presence of 
jcv-miR-J1-5p is indicative of latent viral infection, which may be 
clinically useful in the stratification of risk for PML, particularly 
in regards to the CSF. The miRNA derived from the 3p arm of 
JCV pre-miRNA, jcv-miR-J1-3p, is identical with the 3p-derived 
miRNA from the BK polyomavirus, so is less diagnostically use-
ful, but important for viral immune evasion (148). JCV-miR-3p 
downregulates the expression of ULBP3, thereby inhibiting the 
clearance of virus-infected cells by natural killer cells (149). 
Interestingly, the results of one study suggest that due to viral 
homology or cross-talk, the production of antibodies toward 
type 1 BK polyomavirus may be protective against JCV-induced 
PML (150). A better understanding of JCV’s ability to modify 
the content and release of exosomes may allow for the develop-
ment of viral reactivation diagnostic biomarkers and therapeutic 
interventions to prevent CNS transmission.

Astrocytes as gatekeepers of the CNS
Within the CNS, astrocytes are the best positioned conduit of 
JCV. In a chimeric mouse model, in which glia were derived 
from human glial progenitors, intracerebral delivery led to the 
preferential accumulation of JCV within astrocytes, suggesting 
that astrocytes are the most susceptible to JCV infection within 
the CNS (151). This susceptibility may stem from the vast inter-
connectedness of astrocytes, both with each other and with other 
cells in the CNS. Moreover, astrocytes play a pivotal role as the 
interface between the CNS and the periphery, with bidirectional 
communication between astrocytes and vascular endothelial 
cells (152). The BMB is a likely avenue of viral transmission, 
since meningeal cells can be productively infected by JCV in vivo 
(137), are coupled to astrocytes via gap junctions (153), and can 
influence the gap junction coupling of neighboring astrocytes 
(154).

Gap junction channels allow for the rapid intercellular 
transport of ions and small molecules, including miRNAs (155). 
Many pathogens have developed strategies to take advantage of 
gap channel-based intercellular communication to facilitate their 
spread (156). The release of pro-inflammatory factors results in 
the decreased expression of gap channel proteins, connexins, 
thereby disrupting networks of communication mediating 
essential functions, such as ionic balance, which can lead to CNS 
injury (157). The loss of connexins can also impair the phagocytic 

clearance of infected cellular debris and antigen cross-presenta-
tion at immunological synapses (156). Therefore, in addition to 
exosomes, viruses could potentially use gap junction channels or 
hemichannels to traffic viral miRNAs or proteins to neighboring 
uninfected cells for immunomodulation or to prime glial cells 
for subsequent infection.

The perivascular endfeet of astrocytes are involved in neuro-
vascular regulation and permeability of the BBB (152). In this 
capacity, astrocytes serve as the gate keepers of immune cells into 
the CNS. The profile of chemokines released by astrocytes is tai-
lored to the nature of the specific invading pathogen to coordinate 
the most effective and least damaging immune response (158). 
The typical response involves an initial release of pro-inflamma-
tory molecules to recruit leukocytes into the CNS, followed by 
the release of more immunosuppressive factors, such as IL-10, 
to prevent inflammatory damage, particularly in the context of 
chronic infections (159, 160). Consequently, virus-mediated 
modification of astrocytes could impact their ability to recruit 
and control the T-cells necessary to clear the virus. Perhaps more 
importantly is the manner in which immunomodulatory thera-
pies can disrupt the interactions between the immune system and 
glial cells, resulting in viral reactivation and ineffective clearance.

JCv infection and Reactivation within glia
Immune cells can affect the ability of glial cells to be productively 
infected by JCV through cytokine-mediated changes in gene 
expression. JCV contains a capsid-enclosed double-stranded 
DNA genome that encodes early and late genes (161). The early 
transcript encodes the large T- and small t-antigens, which are 
critical for viral replication. The NCCR controls the expression of 
early and late viral genes through a bidirectional promoter, thus 
the availability of relevant transcription and mRNA-processing 
factors within a host cell influences the ability of the virus to 
propagate (162). Since T-antigen plays such a vital role in viral 
replication and autoregulation of the viral promoter, factors that 
interact or interfere with T-antigen can impact viral reactivation 
(163, 164).

The alternative slicing factor SRSF1 (SF2/ASF) and T-antigen 
are antagonistic to each other. SRSF1 inhibits the splicing of JCV 
pre-mRNA transcripts, which is necessary for the production 
of the individual viral proteins (165). Furthermore, SRSF1 also 
binds to the NCCR to inhibit transcription of both early and late 
viral genes, including T-antigen, and suppression of SRSF1 in 
glial cells facilitates their infection by JCV (165, 166). T-antigen, 
in turn, can suppress the expression of SRSF1 through interac-
tions with the SRSF1 promoter (167). SRSF1 suppression can also 
be mediated by the DNA- and RNA-binding protein, Pur-alpha, 
through its activation of T-antigen expression and direct inhibi-
tion of SRSF1 gene expression (168). Soluble factors secreted by 
immune cells, such as cytokines, can tip the balance in favor of 
SRSF1 and suppress JCV replication. IFN-γ, specifically, has been 
found to inhibit T-antigen translation in a Jak/Stat-dependent 
manner (169). Although, the mechanism directly linking 
cytokines with glial SRSF1 expression is still unclear, these studies 
suggest that alterations in cytokine output or glial gene expres-
sion by immunomodulatory therapies could confer risk in the 
development of PML. Indeed, a recent 2-year longitudinal study 
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following patients treated with natalizumab or fingolimod indi-
cates differences in SRSF1 expression levels (170). While SRSF1 
expression levels remained stable in fingolimod-treated patients, 
they transiently increased within a year of natalizumab and then 
decreased with longer duration therapy. This is consistent with 
the higher incidence of PML with natalizumab and increased the 
risk associated with long-term use. In addition, the transcription 
factor Spi-B, which is increased in CD19+ B-cells (49) and CD8+ 
T-cells (171) following natalizumab treatment, is also important 
for the expression of T-antigen in astrocytes (172).

The disparity of PML incidence may also be related to direct 
treatment-specific changes within the astrocytes themselves. 
While the secretion of pro-inflammatory cytokines by immune 
cells may be beneficial to the containment of JCV, the expres-
sion of pro-inflammatory-associated factors by astrocytes could 
actually contribute to JCV reactivation. A microarray analysis 
comparing glial cells lines resistant to JCV with those that are 
susceptible to JCV infection revealed that resistant cells expressed 
lower levels of pro-inflammatory cytokine and chemokine gene 
transcripts (173). This difference is related to decreased expres-
sion of the transcription factors NF-κB and NFAT4, which can 
modulate expression of both pro-inflammatory cytokines and 
JCV transcripts (174, 175). NF-κB and NFAT4 are also them-
selves activated by pro-inflammatory cytokines, such as TNFα, 
and regulated by calcium signaling/calcineurin activity in a 
context-dependent manner (176). These factors promote JCV 
early gene expression through interactions with the KB element 
of the NCCR, which is negatively regulated by C/EBPb (177). 
In addition, histone acetylation at the KB element can activate 
viral gene expression, and this epigenetic modification appears 
to involve NF-κB (178).

Therefore, decreases in pro-inflammatory signaling within 
astrocytes by some immunomodulatory therapies, including 
fingolimod and DMF, could potentially lower the risk of JCV 
reactivation with the CNS. Fingolimod treatment suppresses 
TNFα-induced pro-inflammatory genes, primarily cytokines, 
in human astrocytes, which confers neuroprotection (179). 
Critically, NF-κB nuclear translocation and signaling are also 
reduced (180). The stimulation of calcium-signaling/calcineurin 
activity by fingolimod (181) may help mediate these effects, as 
calcineurin has been implicated in the inhibition of NF-κB and 
NFAT in reactive astrocytes (176). DMF inhibits NF-κB nuclear 
translocation and associated pro-inflammatory cytokine expres-
sion (182–184); however, it also decreases histone deacetylase 
activity (185). It remains to be determined whether these or other 
MS therapies actually influence JCV reactivation in the astrocytes 
of MS patients.

Reactivation of latent JCV within astrocytes is a potential 
gateway to PML. Astrocytes are actively involved in oligodendro-
cyte survival, differentiation, and myelination through extensive 
cross-talk between the two glial subtypes (186). Viral components 
could also be transferred in the process of this communication. 
Due to this reliance on astrocytes, the loss or dysfunction of 
infected astrocytes can negatively impact oligodendrocytes and 
contribute to demyelinating pathology (187). Furthermore, the 
uptake of infected myelin and cellular debris from JCV-induced 
cell lysis, by phagocytic astrocytes, could facilitate the spread of 

the virus within the CNS (188). Overall, more studies are needed 
to uncover the mechanisms used by JCV to enter the CNS and 
the conditions governing infection and reactivation within 
astrocytes. The presence or absence of JCV within the CNS at 
the onset of immunomodulatory treatment could help further 
stratify patients according to which parameters are most relevant 
to their individual risk of developing PML. In patients with latent 
JCV in the CNS, the strategy should involve preventing viral 
reactivation. Accordingly, the type of MS therapy used should be 
tailored to minimize both symptoms of MS and risk of PML.

geNeTiC FACTORS

viral Mutations
The development of JCV-induced CNS pathology involves 
genetic mutations within the viral genome. It is the nature of the 
mutation that determines the manner in which the infection and 
subsequent pathology will manifest. The mutations can affect the 
virus on a variety of fronts, from controlling which cell types are 
susceptible to infection to virulence, depending on the region of 
the viral genome alteration. PML is associated with complex, but 
highly variable, rearrangements of the NCCR, which not only facili-
tates infection of glial cells, but also leads to increased expression 
of early genes, namely T-antigen, which then boosts the replica-
tion rate (189). About half of PML patients also have mutations in 
the VP1 capsid protein, which can change the affinity of binding 
to the sialic acid containing receptors that mediate viral entry, 
such as LSTc, thereby increasing virulence (190). In contrast, 
JCV-associated diseases affecting neurons are more dependent on 
deletions within the late viral genes. Granule cell neuronopathy 
is a demyelinating disease that results from JCV infection of cer-
ebellar granule cell neurons (191). It is associated with mutations 
in the C terminus of the JCV VP1 gene, which are believed to 
enhance replication in cerebellar granule cells and provide for the 
evasion of immune detection (192). JCV encephalitis is linked to 
mutations in agnoprotein (193). At this point, only three cases 
of JCV-induced meningitis have been reported in the literature, 
and the relevant mutations have not been identified (137, 194).

While PML-associated JCV may share similar features, the 
variability of mutations found in PML patients suggests that 
the viral trajectory toward a pathogenic form is unique in each 
individual (195). Consequently, while the loss of JCV-specific 
CTL and localization of JCV within the CNS are also essential 
features, the single greatest risk factor for PML is likely the genetic 
variant(s) of JCV residing within a patient (see Figure 2). This 
explanation best accounts for why most immunosuppressed 
individuals do not develop PML despite the high prevalence of 
(archetypal) JCV in the general population. Although individuals 
typically host several classes of JCV within their body, it is unclear 
whether the form associated with PML can be acquired through a 
primary infection or if it requires de novo mutation within the host. 
The rarity of PML likely reflects the complexity of the mutations 
needed to induce a productive infection within oligodendrocytes. 
The transition of the NCCR from archetypal to rearranged 
requires a series of deletion and duplication events, such that even 
if the probability of any one mutation is high, the likelihood of 
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FigURe 2 | Convergence of peripheral immune changes, central nervous 
system (CNS) glial infectivity, and genetic susceptibility in the development of 
progressive multifocal leukoencephalopathy (PML). Whether a multiple 
sclerosis (MS) patient treated with immunomodulatory therapy will develop 
PML depends on changes in the peripheral immune system (blue) that lead 
to immunosuppression, particularly within the CNS (green), and in a genetic 
background (purple) that increases the susceptibility of glial cells to 
productive infection by John Cunningham virus (JCV). Risk increases as the 
circles get smaller, but a patient will not develop PML until they experience all 
three events located within the innermost circle: the loss of number/function 
of JCV-specific T-cells within the CNS in the context of a lytic JCV infection 
within oligodendrocytes by a version of JCV with a mutated non-coding 
regulatory region (NCCR). The failure of current assessments to accurately 
predict risk lies in the failure of these metrics to take into account all three 
facets. New analytics need to take into account JCV-specific lymphocyte 
function, JCV genetic variants, and the location of latent JCV within the body 
of a particular MS patient (Image copyright: Caitlyn Fisher and Yang 
Mao-Draayer, reprints with permission).
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the combination is very low (45). However, the hijacking of host 
recombinase activity could bypass the requirement for several 
independent mutagenic events and increase the probability of 
pathogenic rearrangement. Currently, it is unclear if outside 
of immunosuppression, MS immunomodulatory therapies can 
directly affect the replication and mutation rates of JCV.

While immunosuppression increases viral mutation rates 
by facilitating viral reactivation and unchecked replication, the 
majority of mutations will be detrimental for the virus. Indeed, 
within PML patients, multiple genetic variants can be found, many 
of which actually make the virus less virulent (196). However, 
the persistence of multiple versions of the virus, even those 
with suboptimal adaptation, could be important for immune 
evasion. Recent work aimed at designing an effective vaccine for 
JCV suggests that the mutation of capsid proteins impairs the 
ability of anti-JCV antibodies to neutralize the infection (197). 
The presence of viral protein variants not targeted by anti-JCV 
antibodies could also help explain the disparity between antibody 

production and effective JCV clearance in PML patients. Following 
reactivation, continued immunosuppression further prevents 
the immune system from containing the mutated virus once it 
successfully infects oligodendrocytes. This genetic variability 
can also hamper analyses that rely on the detection of a specific 
sequence, thereby contributing to false negatives and inaccuracy 
of risk assessments. Efforts aimed at monitoring changes within 
the JCV genome in immunosuppressed patients over time could 
reveal the presence of a pattern of changes or cohort of mutations 
associated with a higher probability of developing PML. Newer 
assays such as high-resolution melting analysis (198) and multi-
plex qPCR (199) are improving the accuracy and availability of 
testing for NCCR rearrangements and could become a standard 
for monitoring risk.

Host genetic Susceptibility
In addition to the composition of the viral genome, the genetic 
makeup of the host can influence the susceptibility and response 
to infection. Genome-wide association studies have indicated 
that many single-nucleotide polymorphism (SNP) variants 
that confer risk toward MS and other autoimmune diseases 
are involved in the function of the immune system (200, 201). 
Consequently, some of these SNPs could also increase susceptibil-
ity or offer protection against PML. For example, SNPs that lead 
to the augmentation of NF-κB-mediated signaling (202) could 
increase the risk of viral reactivation in glial cells. In patients 
with these SNPs, the use of immunotherapies that specifically 
target NF-κB could help mitigate this risk. Human leukocyte 
antigen (HLA) genes encode major histocompatibility complex 
cell surface proteins involved in antigen presentation, which are 
critical for immune system regulation. The presence or absence 
of particular HLA alleles has been shown to confer protection or 
susceptibility for autoimmune disorders and infectious diseases 
(203). HLA-DRB1*15 is the most well-established susceptibility 
allele for MS (204), but may confer protection against JCV. In 
a study of Scandinavian and German cohorts, MS patients with 
the DRB1*15-DQA1*01:02-DQB1*06:02 haplotype had a nega-
tive association with JCV serostatus (205). Since elevated JCV 
antibody index levels are associated with increased risk for PML 
(15), HLA alleles associated with lower levels of JCV antibody 
production are predicted to minimize risk. Interestingly, there 
appears to be an inverse relation between HLA alleles associated 
with risk for autoimmune diseases and PML. HLA-DRB1*13 
is negatively associated with several autoimmune diseases and 
is hypothesized to play a protective role (206). However, the 
DRB1*13-DQA1*01:03-DQB1*06:03 haplotype was positively 
associated with JCV serostatus (205). These findings suggest that 
HLA typing may be useful in the stratification of patients at risk 
for PML.

Variation in IL-10 signaling could also contribute to PML 
risk. Polymorphisms in the IL-10 promoter, which mitigate 
the severity of MS (207), may also increase the susceptibility 
for PML. In contrast, many MS patients have increased levels 
of miR-98 (208), which negatively regulates IL-10, and could 
be protective in this context. miR-98 can also inhibit IL-10 
production induced by toll-like receptor 4 (TLR4) (209). In 
polyomavirus-susceptible mice, viral activation of B-cells by 
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TLR4 induces an IL-10 response, whereas TLR2 activation 
of dendritic cells in resistant mice leads to an IL-12 response 
(41). This may stem from differences in the posttranscriptional 
stability of IL-10 mRNA downstream of the TLRs, as TLR4 has 
been found to protect IL-10 mRNA from degradation (210). 
Although TL4 is typically expressed at very low levels in human 
B-cells, it is increased in the context of inflammatory disease 
(211). Furthermore, some viruses, such as hepatitis C virus 
(HCV), have been shown to increase TLR4 expression on B-cells 
(212). In addition, TLR4 expression is downstream of IL-10, and 
a correlation between IL-10 promoter SNPs, TLR4 expression, 
and response to therapy has been found in a cohort of HCV 
patients (213). TLR SNPs have been hypothesized to influence 
infection and persistence of a variety of viruses (214), which may 
be related to the interaction between TLRs and IL-10. Therefore, 
it is possible that differences in expression of TLR4 or other 
TLRs on antigen-presenting cells could influence susceptibility 
to productive polyomavirus infection, such as JCV, in humans. 
However, it is unclear what effect any single SNP has on disease, 
which currently makes it difficult to glean reliable diagnostic 
metrics from host genetic data.

Case reports of supposedly immunocompetent individuals 
who developed PML offer some insight into which genes may 
be most relevant. The ability of IFN-γ to inhibit T-antigen in a 
Jak/Stat-dependent manner (169), suggests that its presence can 
help prevent JCV reactivation. Gain-of-function mutations in 
Stat1 increase the susceptibility of infections due to the aber-
rant regulation of IFN-γ-mediated inflammation (215). These 
mutations enhance IFN-γ-induced gene expression but impair 
response to IFN-γ re-stimulation. Stat1 mutations have been 
found in three patients who succumbed to an aggressive form 
of PML, and these mutations are now understood to be a major 
risk genetic factor for PML (216). In addition, gene sequenc-
ing from another immunocompetent PML patient revealed a 
genetic mutation conferring a deficit in the production of IFN-γ 
(217). Although even less well understood, SNPs that influence 
a patient’s response to immunotherapy could also impact risk. 
Genetic testing works best in the context of single genes with 
well-characterized mutations, but, for the majority of patients, 
susceptibility for PML will involve minor variants in a variety of 
genes, which may be difficult to tease out. Overall, it is likely the 

changes induced by a therapy in combination with the genetic 
makeup of the individual that determines risk.

CONCLUSiON

Ultimately, more studies are needed to determine why some 
patients develop PML. There appears to be a general scheme of 
immunosuppression leading to JCV reactivation and mutation 
toward a form that infects glia. Continued immunosuppres-
sion then inhibits effective viral clearance and culminates in 
PML. However, there are still many open questions regarding 
the details. Not all types of immunosuppression induce PML, 
and clearly not all immunosuppressed patients develop PML. 
Current studies suggest that CD4+ T-cell lymphocytopenia 
coupled with increases in IL-10-producing regulatory subsets 
specifically within the CNS may be most relevant. It is also 
unclear whether having latent JCV within the brain prior to 
immunosuppression confers greater risk than having it in the 
periphery, as well as how the mutant form of the virus develops. 
New biomarkers of reactivation and assays to monitor viral 
genomic sequences may help address these questions and provide 
for better monitoring strategies to reduce the future incidence 
of PML in MS patients.
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